Updating prebuilts and/or headers

aa0710c98a36daa5f4516ee8ee39209d05e4c255 - nvbuild.sh
d15f50688485e11293e0d0bd66d73655e79f7718 - nvcommon_build.sh
1156a747abe8e5f2a639fe82c7e9b4b8c128428c - arm-trusted-firmware/package-lock.json
d2180c4f81067554a4fa86baaebf7cd7722d0706 - arm-trusted-firmware/Makefile
7f3fadaf80e3c4745d24cb1a5881c7c5f4d898ba - arm-trusted-firmware/.checkpatch.conf
2b66445d7d00314222c238ee2f233a099ac6d838 - arm-trusted-firmware/.commitlintrc.js
da14c19baefee3959f7c02f68db6cbe8c25d408e - arm-trusted-firmware/readme.rst
2da4fc2430e852f43b1ec376e4783a1d4658c039 - arm-trusted-firmware/package.json
2d62a7583b85631859c4143f08e0dc332e1cb87e - arm-trusted-firmware/.gitreview
5f8311228df51d284e4efc6c89e9d193dde99d11 - arm-trusted-firmware/.editorconfig
d8da3627085908a5f974b45528b85dc0a41a8b75 - arm-trusted-firmware/license.rst
55bcfa0a03639a375c3f87b1d3286f526c41b207 - arm-trusted-firmware/.versionrc.js
c10d9e3662b48b6da5c81ce00879a16fd8cf3d60 - arm-trusted-firmware/.cz.json
1684b8fa062fcf155fb678c6e112cf5436423ba2 - arm-trusted-firmware/changelog.yaml
c16e3571ab87b0ea9f8067989a5b0f97251ff8cb - arm-trusted-firmware/lib/libfdt/fdt_wip.c
c3bed95f695f7f9780ea064580ce245fa8dc6611 - arm-trusted-firmware/lib/libfdt/fdt_ro.c
d63d474ccc4d93be45267b9c0a32c3c88c4f42cf - arm-trusted-firmware/lib/libfdt/fdt_overlay.c
3af779f4c2869b4f4f96ca46039bbe9311cfefa4 - arm-trusted-firmware/lib/libfdt/fdt_rw.c
c7bf913dd7eabfba85f363d7a05851e84c786828 - arm-trusted-firmware/lib/libfdt/fdt.c
e01b7a0052b837a4650f2c9ac75ad38c40edc583 - arm-trusted-firmware/lib/libfdt/fdt_empty_tree.c
6db863ac215fcf8880798469701f80b2fc197bcc - arm-trusted-firmware/lib/libfdt/fdt_strerror.c
e6ac4a37689f70dd9fd01a67cabe4439d66dc4ea - arm-trusted-firmware/lib/libfdt/fdt_sw.c
3aae059b21ecd4f923c8f399d4c2dd101ce03502 - arm-trusted-firmware/lib/libfdt/libfdt_internal.h
55fc5d2ffcba07e29948822d0b12e4bf5546b8b8 - arm-trusted-firmware/lib/libfdt/fdt_addresses.c
bc4f07448420d9d32b327b6516b618223272961e - arm-trusted-firmware/lib/pmf/pmf_main.c
7643d09d9577c6232b14eccb6e1fc3a1c8acc0d9 - arm-trusted-firmware/lib/pmf/pmf_smc.c
8102f862edb5ab07783993999c8781385e261628 - arm-trusted-firmware/lib/debugfs/dev.c
78982645d4d3008984c9307ee68bfa8eeb1a43a7 - arm-trusted-firmware/lib/debugfs/blobs.h
db9f0e301c7178c315a1c6e72358bae572ce85db - arm-trusted-firmware/lib/debugfs/devfip.c
758f3be3354709a4f69ee89cacf0db10dd68c75c - arm-trusted-firmware/lib/debugfs/debugfs_smc.c
9802d55cbbaff09010b37afad6d494d8e755eae2 - arm-trusted-firmware/lib/debugfs/devroot.c
5260672b27f35a4368d3be1f6ee66ec91d4beb26 - arm-trusted-firmware/lib/debugfs/dev.h
7c85c537adcb24f5e03d6c71424a2618815086e3 - arm-trusted-firmware/lib/debugfs/devc.c
3a7bca01cf9d3b67b9d93fec625c4591ad106379 - arm-trusted-firmware/lib/romlib/Makefile
a9efa4120656b54bbfaf91befd1a82dafb8640a0 - arm-trusted-firmware/lib/romlib/romlib_generator.py
0b4fe827956659566fa763cd1b1e15b1cdb505b6 - arm-trusted-firmware/lib/romlib/jmptbl.i
1a7d8adbdd571058f2d7cdf2dad5d51e735dfe8d - arm-trusted-firmware/lib/romlib/romlib.ld.S
bc8857833413ad776fefee7b3a4fe3ad74c7cd04 - arm-trusted-firmware/lib/romlib/gen_combined_bl1_romlib.sh
aca0167af243d551e7068e10251ccc62e1b800ea - arm-trusted-firmware/lib/romlib/init.s
b022feb15f3e84d4eefd318657af38a3a523e363 - arm-trusted-firmware/lib/romlib/templates/jmptbl_entry_function_bti.S
56fc8c8a2950a0303783ced6bd0e388176043a47 - arm-trusted-firmware/lib/romlib/templates/jmptbl_entry_function.S
e0406a34add19465d2ace2d60bc6c5048bf0a9ff - arm-trusted-firmware/lib/romlib/templates/wrapper_bti.S
91d0e6f060cd659ba73d0db8886497a823814c65 - arm-trusted-firmware/lib/romlib/templates/jmptbl_entry_reserved_bti.S
fa26b89e848f7affd6fd3be71153b55961fbf971 - arm-trusted-firmware/lib/romlib/templates/jmptbl_glob_var.S
8bd9f16af17fc4a81e921654d50217d6ba334d4f - arm-trusted-firmware/lib/romlib/templates/jmptbl_header.S
f9c9050fd5c89b246d718f406a9d9a13f3388a5e - arm-trusted-firmware/lib/romlib/templates/jmptbl_entry_reserved.S
5c8a013e889e7653f0cbff1346cd13128ff2fd69 - arm-trusted-firmware/lib/romlib/templates/wrapper.S
18fdfde595d6c7a6409f3d91382d81f736bf775d - arm-trusted-firmware/lib/fconf/fconf_mpmm_getter.c
1720429b89e9cc8c7b5f6bde6381dcd8f1e4bf0b - arm-trusted-firmware/lib/fconf/fconf_dyn_cfg_getter.c
06052beb76737879a3430c42f32068e7630ce940 - arm-trusted-firmware/lib/fconf/fconf_cot_getter.c
fd4c5030299c6c43d7dcde650254301c4a185c84 - arm-trusted-firmware/lib/fconf/fconf.c
bcf80bf32003cb4ebf4b71fd3b62b2ec5210ba95 - arm-trusted-firmware/lib/fconf/fconf_tbbr_getter.c
3567bc768ff2f143e4933244eb221b010bd91f80 - arm-trusted-firmware/lib/fconf/fconf_amu_getter.c
70011c90369b5b9a9d55faec233e60b90b31801e - arm-trusted-firmware/lib/locks/exclusive/aarch64/spinlock.S
edf2b7a02784eccffa70a8f06817929dd1a8f993 - arm-trusted-firmware/lib/locks/exclusive/aarch32/spinlock.S
b3453819b2250ed7f47a81d57ce565f8d644ddaa - arm-trusted-firmware/lib/locks/bakery/bakery_lock_normal.c
cf339f00e977a47612e93384a6a0b8e73d731c21 - arm-trusted-firmware/lib/locks/bakery/bakery_lock_coherent.c
672dc9ce8ca19e9bad297552bb38f03725d544b2 - arm-trusted-firmware/lib/extensions/mpam/mpam.c
ba76ca96162e88bc6bc13591b4dbe2d955320a45 - arm-trusted-firmware/lib/extensions/sys_reg_trace/aarch64/sys_reg_trace.c
ecb8e335fe4a2681e714ea9d5c5f2b8f5e1a8e07 - arm-trusted-firmware/lib/extensions/sys_reg_trace/aarch32/sys_reg_trace.c
da13fbd30292be6162a14bb7866fc3da5fce2c10 - arm-trusted-firmware/lib/extensions/sve/sve.c
1acd16a1b33cf990f1093d8f0ba9c0ebd7a6f719 - arm-trusted-firmware/lib/extensions/trbe/trbe.c
4125c51fd3f075d4d291f56b53175ca0683e12eb - arm-trusted-firmware/lib/extensions/spe/spe.c
ebe5066f50de32f019ea11419b6ef11da4604812 - arm-trusted-firmware/lib/extensions/pauth/pauth_helpers.S
1e8ea4b9d81a41c874fd1c0e7b3915a5337cf966 - arm-trusted-firmware/lib/extensions/mtpmu/aarch64/mtpmu.S
aee505d9d1071c6c819d07bc02c1e963cf8c6025 - arm-trusted-firmware/lib/extensions/mtpmu/aarch32/mtpmu.S
20945ff7a4f02b5797f9043d0dd1dcb655476c0b - arm-trusted-firmware/lib/extensions/sme/sme.c
e3dc484cb8d981ceb0cdc03a7bdb8f24e2f9ae85 - arm-trusted-firmware/lib/extensions/trf/aarch64/trf.c
5ccbd178b5c5eb953d97ca519229837a0537e821 - arm-trusted-firmware/lib/extensions/trf/aarch32/trf.c
afd6141e2e07c1fd692c8e845ce6e65899fbbb7d - arm-trusted-firmware/lib/extensions/amu/amu_private.h
896aead96745f721f995de07ec7a83fc77ffc33f - arm-trusted-firmware/lib/extensions/amu/aarch64/amu.c
7f3f609a1bb0c4b5287f43cd817a535c4e497353 - arm-trusted-firmware/lib/extensions/amu/aarch64/amu_helpers.S
21d2bec3b0a822561dc68c9dab32b97d35ea848a - arm-trusted-firmware/lib/extensions/amu/aarch32/amu.c
3dbb067dc92b40dd63f5ee3b50d0e88978e7e528 - arm-trusted-firmware/lib/extensions/amu/aarch32/amu_helpers.S
9b56d2cedbd5417e75959a7c83b6361dc3c48f6e - arm-trusted-firmware/lib/extensions/ras/std_err_record.c
785751601e97ed8f6b006cbe5a6e26dac81addf3 - arm-trusted-firmware/lib/extensions/ras/ras_common.c
ccbf0a74a73d6eb9563cb282272e41c9decadde5 - arm-trusted-firmware/lib/el3_runtime/cpu_data_array.c
0407aded26aa40484ccde01e8562c2db1c2ff939 - arm-trusted-firmware/lib/el3_runtime/aarch64/context.S
648e98ef419ac30a1fdfe6e9fdef5a45f6fb8926 - arm-trusted-firmware/lib/el3_runtime/aarch64/context_mgmt.c
a748c18c9c1bed5bfa7ad7bc2d42f1241b4eeb59 - arm-trusted-firmware/lib/el3_runtime/aarch64/cpu_data.S
72331f73e0f3f6540837815f472f78059a7fe275 - arm-trusted-firmware/lib/el3_runtime/aarch32/context_mgmt.c
c16b6a90e04aa66123dde223fa202f33ab70aa51 - arm-trusted-firmware/lib/el3_runtime/aarch32/cpu_data.S
3c63f678cd78b3c4c10b6d13ffb32f245deb8ef6 - arm-trusted-firmware/lib/stack_protector/stack_protector.c
7c77f07a1d4fda36a4af38ed18da2e22607b53e9 - arm-trusted-firmware/lib/stack_protector/aarch64/asm_stack_protector.S
c50c9ce39f46bbbfebd47c8645445585727f5b7d - arm-trusted-firmware/lib/stack_protector/aarch32/asm_stack_protector.S
57633f55f011eec32b09f4867a18db8725ad24d4 - arm-trusted-firmware/lib/xlat_tables/xlat_tables_common.c
489fa8c2a31654d4ab05e281acbabb0f8a64608d - arm-trusted-firmware/lib/xlat_tables/xlat_tables_private.h
83fd34388e89c93efcad1998551854558c28ad99 - arm-trusted-firmware/lib/xlat_tables/aarch64/xlat_tables.c
bb710f3b156b87d08faaffa4bfdb60074c5bf5b0 - arm-trusted-firmware/lib/xlat_tables/aarch32/xlat_tables.c
08dd595ae97e585c165a02faaeecbc5c0615ecca - arm-trusted-firmware/lib/xlat_tables/aarch32/nonlpae_tables.c
886c1e8212ddafb0663811837c76ce60a9afb42a - arm-trusted-firmware/lib/bl_aux_params/bl_aux_params.c
7b5870894878b452bb2f89fe98f1e15591a599b9 - arm-trusted-firmware/lib/semihosting/semihosting.c
79d2f0e3c6477c7632a9d7b9d01b42625bf0cbb3 - arm-trusted-firmware/lib/semihosting/aarch64/semihosting_call.S
bed75bc5da772504027fb7c033a1c918acc82c48 - arm-trusted-firmware/lib/semihosting/aarch32/semihosting_call.S
7185228489bf2c4e562f37a9f927cbc31c18ced1 - arm-trusted-firmware/lib/aarch64/cache_helpers.S
da63c15641cb6cf532770db54efc30b3f8122a7c - arm-trusted-firmware/lib/aarch64/misc_helpers.S
96718b39d24ee4ca5fd1eb4f87d53c45c9e4f079 - arm-trusted-firmware/lib/aarch64/armclang_printf.S
0e2d7fd7063f4e253b3719a95edcfeb99d34044d - arm-trusted-firmware/lib/libc/putchar.c
e99c723c3292973758d597558fd929976df82eff - arm-trusted-firmware/lib/libc/strlen.c
57ac7674f717f57cdd099f4ac2b3be174f71bdda - arm-trusted-firmware/lib/libc/assert.c
315e4d792f50e1a2f37ec14616fb2aaeaa866ae8 - arm-trusted-firmware/lib/libc/strncmp.c
44c32455e06c8ee38e1d4774fa8f70de1d9e3f00 - arm-trusted-firmware/lib/libc/memcmp.c
76e2ba1d1196be96fef786c3d7c5130fdac79ca7 - arm-trusted-firmware/lib/libc/snprintf.c
be9487ae2df331c4b6d1e8eb831fe36f80300829 - arm-trusted-firmware/lib/libc/strlcpy.c
cf851bb6ce469797f295f4789ce50110b175893f - arm-trusted-firmware/lib/libc/memcpy.c
f5fe2af7f4f0cad25866aa2422d946f47a11943e - arm-trusted-firmware/lib/libc/abort.c
c72f1f1842a78fb427805c7447d370fc148dc89f - arm-trusted-firmware/lib/libc/strtoul.c
1a98830ccfe805a879a87ff7eb90306cb197e72d - arm-trusted-firmware/lib/libc/strcmp.c
0e11c2ba3c9318cdcc4c28e3e3663337046128b8 - arm-trusted-firmware/lib/libc/memchr.c
a1876df5c0fef0a62bc57d6a13bab2234ad7b1ea - arm-trusted-firmware/lib/libc/memmove.c
8c9668a348c3ffbe4509aa2246941450a7b0de00 - arm-trusted-firmware/lib/libc/strtoll.c
0a99e4e59337ea7c2c2fe6dd428552019fc1f053 - arm-trusted-firmware/lib/libc/memset.c
2e041624618747b95a70ac92007814f04d42907c - arm-trusted-firmware/lib/libc/strchr.c
07dbfb512cae53c03504d60ec4b02bfc74c2af8a - arm-trusted-firmware/lib/libc/strtol.c
82032c79de7b24a84341c8bd5d72baba75337f1e - arm-trusted-firmware/lib/libc/strtoull.c
6d62f8972d334e9b7016abfa5fd60039fd045392 - arm-trusted-firmware/lib/libc/strlcat.c
c64e54b9d37e79c6a5ddf5440518980b4d8023d6 - arm-trusted-firmware/lib/libc/strrchr.c
06782e2bb8b5e2b70cd089f061be9c1a08621523 - arm-trusted-firmware/lib/libc/memrchr.c
e7eb31dbd9893d98f8ab6cbef6a11143aa052581 - arm-trusted-firmware/lib/libc/strtok.c
8cd93cb80d43bbeeabb3a74bdc1e89d4e0821e6e - arm-trusted-firmware/lib/libc/printf.c
e68d6a0053ae9810517f220d26386a2ae6290766 - arm-trusted-firmware/lib/libc/exit.c
a13fb76d1efd1532d6265ca7e3753be123c5fbef - arm-trusted-firmware/lib/libc/strnlen.c
045917a873ae9e6ad3f96e3d127eb474b0f0baf9 - arm-trusted-firmware/lib/libc/puts.c
02977fbcda3d55ed39cafa721d2bd2a901f0c637 - arm-trusted-firmware/lib/libc/aarch64/memset.S
fd7697000146d99611e6aaf57e0f3856602daf6b - arm-trusted-firmware/lib/libc/aarch64/setjmp.S
75786d0b78f57474b1c6f960b2c8ecbc07ba830b - arm-trusted-firmware/lib/libc/aarch32/memset.S
14efe65532640ad904e16c0fcfdf2a0aa8ef7892 - arm-trusted-firmware/lib/aarch32/cache_helpers.S
8a00fe14195497b3dfb4323af7775b79c89a645c - arm-trusted-firmware/lib/aarch32/misc_helpers.S
50b2fea23411834a7cdb5cb61cc8559bcfd872b1 - arm-trusted-firmware/lib/aarch32/armclang_printf.S
00169552baea8da03759257b44162edf097abcd0 - arm-trusted-firmware/lib/aarch32/arm32_aeabi_divmod.c
c975d8abfe42e48d68e0e592ba3989ae3f7f0853 - arm-trusted-firmware/lib/aarch32/arm32_aeabi_divmod_a32.S
3ac2e5a07791e75f8ed81d0c1088a639a14142de - arm-trusted-firmware/lib/cpus/errata_report.c
006dee1e8ead4bf3e5c48a7374813cd8b78ae362 - arm-trusted-firmware/lib/cpus/aarch64/cortex_x2.S
814012a88912a712842aaaf04053a1a8fc46c29c - arm-trusted-firmware/lib/cpus/aarch64/cortex_hayes.S
7cd2af73210355f0e23d3b78612b61f25b37cc87 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a710.S
d16bad3d9e6b6ed0a164467a3b25e5174c38de83 - arm-trusted-firmware/lib/cpus/aarch64/neoverse_demeter.S
08801af78758ca580f3619f48f0d2b72b843b8b3 - arm-trusted-firmware/lib/cpus/aarch64/neoverse_v1.S
fd801851b71a05fbc5920f6815d5ab8025a7f156 - arm-trusted-firmware/lib/cpus/aarch64/cpuamu.c
527f0453b6bcc1e3cdbc68d25c5949e9c6d90d21 - arm-trusted-firmware/lib/cpus/aarch64/denver.S
c2e3731d8a04eb0fe71b450fe59df2cca99da824 - arm-trusted-firmware/lib/cpus/aarch64/cortex_makalu.S
62e253dfa61bf57bc7c8af97146dc643070630b6 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a75_pubsub.c
9745ddbfe3bad71ac283cf7afe3f3a58848729fe - arm-trusted-firmware/lib/cpus/aarch64/generic.S
7ff21ebdc83ea3c05558a7c0798f1424648d5a34 - arm-trusted-firmware/lib/cpus/aarch64/qemu_max.S
23b71740924a2f46a4a3766dc7863240494c0c3e - arm-trusted-firmware/lib/cpus/aarch64/cortex_a78c.S
6256de3b0f8cb82f4629e83dce1ebf3f3d101147 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a510.S
e0dbf2ba5bb288d057c7b39ac8c9217a8e9ef501 - arm-trusted-firmware/lib/cpus/aarch64/dsu_helpers.S
b6f5469c320d8cea71ed93f0779eb1706255e014 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a78.S
b6caa69a2838b35a3268cac6784f7f42060028c3 - arm-trusted-firmware/lib/cpus/aarch64/cortex_makalu_elp_arm.S
4076b184f1c8b586d8b7e9c16daffa08e81812c6 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a73.S
bb044127b0f5b6908597c1915659ebabb4b9d8ff - arm-trusted-firmware/lib/cpus/aarch64/neoverse_e1.S
5f3bf45f19baa196f8537ea9fa6db1c00692c35f - arm-trusted-firmware/lib/cpus/aarch64/aem_generic.S
e448fa0b2d060a91a00ce5b1747f0bb4963d83e4 - arm-trusted-firmware/lib/cpus/aarch64/neoverse_n1.S
0dc9a7f3f035cf6c322da9c77eacf5cdfd5be43b - arm-trusted-firmware/lib/cpus/aarch64/wa_cve_2017_5715_bpiall.S
50d6608eb167f02f6eef1948d919c767b8687797 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a76.S
3a0842db6538fada52fd0764e2942e9edcfa61e5 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a65ae.S
516e5e5482ec47fb50a91b19c7c8d86572bd9844 - arm-trusted-firmware/lib/cpus/aarch64/wa_cve_2017_5715_mmu.S
6c59fcd106e14d7120f6a715ba57542d71f097d9 - arm-trusted-firmware/lib/cpus/aarch64/rainier.S
8753b581e7bd70b0612f529761cb2e2f789d26ce - arm-trusted-firmware/lib/cpus/aarch64/cortex_a75.S
ce5deaffb5280914ff04e13a3c1e8d5e0a12e9b0 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a78_ae.S
f382f5af3fd88a0d159f0fc27bf3ff89e6e6517b - arm-trusted-firmware/lib/cpus/aarch64/neoverse_n_common.S
67a71ce51804d2c0c43d0c5b928b429383691702 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a55.S
dd46ea61bba696867fb1ab60d0f54a5955c1f181 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a65.S
edb24154359f6a874c199325c9d7072c4dedba3b - arm-trusted-firmware/lib/cpus/aarch64/neoverse_n1_pubsub.c
5e64126fe122470b5f906cbd26adc7b19c2b1cbd - arm-trusted-firmware/lib/cpus/aarch64/wa_cve_2022_23960_bhb_vector.S
f751bc5c9ebc637d2973b137fe4020a9d2b49ef6 - arm-trusted-firmware/lib/cpus/aarch64/cortex_hunter.S
366cfe2c271409694f391a9092ce58f0d69d8eec - arm-trusted-firmware/lib/cpus/aarch64/neoverse_poseidon.S
f245d765bc664b16acec02a6040885c8a59f9a54 - arm-trusted-firmware/lib/cpus/aarch64/cpu_helpers.S
e314809e018d3bcc1cb805e4412443d918934828 - arm-trusted-firmware/lib/cpus/aarch64/cpuamu_helpers.S
6c5232d349afaa099b1de4b8274de771a075d0ce - arm-trusted-firmware/lib/cpus/aarch64/cortex_a57.S
4605a62d489dd9762cd96aedcfc0fe6101c14072 - arm-trusted-firmware/lib/cpus/aarch64/neoverse_n2.S
87817fd4d0f4db7bb9527cfe0b1107c39d33bd8b - arm-trusted-firmware/lib/cpus/aarch64/cortex_a72.S
2395220984e4ebe2e10ec3658f908b7a208fb99a - arm-trusted-firmware/lib/cpus/aarch64/cortex_a35.S
27cb3501d1a82bf7a2962df5e632ceddc6099479 - arm-trusted-firmware/lib/cpus/aarch64/wa_cve_2022_23960_bhb.S
4a3f95b9caa66e146e1a7057c238ce166bc17ae0 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a77.S
03c0a2d3e033df508520b527dd03c5487d139556 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a76ae.S
0183572f056c98431e9ee40e1ca22f149c8d1995 - arm-trusted-firmware/lib/cpus/aarch64/cortex_a53.S
70588b0d27cc22a3c28dcf235cb80cb80658e875 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a5.S
dd4d708971e42cb6726bd6bcaeaaeb1ea62cc302 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a7.S
bbcb12f3afb37a6763f26ed91a5859a16a9185f6 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a12.S
4bd6136e7c566e86577b42f173af618fff3ec5ce - arm-trusted-firmware/lib/cpus/aarch32/cortex_a17.S
504aecaaa931ada33617064d0c95d4514d583971 - arm-trusted-firmware/lib/cpus/aarch32/aem_generic.S
531b8790149c59c6d2a7528e480dc52235a0b5f3 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a32.S
698a71205b1dfcca91b0dc7e75cd8633685859b4 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a9.S
dcc4327691c3788d4ca00df40256542be520f4a6 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a15.S
33d1e02fb1f40c2b2147fdf1911b9f6d0de2592d - arm-trusted-firmware/lib/cpus/aarch32/cpu_helpers.S
28602f5410ff8b383fbca1c3d420dd85e9e2e12c - arm-trusted-firmware/lib/cpus/aarch32/cortex_a57.S
d132a84afe31b0339e4451e7df450856572fd2fa - arm-trusted-firmware/lib/cpus/aarch32/cortex_a72.S
0011de1efcc751a018cb652d35bf6dfb77ee5da5 - arm-trusted-firmware/lib/cpus/aarch32/cortex_a53.S
4ef2e504a667d7529f6e9f0629c04db77435a28a - arm-trusted-firmware/lib/utils/mem_region.c
499b3843cd918ded79d9b4067c70be77235a831e - arm-trusted-firmware/lib/xlat_tables_v2/xlat_tables_context.c
c56014f913bcddf7eb4618bc48a2d7e188df93e8 - arm-trusted-firmware/lib/xlat_tables_v2/xlat_tables_utils.c
c3816ecbb18ec120734f1bea8e79ea2ce6e4f631 - arm-trusted-firmware/lib/xlat_tables_v2/xlat_tables_core.c
eaf23114b5279a2e5177c2d4a103265159f839d9 - arm-trusted-firmware/lib/xlat_tables_v2/xlat_tables_private.h
21604c58893e3fda032bac4d88417fff189d89ca - arm-trusted-firmware/lib/xlat_tables_v2/aarch64/enable_mmu.S
48fbcd0295e7c9d2581d235e6c80eced4a10a422 - arm-trusted-firmware/lib/xlat_tables_v2/aarch64/xlat_tables_arch.c
ade75a712dde9020d79686a61994595c14f73163 - arm-trusted-firmware/lib/xlat_tables_v2/aarch32/enable_mmu.S
990536d736898528cf4565171fb83f57604dd3d8 - arm-trusted-firmware/lib/xlat_tables_v2/aarch32/xlat_tables_arch.c
35242ceafb8e7c1ac58158cde6672b601b1a88f9 - arm-trusted-firmware/lib/mpmm/mpmm.c
6d8e14259a3bddae74927623e68b6e95a578b3a2 - arm-trusted-firmware/lib/xlat_mpu/xlat_mpu_private.h
655c16e59bc70c4782c58f76a458853aeb35f2f1 - arm-trusted-firmware/lib/xlat_mpu/xlat_mpu_utils.c
c8e552a0ec8c6fbc0008de98e8cc7e6ac08f1980 - arm-trusted-firmware/lib/xlat_mpu/xlat_mpu_context.c
3da3d4c987ce40660bb10580236ee870f603a567 - arm-trusted-firmware/lib/xlat_mpu/xlat_mpu_core.c
97a06786c9d53286c3d0d861d9e6578551650e5e - arm-trusted-firmware/lib/xlat_mpu/aarch64/enable_mpu.S
250ce42c1d1df6103d9a7eb84f739a52570e85c9 - arm-trusted-firmware/lib/xlat_mpu/aarch64/xlat_mpu_arch.c
dfe9d1459f2afc808df76389971581e7cd156c05 - arm-trusted-firmware/lib/compiler-rt/LICENSE.TXT
abf726b9d10381fc90d5c11654d391de96b8d950 - arm-trusted-firmware/lib/compiler-rt/builtins/int_types.h
46a423cd744769dbf4c8a9bace21b176a9e737df - arm-trusted-firmware/lib/compiler-rt/builtins/lshrdi3.c
eb176115541305cb488d2be70cf8c519c16b494e - arm-trusted-firmware/lib/compiler-rt/builtins/int_math.h
58b4cf2c8174eb2d106886b7cb8a016d40b2d753 - arm-trusted-firmware/lib/compiler-rt/builtins/udivmoddi4.c
0740d888a28b420885866b396a4b4c3787fa5d9b - arm-trusted-firmware/lib/compiler-rt/builtins/int_endianness.h
3a299c5cc089640cd5a4723e9f7ef8eb172386e0 - arm-trusted-firmware/lib/compiler-rt/builtins/popcountdi2.c
dd068590d2ed1fd41f248aa09a898df9da988c07 - arm-trusted-firmware/lib/compiler-rt/builtins/divmoddi4.c
35e2f5c84e2e03c6a63abe1dcf1494fcf8ef9d7d - arm-trusted-firmware/lib/compiler-rt/builtins/divdi3.c
32a243925b1b44cce203fbb02b0a15210edf2c34 - arm-trusted-firmware/lib/compiler-rt/builtins/popcountsi2.c
e6b7517bd52e7cd7c50262aa9efbd0f8ae19a1c5 - arm-trusted-firmware/lib/compiler-rt/builtins/assembly.h
f0a970815c4d8d2aac30a5da63d63cc4c5ad824f - arm-trusted-firmware/lib/compiler-rt/builtins/int_lib.h
393af562fe70f1bc9366014f2afdaa0318c8e72a - arm-trusted-firmware/lib/compiler-rt/builtins/ctzdi2.c
534e0612fc60e5acdbd99194724c762a645b1a4c - arm-trusted-firmware/lib/compiler-rt/builtins/arm/aeabi_ldivmod.S
fa64ca197ba53f0e818a0f087349634fbd54640f - arm-trusted-firmware/lib/compiler-rt/builtins/arm/aeabi_uldivmod.S
2e63b0dd99041f913d992fc557f39d47f05937cc - arm-trusted-firmware/lib/coreboot/coreboot_table.c
6c1114794db137af50f9b060aaade1a1a35ed784 - arm-trusted-firmware/lib/zlib/adler32.c
f32dab3880d47eca1b71c308cf6542b32941b23c - arm-trusted-firmware/lib/zlib/zutil.h
0ef05b0d12bf2cfbbf1aa84cff0e8dcf4fc5b731 - arm-trusted-firmware/lib/zlib/zconf.h
fe2fdfb8f51d9f84881cc453ba64f60e3d7c9cbc - arm-trusted-firmware/lib/zlib/inffast.c
628d8395fc7f67e6d7a9a6cecba64f6594d64eb9 - arm-trusted-firmware/lib/zlib/inflate.h
4fc803c43a562b2b92a97e22300754ddfe44c603 - arm-trusted-firmware/lib/zlib/inffast.h
8770ab43c9050b824c646f6e6cee8b3c0628cbda - arm-trusted-firmware/lib/zlib/inffixed.h
2f1fcc93488ac84acf984415b6ea0bd63c72aa49 - arm-trusted-firmware/lib/zlib/zutil.c
a152b76b78f9245ca67db2729de72d51ecc234b0 - arm-trusted-firmware/lib/zlib/inftrees.c
d5cfffd5a037697867a78566d583e73f6d0f91b9 - arm-trusted-firmware/lib/zlib/inflate.c
473b29ab06e2be461fe4aa74952fcb9bd08d9fa0 - arm-trusted-firmware/lib/zlib/zlib.h
88ea76a1b42bfc247680dd50b450923858f945fe - arm-trusted-firmware/lib/zlib/crc32.c
3c63a7707d83991f3e074391c047b3136ff3e558 - arm-trusted-firmware/lib/zlib/inftrees.h
db9e88b8332953972c9120c73389fa2ce03dd8f8 - arm-trusted-firmware/lib/zlib/crc32.h
8bb206723f10a7635c07f3e77abad21e4e47f520 - arm-trusted-firmware/lib/zlib/tf_gunzip.c
5c1fdfd96d90cc2df42b24e37dc31a193219049b - arm-trusted-firmware/lib/optee/optee_utils.c
3228f5a13a7d7e5e75f0da8ce95514eef5ddfebb - arm-trusted-firmware/lib/psci/psci_stat.c
70484461d77679b66812b09dd8b56cb0c17acaf9 - arm-trusted-firmware/lib/psci/psci_mem_protect.c
625e86be37b34f7914dcf99045481150bb86ea12 - arm-trusted-firmware/lib/psci/psci_on.c
c11c8a604cc3adda245850ae823cd62da6b6f761 - arm-trusted-firmware/lib/psci/psci_main.c
9570832fd44a1d6b99ba837f8092d976a4219e92 - arm-trusted-firmware/lib/psci/psci_private.h
741cb1ca4722a4062052f5ec8cbb9d6f1d4ee468 - arm-trusted-firmware/lib/psci/psci_setup.c
085c5b5748106a6969e32bb08e645f14f2d564b3 - arm-trusted-firmware/lib/psci/psci_common.c
ddcc3c9570f910954693aa27a5b355d4a84f2ac5 - arm-trusted-firmware/lib/psci/psci_off.c
829a7e8232b3efde8c6ad84aff7745c16582da77 - arm-trusted-firmware/lib/psci/psci_system_off.c
bb2c6a22fccb6b37506ba1b0bc6ca6db53f60051 - arm-trusted-firmware/lib/psci/psci_suspend.c
2c7b752ae78666bc171dbc6858abbe2c9cff4013 - arm-trusted-firmware/lib/psci/aarch64/psci_helpers.S
e3019770bfa11512ec7d2d6785e37d28c72cd2c9 - arm-trusted-firmware/lib/psci/aarch32/psci_helpers.S
edbe27a26695b90b039ea42ae87e3756c047631a - arm-trusted-firmware/lib/gpt_rme/gpt_rme_private.h
ecf8ba50075277e075334d8bf2192d3a03b4d713 - arm-trusted-firmware/lib/gpt_rme/gpt_rme.c
f9227b30f6aa21bbf4a178697c37fa714ec54eb7 - arm-trusted-firmware/bl32/tsp/tsp_private.h
bf48b15b9f75300c1f11366746538bd62a99a5ef - arm-trusted-firmware/bl32/tsp/tsp.ld.S
227ccd758b1cf98d27e14ac1ebd5e3b21275d6a1 - arm-trusted-firmware/bl32/tsp/tsp_interrupt.c
6727eccb78b649034342ffa087bb189e40734608 - arm-trusted-firmware/bl32/tsp/tsp_timer.c
f2cd83bdbfed353fb47e384608fd41f7b78fc98c - arm-trusted-firmware/bl32/tsp/tsp_main.c
8d77cc1453037a319f4a5da2e5b77b37bb406277 - arm-trusted-firmware/bl32/tsp/aarch64/tsp_request.S
e94cc0b80bb21c55fc68026d8a981988414ab611 - arm-trusted-firmware/bl32/tsp/aarch64/tsp_exceptions.S
18772624eeb332566bd8dfe2279187bec9b89fe0 - arm-trusted-firmware/bl32/tsp/aarch64/tsp_entrypoint.S
b224dca2e5ea95c46e1062767709b1bb1d7d766c - arm-trusted-firmware/bl32/sp_min/sp_min.ld.S
abbd0cb6ee3ce9ca8584fa872468754316b868ce - arm-trusted-firmware/bl32/sp_min/sp_min_private.h
333a280c5264ca6c42b06d977d15e2fd4809f2d9 - arm-trusted-firmware/bl32/sp_min/sp_min_main.c
5ef0dab419f42df9935d7fbc4e30baa8ea83d75e - arm-trusted-firmware/bl32/sp_min/wa_cve_2017_5715_bpiall.S
68e3f9565c5bf338271a1445ca22507fb2afc5af - arm-trusted-firmware/bl32/sp_min/wa_cve_2017_5715_icache_inv.S
c1854f51280eb002548e763a01a8af613c615ee2 - arm-trusted-firmware/bl32/sp_min/aarch32/entrypoint.S
11dae66f5031e4fc368d8b20d11916dbcc90b1c0 - arm-trusted-firmware/.husky/prepare-commit-msg
201f68ff32e77e6400dc5624a726bb46fafe1ac3 - arm-trusted-firmware/.husky/commit-msg.gerrit
edf09f8f672ed108a22d57c3be9c64c542957347 - arm-trusted-firmware/.husky/commit-msg.commitlint
d04e79c7e2d1ff0546074efcfda2290f20c1c923 - arm-trusted-firmware/.husky/commit-msg
fd32ceb86780ba4682d238401c5bdc6c51f6652f - arm-trusted-firmware/.husky/prepare-commit-msg.cz
9082edd5658eb851151f8944760e3c2741fea749 - arm-trusted-firmware/fdts/rtsm_ve-motherboard.dtsi
c028d02d6d68dfd3c16c8ea9c6e247c72a911abc - arm-trusted-firmware/fdts/fvp-foundation-motherboard.dtsi
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157c-ed1-fw-config.dts
c1a285215a44ab5a76667a51c9a7d2ce06e50659 - arm-trusted-firmware/fdts/morello.dtsi
abbe0e5a7c63995c207b1995649e3a6ed6b4221a - arm-trusted-firmware/fdts/stm32mp15xc.dtsi
0e25cc4f38da64563038297dac19b2cc042284f8 - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-common.dtsi
7b3fc7115bcdc0c82b7a2cf02a4089f67d2402b9 - arm-trusted-firmware/fdts/stm32mp13-pinctrl.dtsi
841830f5b4fb33dd8e11325e65d3e1ba854144f9 - arm-trusted-firmware/fdts/fvp-ve-Cortex-A7x1.dts
a2179d252faf4859c7a7e68d3ba75a0955f53d37 - arm-trusted-firmware/fdts/stm32mp157c-odyssey.dts
ee1bb06de6ee0eba0fe695f5c7f9dbc12abb6f3e - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-dynamiq-common.dtsi
4d121467e71a4bd15241201c1c23fbb169901959 - arm-trusted-firmware/fdts/a5ds.dts
59f777f521b3de55f482d1b9623951a1dc5c0046 - arm-trusted-firmware/fdts/stm32mp157c-ev1.dts
3340a6810424caf1eeec960dce9e7f673eca4150 - arm-trusted-firmware/fdts/stm32mp157a-avenger96.dts
9ba3e2b8e2ffe38d252977d731187a52eac72c6b - arm-trusted-firmware/fdts/stm32mp133.dtsi
f7ba40a101d1f02c70445a0d783a347ed212cf03 - arm-trusted-firmware/fdts/stm32mp157c-dk2-fw-config.dts
f7ba40a101d1f02c70445a0d783a347ed212cf03 - arm-trusted-firmware/fdts/stm32mp157f-dk2-fw-config.dts
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157f-ed1-fw-config.dts
dd88ca9bc617b6bb318f6b74c35655db6ecff39d - arm-trusted-firmware/fdts/stm32mp135f-dk.dts
910ac0ace6638b52d04843f12c3f0f521eb4f4e5 - arm-trusted-firmware/fdts/corstone700_fpga.dts
10bae29f18be4785b789ca4c08398643163c76be - arm-trusted-firmware/fdts/cot_descriptors.dtsi
f99071420aca4da5f493b73afa3d3777206e23d7 - arm-trusted-firmware/fdts/n1sdp-single-chip.dts
44c1cab21fcc9907b2d084dbac303eff0dfa00b3 - arm-trusted-firmware/fdts/fvp-ve-Cortex-A5x1.dts
3ebcaa602aafc62742776533b737f3eafdbcbeea - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-aarch32-common.dtsi
d6f0de7f00f3c5d3fc07703cda887ee3d8ea1d2e - arm-trusted-firmware/fdts/tc.dts
a61a77e18f14a9ba0916b5d0c1d4c7b0e07d1441 - arm-trusted-firmware/fdts/stm32mp15xxac-pinctrl.dtsi
0fec14d4dc8c75bbdea73be1457f5ed47458cb9a - arm-trusted-firmware/fdts/fvp-foundation-gicv2-psci.dts
dbed6c5c0e011af658818b570feee9c093e65a26 - arm-trusted-firmware/fdts/stm32mp135f-dk-fw-config.dts
708bcdeda398c49482ebc2c3bf4b25f2c71a1e3a - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-dynamiq.dts
394dc09a932c8f74fe7aff7d429da06d4bd07878 - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-aarch32-1t.dts
c551d6d75e35b8e119cd5b31bb7d421eb5007e04 - arm-trusted-firmware/fdts/rtsm_ve-motherboard-aarch32.dtsi
4fa3b6d4bddfb09bf8b8ac8f78bc5806a1063cf6 - arm-trusted-firmware/fdts/stm32mp157c-dk2.dts
f7ba40a101d1f02c70445a0d783a347ed212cf03 - arm-trusted-firmware/fdts/stm32mp157a-dk1-fw-config.dts
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157c-ev1-fw-config.dts
fec2d89a3727359109737596ca7c4c1165b7de38 - arm-trusted-firmware/fdts/n1sdp-multi-chip.dts
f7ba40a101d1f02c70445a0d783a347ed212cf03 - arm-trusted-firmware/fdts/stm32mp157d-dk1-fw-config.dts
2f05be7afa52d4db4c62e213a91e5efc3908193a - arm-trusted-firmware/fdts/stm32mp157c-lxa-mc1.dts
fb6d607b811f2e027c9859345cf86eb565d31c20 - arm-trusted-firmware/fdts/stm32mp15xx-osd32.dtsi
2d9983ae7b41417977f671f99eec7d6c8f5a99be - arm-trusted-firmware/fdts/stm32mp15xxaa-pinctrl.dtsi
79d8f41f2a5afa474094fe763ef4ee39909d283b - arm-trusted-firmware/fdts/stm32mp157c-odyssey-fw-config.dts
3b4d8cfb55f06ed3418c0539f4d5d2bc33168635 - arm-trusted-firmware/fdts/stm32mp131.dtsi
5d5ddb74e5499f300b5d1800520a4651078d347b - arm-trusted-firmware/fdts/fvp-foundation-gicv3-psci.dts
c49dfbfab50db6d0014130e8d213b6a8113c9525 - arm-trusted-firmware/fdts/stm32mp153.dtsi
fdc05334cd630b63cf2fd11add62d6580489d832 - arm-trusted-firmware/fdts/stm32mp13-ddr.dtsi
ec214ebb9287a791def27fb1b8d74fceb843657f - arm-trusted-firmware/fdts/stm32mp135.dtsi
901a3c633890935dc0ef5dda27689fe471371d5b - arm-trusted-firmware/fdts/stm32mp15-bl32.dtsi
7afa8c643fcfe1d0d506c90c0ab7ced868c73040 - arm-trusted-firmware/fdts/stm32mp15xx-dkx.dtsi
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157a-avenger96-fw-config.dts
d9fadc7223cf3f5db0bfb1f4830e0bf0fbf138ad - arm-trusted-firmware/fdts/stm32mp15-pinctrl.dtsi
094f752c659ba4c70dae4bfdd3041ffdc45d6451 - arm-trusted-firmware/fdts/corstone700.dtsi
992348633a6518e2d0464e4afe90c22c87a617a6 - arm-trusted-firmware/fdts/stm32mp13-ddr3-1x4Gb-1066-binF.dtsi
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157f-ev1-fw-config.dts
f92cb32ea29e10232721e9d596972e82444c21d2 - arm-trusted-firmware/fdts/stm32mp15xxad-pinctrl.dtsi
fafc1a46bd195774df21a32f1e87a087f14e2c67 - arm-trusted-firmware/fdts/stm32mp15-ddr3-2x4Gb-1066-binG.dtsi
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157d-ev1-fw-config.dts
38c31e8b06ea5253a26b8393737ad72d81e1757d - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-1t.dts
3cafe4429688d04735324b0c1ac24d6fd6df075c - arm-trusted-firmware/fdts/fvp-base-gicv2-psci-aarch32.dts
44c646e57eb44bcfd7927514911f6cefb465cb23 - arm-trusted-firmware/fdts/fvp-base-gicv3-psci.dts
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157a-ed1-fw-config.dts
397204dbf3a8d4f16b213cdf8810bb0c8409a3ea - arm-trusted-firmware/fdts/stm32mp151.dtsi
ae59f1caa51f25a19cb7bc925c819f7b663c9ccf - arm-trusted-firmware/fdts/stm32mp157c-odyssey-som.dtsi
ddb3d9266ce77ac3e0746820b562a07f35eafb01 - arm-trusted-firmware/fdts/n1sdp.dtsi
79d8f41f2a5afa474094fe763ef4ee39909d283b - arm-trusted-firmware/fdts/stm32mp157c-lxa-mc1-fw-config.dts
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157d-ed1-fw-config.dts
6c3fed10148b793fe9f9c4f44b878ccc12d99c3e - arm-trusted-firmware/fdts/morello-soc.dts
6b86a9e9c6c06841937a884fcc7b91e67ce3b81c - arm-trusted-firmware/fdts/stm32mp13xd.dtsi
195376b3fa6a4af6db8e90af65ae62d649d506c1 - arm-trusted-firmware/fdts/fvp-defs-dynamiq.dtsi
a6ef63af22c25465b4276c77535b30d8baaa1ea4 - arm-trusted-firmware/fdts/arm_fpga.dts
d72046fed6d7327744da75b395f335791022bfc4 - arm-trusted-firmware/fdts/morello-fvp.dts
c078bf1220e11a54b0ae9d20bf948f1f4cb30d37 - arm-trusted-firmware/fdts/stm32mp15-ddr.dtsi
e61da20036fff26e3a39b09bcb92733e6c4c3743 - arm-trusted-firmware/fdts/fvp-base-gicv2-psci.dts
ee5b8fc8401ffbd14d01f615b14a1bc2c6bc90ba - arm-trusted-firmware/fdts/stm32mp13xc.dtsi
d49435eb3b8dae9e0f687d74ac1343c3f6931d7b - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-aarch32.dts
6b86a9e9c6c06841937a884fcc7b91e67ce3b81c - arm-trusted-firmware/fdts/stm32mp13xa.dtsi
bbe441adbb4706bbc2d792a33b888f441d489177 - arm-trusted-firmware/fdts/juno.dts
60954c960886d3c55a4f3e819b0ad2411afe194c - arm-trusted-firmware/fdts/stm32mp15-fw-config.dtsi
b724eb6fc96a68bbfe8f165c465341bbbf27bb27 - arm-trusted-firmware/fdts/stm32mp13-bl2.dtsi
d317228143780c8f627a6814a3ca1ab9f1a0d69b - arm-trusted-firmware/fdts/stm32mp13-fw-config.dtsi
122430dfffc3d549a6991bc3154850d76b80c2bb - arm-trusted-firmware/fdts/stm32mp157a-dk1.dts
2a8ccec8476f0d4af01036dc6ecb636d1f2a1387 - arm-trusted-firmware/fdts/stm32mp13xf.dtsi
c67b47c8582f0a092e22ed701f7ad5d9469dd6b4 - arm-trusted-firmware/fdts/fvp-defs.dtsi
20769b04e4fa588ef10d7460a5b4a9061c70ebfa - arm-trusted-firmware/fdts/corstone700_fvp.dts
dc0b8b61bededc06878dfb1e763b36611ea2382a - arm-trusted-firmware/fdts/stm32mp15-bl2.dtsi
390a6cef77d9095a9c98b9abe19eaaa6eedbdb73 - arm-trusted-firmware/fdts/stm32mp15-ddr3-1x4Gb-1066-binG.dtsi
dc880b2cbd39cde08860e8ebf3cb4b92bbb21748 - arm-trusted-firmware/fdts/stm32mp15xxab-pinctrl.dtsi
c1d24ce6492d52d78484c4b3cf9d2466dbf9c0b0 - arm-trusted-firmware/fdts/stm32mp157.dtsi
09fc90f32545b712b63ea42e925122cabd78c262 - arm-trusted-firmware/fdts/fvp-base-gicv3-psci-dynamiq-2t.dts
5061d53c21f2dec61bb9fb74fac882b6142d8931 - arm-trusted-firmware/fdts/juno-ethosn.dtsi
d0ca311ee090d9d69c82273e0e6f4d65bb330554 - arm-trusted-firmware/fdts/stm32mp157a-ev1-fw-config.dts
721faf693f101ff246d85ebc2d1772b555d84f20 - arm-trusted-firmware/fdts/stm32mp157c-ed1.dts
d1831078ebc7756a3c141537c4f33b00ce2ffca0 - arm-trusted-firmware/common/fdt_fixup.c
54620aa80f910434a484672d917861106ecc2df1 - arm-trusted-firmware/common/runtime_svc.c
bb6318e6a4526a2e75ed8f74f629b22fad67317e - arm-trusted-firmware/common/fdt_wrappers.c
4e8e81d22968abbb440726d3094bc3a5bbab94c6 - arm-trusted-firmware/common/tf_crc32.c
91cec99e37b1e7e986e62eb3474f5b0d63516507 - arm-trusted-firmware/common/image_decompress.c
358ff3e13baa8507b20744e31468185b03077531 - arm-trusted-firmware/common/bl_common.c
f4efa0610d34dd7e2935e65e54d8226cf36f94ff - arm-trusted-firmware/common/desc_image_load.c
567e84803ece6e7ea1401d347ecba84600dea543 - arm-trusted-firmware/common/uuid.c
3ccdb5028aa976066c06527a27303c4a0db57ead - arm-trusted-firmware/common/tf_log.c
e1451e78efe19651d81b93634da02b524c4ebcab - arm-trusted-firmware/common/backtrace/backtrace.c
5354886f2c074fe74f50056321be3516724c7536 - arm-trusted-firmware/common/aarch64/debug.S
b21d0924c4f52357b3815446ebd25cc4f58ad622 - arm-trusted-firmware/common/aarch64/early_exceptions.S
8ce1f388b3852351c1fa8d8001d14910363ee672 - arm-trusted-firmware/common/aarch32/debug.S
cf5f556d440245d73b0f784be4662e7cd634f39b - arm-trusted-firmware/include/lib/coreboot.h
7ffbca071dbd690b9d0ac30e6b388a848c55cc16 - arm-trusted-firmware/include/lib/semihosting.h
0b8f22e03d35106f8213bb63f81feeefe40d0675 - arm-trusted-firmware/include/lib/bakery_lock.h
06aee725316857addfb02415a55463647ed20701 - arm-trusted-firmware/include/lib/object_pool.h
1f698e99c775d463461fd358a896217604420ef6 - arm-trusted-firmware/include/lib/runtime_instr.h
f68ef15137b41ae5e5fd646d5b7624ff9843b770 - arm-trusted-firmware/include/lib/smccc.h
90db5a8e9962b61142ef6eed7165cb5967d686be - arm-trusted-firmware/include/lib/optee_utils.h
73dc3acb5868e207313dcdae4f6884d5c179faaa - arm-trusted-firmware/include/lib/utils.h
94cb452f38b47933f36d4af26e71b749a5ce2efc - arm-trusted-firmware/include/lib/utils_def.h
b1522d52a6103e87ea31e7207f54208dd2c5a6af - arm-trusted-firmware/include/lib/debugfs.h
ed4976b8261e1ee44f4a2b7952563b6db8e63406 - arm-trusted-firmware/include/lib/spinlock.h
9637b2573e1df004bff5258027eee07e6d532cf9 - arm-trusted-firmware/include/lib/cassert.h
de7b34ae4f5c2aa97efbb717d681f3f79f6b3a80 - arm-trusted-firmware/include/lib/mmio.h
26e37a910f19c0fe0293821c838312e998579df1 - arm-trusted-firmware/include/lib/libfdt/fdt.h
c90d25bb7b217171ad9437ee0bc8d4e0c5c7f4d3 - arm-trusted-firmware/include/lib/libfdt/libfdt_env.h
ec87fea0386b1dcc840a14b66f68bb20746774d2 - arm-trusted-firmware/include/lib/libfdt/libfdt.h
bf81e2d1db65ed903ef83af8c902a2c570f7d8d7 - arm-trusted-firmware/include/lib/pmf/pmf_helpers.h
9b838f7bd9f2c4493efedef614f584d30c32546d - arm-trusted-firmware/include/lib/pmf/pmf.h
2e8bf007844002145509b02185c1cfb380c086c7 - arm-trusted-firmware/include/lib/pmf/aarch64/pmf_asm_macros.S
be45471818b5fb856ed0fc1c303a3439ac749d6c - arm-trusted-firmware/include/lib/pmf/aarch32/pmf_asm_macros.S
fad98eab51c54e641e9db5451eceb044f426276c - arm-trusted-firmware/include/lib/fconf/fconf_tbbr_getter.h
b61fcbdcf35b00e7cf2a5c7feff04fc5d28e7e6c - arm-trusted-firmware/include/lib/fconf/fconf_dyn_cfg_getter.h
531877858c00a04ba41ba7d211235fcad2bf2f77 - arm-trusted-firmware/include/lib/fconf/fconf_mpmm_getter.h
1cc2ff30d9d45589c3c7fa34a79ab141314e4974 - arm-trusted-firmware/include/lib/fconf/fconf_amu_getter.h
d152cc84bd5ddb5c62bb91fe605ebd55b28b2585 - arm-trusted-firmware/include/lib/fconf/fconf.h
cc7362066d33e226e7e9996002c683aeb7291017 - arm-trusted-firmware/include/lib/extensions/trf.h
b60784e6b65f97973b6399350a6bb41d508cb993 - arm-trusted-firmware/include/lib/extensions/ras_arch.h
802b885838cc683c33d5bdf0db010936d1d60c40 - arm-trusted-firmware/include/lib/extensions/sys_reg_trace.h
d9ddc757d1632d6d25a30937684cae6ef3ee6a50 - arm-trusted-firmware/include/lib/extensions/spe.h
84ebabfad9a6aea5b36eca181ecacd9f81feaf8b - arm-trusted-firmware/include/lib/extensions/sve.h
49864e971e8571d9d0cb63bce06594f6c8b5d684 - arm-trusted-firmware/include/lib/extensions/mpam.h
fcc42874d57314ab77ad7f2a2c1b2eb3862a576b - arm-trusted-firmware/include/lib/extensions/amu.h
08342ec02a973e05865c7a200258f0949f7e0948 - arm-trusted-firmware/include/lib/extensions/trbe.h
46afc6f495640a910a40703306195c7a6c3a0833 - arm-trusted-firmware/include/lib/extensions/twed.h
a3c002de51adf7dd52647cf5c6e3f6e119634fc9 - arm-trusted-firmware/include/lib/extensions/pauth.h
09511d96743a49bd6a8ce53a10a7a63f66fa69eb - arm-trusted-firmware/include/lib/extensions/ras.h
5e43959b0322424d6c58374b9bf52ca3435e88c1 - arm-trusted-firmware/include/lib/extensions/sme.h
cfcb8f035cda18f894c8ee194d3136fc61406fe0 - arm-trusted-firmware/include/lib/el3_runtime/pubsub_events.h
926a8f99c7871413aa6c48ee91bcacf8ea07e438 - arm-trusted-firmware/include/lib/el3_runtime/cpu_data.h
df57266f0878fdff7b3180dfc258dae3ca1859cc - arm-trusted-firmware/include/lib/el3_runtime/context_mgmt.h
db010d01a2298bde5d192dc8ca42d487ad8023ac - arm-trusted-firmware/include/lib/el3_runtime/pubsub.h
38bab004d095d8c31cc1bb191af9e3c4ee45ca02 - arm-trusted-firmware/include/lib/el3_runtime/aarch64/context.h
9c3df6c4d9ecf03368ef7a5cd150157123c12ed1 - arm-trusted-firmware/include/lib/el3_runtime/aarch32/context.h
a5b742f0a88671c56d4acb2c9f41a2859ccfe63c - arm-trusted-firmware/include/lib/xlat_tables/xlat_tables_v2_helpers.h
ffd6aa77c205ba28fc3cdedfdf92ad949a1d2c4e - arm-trusted-firmware/include/lib/xlat_tables/xlat_tables_compat.h
d096d2c939939ac7e3ce5358c63127a2e48fc66d - arm-trusted-firmware/include/lib/xlat_tables/xlat_tables_arch.h
147505a24c5c0680f8c21cd8b77aaa1ed3d9af0f - arm-trusted-firmware/include/lib/xlat_tables/xlat_mmu_helpers.h
0ea4285dd4504af01f2379c11c6b04292b5224d0 - arm-trusted-firmware/include/lib/xlat_tables/xlat_tables.h
748f4763c6956e3a05b07a06f88394f925375806 - arm-trusted-firmware/include/lib/xlat_tables/xlat_tables_v2.h
64b082be684d2e9aac73592fc4658c81ded65fcc - arm-trusted-firmware/include/lib/xlat_tables/xlat_tables_defs.h
135853a26b41e70bb03df6feaa46157020f24f43 - arm-trusted-firmware/include/lib/xlat_tables/aarch64/xlat_tables_aarch64.h
ef0a81e88f09c2c6ce252f01c0405fa13cf09822 - arm-trusted-firmware/include/lib/xlat_tables/aarch32/xlat_tables_aarch32.h
72f4645c807c6915c0628b0d200b18fba404f91c - arm-trusted-firmware/include/lib/bl_aux_params/bl_aux_params.h
3ad9051758ee29a3d96abe5881f5a7740eb10550 - arm-trusted-firmware/include/lib/libc/cdefs.h
5e084e86fa5e4b5fdac774d1aa00b279f68d3c40 - arm-trusted-firmware/include/lib/libc/inttypes.h
83a3b49d103b8453fb98b0625c759bf39c09803e - arm-trusted-firmware/include/lib/libc/assert.h
b37dff6a9fa0fe100e6e204676f60358dfde29eb - arm-trusted-firmware/include/lib/libc/stdlib.h
0d835510f380ad8267995f98edca212d0c2d8f72 - arm-trusted-firmware/include/lib/libc/errno.h
fec91d22fe696952ba93c2d1ed6cedfa714a5a7e - arm-trusted-firmware/include/lib/libc/stdint.h
28d598da1ead2bf6ee9fd764635deb7d1a082fc9 - arm-trusted-firmware/include/lib/libc/stdbool.h
81fc18b0518ed12942398f24157b26767f2b5d58 - arm-trusted-firmware/include/lib/libc/stdio.h
2f17e8f91531cbdb0dcb5638ffe35b4fc35169f4 - arm-trusted-firmware/include/lib/libc/endian.h
1f519accd161baa49f478a735728f1b81dd9a443 - arm-trusted-firmware/include/lib/libc/stdarg.h
05293dcd9dcd66e6fbc14019807633a277c3a53f - arm-trusted-firmware/include/lib/libc/time.h
de263df3e964aac45b0a9be4096eb2a12c63d72b - arm-trusted-firmware/include/lib/libc/arm_acle.h
d0d4318e609c76661d8f0144b559d4c7e5c43cce - arm-trusted-firmware/include/lib/libc/limits.h
96064295890c1e484dfcf96039b0cf5c4babd361 - arm-trusted-firmware/include/lib/libc/setjmp.h
38027460aea214583844c4cb07db44077673acc5 - arm-trusted-firmware/include/lib/libc/string.h
167e84c7f69dda6dbee48fff38839436941dfe1c - arm-trusted-firmware/include/lib/libc/stddef.h
c881950de56de06d14e10e06d219c0ad40613034 - arm-trusted-firmware/include/lib/libc/aarch64/setjmp_.h
e3ba7ed7d41ae3a8c9dd07d94f7bbef48adf165a - arm-trusted-firmware/include/lib/libc/aarch64/limits_.h
8741dd9ddf232520a7e68bd21382fd53539b8c5b - arm-trusted-firmware/include/lib/libc/aarch64/stdio_.h
81dc661e625cc7228b67c09aea60df34e729c283 - arm-trusted-firmware/include/lib/libc/aarch64/stdint_.h
dec49d90238a3dc066022d9268b1172c93e6bd29 - arm-trusted-firmware/include/lib/libc/aarch64/inttypes_.h
a0ec98e34e93c55ac6fc9241cbaed06bc372bb39 - arm-trusted-firmware/include/lib/libc/aarch64/stddef_.h
94f633f89b9ae70068fb70432456057bd04bb750 - arm-trusted-firmware/include/lib/libc/aarch64/endian_.h
c6119d73104bf3ae1d27bac47db49a0fbbdcd112 - arm-trusted-firmware/include/lib/libc/aarch32/limits_.h
8eaba3f90b7b124e01dd67a505f4e8dac6d42826 - arm-trusted-firmware/include/lib/libc/aarch32/stdio_.h
99fb55bd4f7021bebc906bdfbf7f2e0a32e198f9 - arm-trusted-firmware/include/lib/libc/aarch32/stdint_.h
5504c60845bc40c22309d19ad3a370854542606b - arm-trusted-firmware/include/lib/libc/aarch32/inttypes_.h
4ffa8f28ee204e4445f86ee9e68903c66fb5487d - arm-trusted-firmware/include/lib/libc/aarch32/stddef_.h
5d60818c76a8f8d0645d40e13fb9c6bba183e2ac - arm-trusted-firmware/include/lib/libc/aarch32/endian_.h
7a7b59a035c26b0ced83b40114b596358f1bd2c4 - arm-trusted-firmware/include/lib/cpus/errata_report.h
58569d6f8289cc5c665cc6dd3455a31057e6209f - arm-trusted-firmware/include/lib/cpus/wa_cve_2018_3639.h
d44192225758ac451b1c5bc5111f98c453327523 - arm-trusted-firmware/include/lib/cpus/wa_cve_2017_5715.h
55da8ccc24cdd5cabba3e346f04694958ca9b84a - arm-trusted-firmware/include/lib/cpus/wa_cve_2022_23960.h
42b29f7ea79198fbf5aa69a3aa080de56572fa3a - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_demeter.h
efc8411aa80d03690795c5caab5213f739c3dae2 - arm-trusted-firmware/include/lib/cpus/aarch64/generic.h
309db7cc6a48f2dfc2fc82dad3300ad2825efae6 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a75.h
32b8e77c476293848bb5884355c7faf95069f8c8 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a78c.h
7f4a54bf5113ee54ee16d5400921730610b81a5f - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a78_ae.h
fe7e88bb537bded4caa68969291e0f7582e7abe1 - arm-trusted-firmware/include/lib/cpus/aarch64/qemu_max.h
44559a7bdfb73f25458f7ca2b0e8c8785ef8827f - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a35.h
055e82d4e76261ce1a2108d14cea7176cf18c0a9 - arm-trusted-firmware/include/lib/cpus/aarch64/dsu_def.h
e762cbd4ef8859eb8d8ebd03899ec10c085ce1b5 - arm-trusted-firmware/include/lib/cpus/aarch64/cpuamu.h
43952567938e0452e6f1cd65b6fab276d3b628e0 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_hunter.h
cecb6b77ddae233e9012f44da229b0f25904b481 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a65ae.h
4f1b3a7c5699c6ae409698b593edbc6ac8d2a861 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a73.h
fb525a4bddf12d5307fdd7d77fe2c90783b76d85 - arm-trusted-firmware/include/lib/cpus/aarch64/aem_generic.h
7de432330be3e8f54c1e573f4ab59d51806e7365 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_hayes.h
e67d118e55ce590ff3f6428280713a78b8eed58a - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_n2.h
82d90eaba5c3e4a0d0d67cdc9bb41cf9f9d2aa35 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a710.h
6f80e2ceb55f9179c0e8b9d91d249e62d6b1face - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_n_common.h
fee71b3ac82a2185c4d87e46ee0883cd51017f0f - arm-trusted-firmware/include/lib/cpus/aarch64/denver.h
84e558d38ecba4e5f4d2f894a9291c5037ce66ed - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a57.h
e7bf4db6f79577db296e4c8444c731b2e3af4822 - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_poseidon.h
b9a6a19c148f0fb9ef9b3e03b113a48c319f50ed - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a78.h
3c127123c7f793221554840dbafc9aecc3acb322 - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_v1.h
80bf6905c50e6839862d8fc71c9406f081533252 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_x2.h
22958de97bf4027cc040fc0ac360db1706c214e9 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_makalu_elp_arm.h
31b87fd75812c21215587c76fc574207c546b735 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a77.h
7c2b1650f6c338afe9ce5b81aaf9c15b6c358c98 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_makalu.h
316e8929890c4678843eeb9c9f055e3d7b37419b - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a53.h
3f7b45d32e48e60ee32229b7e8f5860b6e67747e - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a72.h
b58c922be5d4bad0866dbb86570d6f9e94310f89 - arm-trusted-firmware/include/lib/cpus/aarch64/rainier.h
b5de08d6bad3b4fa6d103de5fdccbe1dd027b1e2 - arm-trusted-firmware/include/lib/cpus/aarch64/cpu_macros.S
26f966576d1ba5fe1e871578dea3ea004be5ee67 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a76ae.h
9a1b5aa467e9d2d3b68dbfdc3d96397743562185 - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_e1.h
ed260f8199efb4c6b1d32218c83039568c4ef425 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a65.h
70560b6cca33e37badb4f0e52e2781166227184c - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a55.h
b2ba28f5ae615b85d1e4f9417e53743767f749e5 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a510.h
03c06290a053bfb539077f235d6cbd00efa9839f - arm-trusted-firmware/include/lib/cpus/aarch64/neoverse_n1.h
e06ae7d94772d2e7df59aaed91759743f3614979 - arm-trusted-firmware/include/lib/cpus/aarch64/cortex_a76.h
f05e12dd19967571232d263c83c6898dc9f9c9b1 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a17.h
964ef94b44f29b27af9693592b55d5e045c68898 - arm-trusted-firmware/include/lib/cpus/aarch32/aem_generic.h
b3f572f2b6af62ea012727754cd52c72ab76a8cb - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a9.h
4f2016b0ee0a27a62e127a3e9e49889a8cb0d63e - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a57.h
ab3b500c80e0bf48a6fa1b8aa0cedb3451312f73 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a53.h
7c549b2ab4e1d1d0e0a845e601e8778c8c5016d1 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a72.h
b28242a3c70922add954edac6ef6a6cc27eef33f - arm-trusted-firmware/include/lib/cpus/aarch32/cpu_macros.S
b4398b2cbe8c44396c14071dd547d3b4ae231f11 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a15.h
7246c771a29d42ce8df39025143fedec1f1d22ea - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a12.h
bb26a1dad2c7e0bc860a422313a21fe96c5818e7 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a7.h
4f8e78fb1d10bb5da1ae6792f2775a2e3d34e739 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a5.h
a90685421214c1862d537af563def9b63894e740 - arm-trusted-firmware/include/lib/cpus/aarch32/cortex_a32.h
0f9c6bddf555b127d0deea955abd911c85bc89b9 - arm-trusted-firmware/include/lib/mpmm/mpmm.h
a9be03deeaf86090c4056f6844a1dafec0a14683 - arm-trusted-firmware/include/lib/xlat_mpu/xlat_mpu.h
ff1f378cc136ea5bf58c5fe0df726e1d809c7efb - arm-trusted-firmware/include/lib/zlib/tf_gunzip.h
03fe8d1844f9117cf59adf7bb69cbcef990c16c3 - arm-trusted-firmware/include/lib/psci/psci_lib.h
1c0e9271a240a44ae26fe23c9d0bf4f2aefdbaa8 - arm-trusted-firmware/include/lib/psci/psci.h
84b28157b2cc81f5a9aa46c6edf2de6083f696bd - arm-trusted-firmware/include/lib/gpt_rme/gpt_rme.h
7efe8c0a3fbb4e9b29850fac16b475c45925c6e3 - arm-trusted-firmware/include/dt-bindings/pinctrl/stm32-pinfunc.h
b7307a0a106f93b2429fa105547d42bc65f8afc2 - arm-trusted-firmware/include/dt-bindings/reset/stm32mp15-resets.h
c5098c5b107f74cd689ca039a39721bc1ecb7523 - arm-trusted-firmware/include/dt-bindings/reset/stm32mp1-resets.h
0ca59c4b41f2264bcc0d4b45550b8a587211aece - arm-trusted-firmware/include/dt-bindings/reset/stm32mp13-resets.h
3a4737826d5e90e262be765553886dc9b2cad966 - arm-trusted-firmware/include/dt-bindings/interrupt-controller/irq.h
56af3734637f9dcf2f75c88aad9614e515be1570 - arm-trusted-firmware/include/dt-bindings/interrupt-controller/arm-gic.h
080c331a370bfcf9f9ce11ccdc89838ea7fd401c - arm-trusted-firmware/include/dt-bindings/clock/stm32mp1-clksrc.h
f28db646c8bdd11bb9593e0d241d924482a7d3ad - arm-trusted-firmware/include/dt-bindings/clock/stm32mp15-clks.h
bd297c8c069baf4894e271462ecd0387ca142d2b - arm-trusted-firmware/include/dt-bindings/clock/stm32mp15-clksrc.h
f8dfb28848429d1ddd93107a95f47d8c6701e359 - arm-trusted-firmware/include/dt-bindings/clock/stm32mp13-clks.h
fd1e043f322c708de5aa529250ef0ca7430cc508 - arm-trusted-firmware/include/dt-bindings/clock/stm32mp13-clksrc.h
e0d1075d19bd35b9bf189dad00ef6b45991c1bf0 - arm-trusted-firmware/include/dt-bindings/clock/stm32mp1-clks.h
5c7d53dffc9e4dbe1b29a7a3f2c66a36954dd32d - arm-trusted-firmware/include/dt-bindings/soc/stm32mp13-tzc400.h
f237c837e7f3ca6eb78a837961cc378136eb56a4 - arm-trusted-firmware/include/dt-bindings/soc/stm32mp15-tzc400.h
4b89cad3c01b7767a5a3a13de49705b2cb3e7f9e - arm-trusted-firmware/include/dt-bindings/soc/st,stm32-etzpc.h
cb4a166015b83acf19a78617be8e774abc6e1798 - arm-trusted-firmware/include/bl32/payloads/tlk.h
dc1975b639c5dc6b8eee34ada66bffcbd10d3047 - arm-trusted-firmware/include/bl32/tsp/tsp.h
61531a0b7ca81943d7aebe7d3183f30c4b6b42b7 - arm-trusted-firmware/include/bl32/tsp/platform_tsp.h
0978d63d1beeeb3f432496ea56acf6f3cf4d2072 - arm-trusted-firmware/include/bl32/sp_min/platform_sp_min.h
ad144423428ec92ff7791f7e65475d8179b74ef7 - arm-trusted-firmware/include/arch/aarch64/el3_common_macros.S
d35ee46e0adae54b398a7fca1dfb048e883b5ad1 - arm-trusted-firmware/include/arch/aarch64/el2_common_macros.S
87e9fceb27f38ccf307b534c37594e96103b391f - arm-trusted-firmware/include/arch/aarch64/arch.h
3b667906d524c05d363bb8341f5241bbe7d80fe4 - arm-trusted-firmware/include/arch/aarch64/arch_helpers.h
40e8dcbc93cae746d0a5db7109f8c2d55204cc36 - arm-trusted-firmware/include/arch/aarch64/asm_macros.S
04b3308044a6768acf0bad187fc2b69cb69a1fe4 - arm-trusted-firmware/include/arch/aarch64/assert_macros.S
ed984eb0f0ed8079b711d378fe82a35a98c45803 - arm-trusted-firmware/include/arch/aarch64/smccc_helpers.h
1d2a96df860280e160ab95e4e51e622a5f546aba - arm-trusted-firmware/include/arch/aarch64/arch_features.h
82b34ecc6637bf3745fec6a4d1cbc29e06e8e19e - arm-trusted-firmware/include/arch/aarch64/console_macros.S
19edcf9b1fb1a08230c93e3bfa026e7b33cd3ac9 - arm-trusted-firmware/include/arch/aarch32/el3_common_macros.S
1ac6bbd72fd5efcdea46d665f3b42539e55d19af - arm-trusted-firmware/include/arch/aarch32/smccc_macros.S
e2b5aa5f3ed136a6b09905c047bcd4bba696b753 - arm-trusted-firmware/include/arch/aarch32/arch.h
68d3700bd1027d9b9ce6280954972329e2653b9e - arm-trusted-firmware/include/arch/aarch32/arch_helpers.h
c2be1c93cd54c4e39aaf2aaa3a0efde1a237ae5d - arm-trusted-firmware/include/arch/aarch32/asm_macros.S
7473145f94c25355b413a071f083825a5bbf2ce8 - arm-trusted-firmware/include/arch/aarch32/assert_macros.S
0e8c93e8e2069b7b80576b88757ad99a54dabc15 - arm-trusted-firmware/include/arch/aarch32/smccc_helpers.h
6a8e3ed67bce468bf878dee9e257722a13c705de - arm-trusted-firmware/include/arch/aarch32/arch_features.h
707cddbbe6226e2efc883af7013f08afced5a708 - arm-trusted-firmware/include/arch/aarch32/console_macros.S
b46a10bce55c312c93a16f506296f5642158a823 - arm-trusted-firmware/include/common/asm_macros_common.S
1d8edfcfadd6f5b8724ad6ef3530f09bac04d2b9 - arm-trusted-firmware/include/common/fdt_fixup.h
561b168245611d5de641a636b5d632f02dcab868 - arm-trusted-firmware/include/common/debug.h
cbf9eec4b4cde89881d2efe44be1dde85d9b6b0d - arm-trusted-firmware/include/common/bl_common.ld.h
b0aadb059bd035c38b54ce8f2f7690b49b417e5a - arm-trusted-firmware/include/common/param_header.h
0adc1932137e9f09ebf8948f60d0bb0258ad0249 - arm-trusted-firmware/include/common/tf_crc32.h
3061ebcc5cc39e9b66461188d5eccd5bef4173d0 - arm-trusted-firmware/include/common/image_decompress.h
816190a2de110539cf90ed91f279563c0bca9a18 - arm-trusted-firmware/include/common/uuid.h
5afd89832d7eb27979b6864884c4c5564a60279d - arm-trusted-firmware/include/common/romlib.h
9398e9281edb3916d9f8b25e4ac909538f93d5da - arm-trusted-firmware/include/common/interrupt_props.h
dc31b12d8e0fe348d049aab169721695d6414bc2 - arm-trusted-firmware/include/common/bl_common.h
835fd8c82abcfae1bf3c5dceb1123a8b2bfd587d - arm-trusted-firmware/include/common/ep_info.h
9acd7a0a005acdb9eb6ee122677ee9528b36b6e0 - arm-trusted-firmware/include/common/nv_cntr_ids.h
718add17082d7b0f4631c4aa87879e2dbc634426 - arm-trusted-firmware/include/common/fdt_wrappers.h
f3ec87cdd303cc80ab1975ee4c970c1d72f2a1d9 - arm-trusted-firmware/include/common/desc_image_load.h
1fb3546ddcbbdb34f1bd8c5532fde531ed03e4fd - arm-trusted-firmware/include/common/runtime_svc.h
b1bbf25afc02647d5cf3c2de70985599ed6bf6ea - arm-trusted-firmware/include/common/tbbr/cot_def.h
22b063584c188624815fe5a57f199b9bde282c6a - arm-trusted-firmware/include/common/tbbr/tbbr_img_def.h
9148c938d74351967390c1286566f167d1915b59 - arm-trusted-firmware/include/drivers/ufs.h
80ffbe42c480534b02989a02a37fe24a316746dc - arm-trusted-firmware/include/drivers/spi_nand.h
3d13f3cbff61918c53bb0a76876155dc82337fe5 - arm-trusted-firmware/include/drivers/console_assertions.h
42c0f53bb57374cb007e6d5c3d4d536db4069f15 - arm-trusted-firmware/include/drivers/nand.h
d73de0ba3c3a5f28ea6d778b2dcb3ccc7d76c74e - arm-trusted-firmware/include/drivers/mmc.h
1e85ce64c0bc0c37f1c87dab8859540aadd4d842 - arm-trusted-firmware/include/drivers/raw_nand.h
c8f57a02330fc21d063cbfa19b558cbd20de2787 - arm-trusted-firmware/include/drivers/generic_delay_timer.h
beb3e629b953dd33bc44df27d3f0b251af4a75e5 - arm-trusted-firmware/include/drivers/scmi.h
8709de3c5655138d78511772539fb29a8b660364 - arm-trusted-firmware/include/drivers/scmi-msg.h
32b681b12e18f054ea32d70a554e9c07ff59e4f5 - arm-trusted-firmware/include/drivers/spi_nor.h
bb163896fcf9655f45d24b8676ea0a79a6c28272 - arm-trusted-firmware/include/drivers/dw_ufs.h
3fdd5f2bbd8585722f7176499884e963fcc1806f - arm-trusted-firmware/include/drivers/console.h
58d9040bd23a07f657047c01fbc92a62b9b04d45 - arm-trusted-firmware/include/drivers/clk.h
061a6a5d58a19fa40602dcb1c9d1042a206ad73e - arm-trusted-firmware/include/drivers/spi_mem.h
e52b9017a122dbf25d5764491104335c6a166dd2 - arm-trusted-firmware/include/drivers/usb_device.h
c6f581c377a1a1670d1dd54c360deded41593d6f - arm-trusted-firmware/include/drivers/delay_timer.h
b11f7ad45072a13e91bd01040adca94742f7cff1 - arm-trusted-firmware/include/drivers/gpio.h
95f57bdb58eaa0c98d1495b69af4481368294101 - arm-trusted-firmware/include/drivers/synopsys/dw_mmc.h
41a9e785cff8ee17c58544900ad2cf351862fb31 - arm-trusted-firmware/include/drivers/cadence/cdns_uart.h
f255bd6542ce1b5d70e6f1e8d795bf29367099a7 - arm-trusted-firmware/include/drivers/io/io_memmap.h
d44cfbded1853f569ae63d99598504a959d6be61 - arm-trusted-firmware/include/drivers/io/io_fip.h
e65ada86295c449ba40e5e0d4d1558b8c57e24c5 - arm-trusted-firmware/include/drivers/io/io_mtd.h
ea2dcfb76c08ec6fec8d8a369642b152753b0780 - arm-trusted-firmware/include/drivers/io/io_driver.h
53a57c8d46bdf6e3119f7da34bfab0df1ea5be9c - arm-trusted-firmware/include/drivers/io/io_storage.h
37187b6d387c4c5065ca5fcf7fb76e54527943c2 - arm-trusted-firmware/include/drivers/io/io_dummy.h
10532a6db736e62308718e7ed4602bcdad21e3e0 - arm-trusted-firmware/include/drivers/io/io_block.h
65ea10cb954a4eafbc5c1b0e1f4118cece4ff74b - arm-trusted-firmware/include/drivers/io/io_semihosting.h
fe49b84f7431a3680d29420770e6c5a8e81abd5c - arm-trusted-firmware/include/drivers/io/io_encrypted.h
4b9518a5dba55fc1c78dc216a36ce0bb0e045155 - arm-trusted-firmware/include/drivers/st/stm32_uart.h
1b6f5d6f48fb0ceab8d15c6308e31e78e85bddba - arm-trusted-firmware/include/drivers/st/stm32_uart_regs.h
51b50b86f5dea96ef59764df60f2d64a45d54bf1 - arm-trusted-firmware/include/drivers/st/stm32mp1_ddr.h
eae4fb4ef015039f57a757e732fbfa815bc9aeb1 - arm-trusted-firmware/include/drivers/st/bsec2_reg.h
91bfb605e20bff6aead18279afab90eed7856ddd - arm-trusted-firmware/include/drivers/st/stm32mp1_pwr.h
ae8d33f6e04e5baf46e8b00b1613dca79c462e1b - arm-trusted-firmware/include/drivers/st/stm32mp_pmic.h
a832f792f5fc9564b02d96f85430f190c3f57417 - arm-trusted-firmware/include/drivers/st/stm32mp_clkfunc.h
16d36c74e72bc40e7ba15ea25ce38621a3dc3a9e - arm-trusted-firmware/include/drivers/st/stm32_console.h
e545051ef77d33ec66036fa94f2d53b51253d436 - arm-trusted-firmware/include/drivers/st/stm32mp1_ddr_helpers.h
cacf83dd6e129df0a9ffedbd38bfb757074d1240 - arm-trusted-firmware/include/drivers/st/etzpc.h
173981f3ca549df6d0e56fd0a16e4a055b9151eb - arm-trusted-firmware/include/drivers/st/stm32mp15_rcc.h
eaf998cd31b2112d0a61198a5a7f14d484217251 - arm-trusted-firmware/include/drivers/st/regulator.h
b0e57331d216261ea6ec7814666ae64bd884dc05 - arm-trusted-firmware/include/drivers/st/io_mmc.h
cfbc99b7bba5966e33409c31f9f47cb7de63f66f - arm-trusted-firmware/include/drivers/st/stm32_hash.h
b6caa41ecb428bd2e6752e1a1f5a0c2ef3fcc953 - arm-trusted-firmware/include/drivers/st/io_stm32image.h
ff21abb6526ad91314e2f7cc58fa6fd6546c926f - arm-trusted-firmware/include/drivers/st/stm32_sdmmc2.h
86a1ad6cd3ce837f820ba6c1b9f6ee7182e74956 - arm-trusted-firmware/include/drivers/st/stm32_fmc2_nand.h
c13f39e45ffdff80cfe87c12423322a15b959794 - arm-trusted-firmware/include/drivers/st/stm32mp1_ddr_regs.h
58a87d375953ce331a480d18ecbe92da88b221df - arm-trusted-firmware/include/drivers/st/bsec.h
e86b4fde780cfae34213629b58ff8e1efd1eed73 - arm-trusted-firmware/include/drivers/st/stm32mp_ddrctrl_regs.h
431e908bb797e10b7839fe28a0ace7d8a9e7bf99 - arm-trusted-firmware/include/drivers/st/stm32mp1_ram.h
b6eb16d19f62ff88852eab346d51d719944f14ed - arm-trusted-firmware/include/drivers/st/stm32_i2c.h
4cdb146eb6fe5439dec2c5039a903ed5baee6aa6 - arm-trusted-firmware/include/drivers/st/stm32mp_reset.h
967e02371bf07f76cf015635f5a50c0956176296 - arm-trusted-firmware/include/drivers/st/stm32mp1_usb.h
6c00673ea5fb61808caf3b77e422043972ecafc7 - arm-trusted-firmware/include/drivers/st/stm32_qspi.h
45a56579470aa4ad7e007373a068f3285f046de0 - arm-trusted-firmware/include/drivers/st/stpmic1.h
e6aa4130f95dc7da0f3a94482c2ee3325afdf0a0 - arm-trusted-firmware/include/drivers/st/stm32mp_ddr.h
bcfc65cd26c42c404b6482da16cdacf6e95c5733 - arm-trusted-firmware/include/drivers/st/stm32_iwdg.h
1735a240af4b99862e6cb202fc034231abeb53bd - arm-trusted-firmware/include/drivers/st/stm32mp_ddr_test.h
156ba43b85065027d400a1287fa794a828df162b - arm-trusted-firmware/include/drivers/st/stm32mp1_clk.h
ac1cd6d311e2280721ba62f9e82c10322f6dad41 - arm-trusted-firmware/include/drivers/st/stm32mp_ram.h
7574c3687634e56e414a47e0fb3f5a5d7b1fc708 - arm-trusted-firmware/include/drivers/st/stm32_gpio.h
e02eff807301ff7775369975495cad2a2082972f - arm-trusted-firmware/include/drivers/st/stm32mp13_rcc.h
ec0355e035856ac49891ebbbfb6b249439fe6bc2 - arm-trusted-firmware/include/drivers/st/stm32mp1_rcc.h
f2ca7edf66b0d71fec9b893659707c7675f9d0a6 - arm-trusted-firmware/include/drivers/st/regulator_fixed.h
1c35b8d1dd99e2556585b97e6c5f472b95565fd0 - arm-trusted-firmware/include/drivers/amlogic/meson_console.h
598adf21c9089a664c913fb3faf852fa36dddef8 - arm-trusted-firmware/include/drivers/amlogic/crypto/sha_dma.h
89a898543325d24449f04f9b4f73ab80fe43615a - arm-trusted-firmware/include/drivers/fwu/fwu_metadata.h
bd8eab4d0a2394ab277d17b70d1de2839a83ce04 - arm-trusted-firmware/include/drivers/fwu/fwu.h
907603dcc9f90f3393201ab4a2a5c8ce32f61543 - arm-trusted-firmware/include/drivers/brcm/sotp.h
5632d0130d0787f77618a2ca64d09d7bc3d2433b - arm-trusted-firmware/include/drivers/brcm/usbh_xhci_regs.h
5afc35a13cf962ad7cd0f15b0532bbe11c7ad17a - arm-trusted-firmware/include/drivers/brcm/ocotp.h
2dedb1c6a08bb98fab574fbb49becf23a0a40b3d - arm-trusted-firmware/include/drivers/brcm/dmu.h
67ec9883d9b0ac3959b68dcf32dbf8d8fbc84bc8 - arm-trusted-firmware/include/drivers/brcm/scp.h
3b8d411ed511e8d5f5cd285a04229eb0779c2609 - arm-trusted-firmware/include/drivers/brcm/iproc_gpio.h
8c4e00a589a41eac59a1e3f7743e362f874b80cd - arm-trusted-firmware/include/drivers/brcm/fru.h
542f2f80df9c9b264f0bfc9387e38e99ad2a9e7b - arm-trusted-firmware/include/drivers/brcm/spi_flash.h
2a62cccb75603f1abe573a211d9b149826e87356 - arm-trusted-firmware/include/drivers/brcm/chimp_nv_defs.h
823fbabdd578bbfbf92d8a2d68e8d7d2c3f652cd - arm-trusted-firmware/include/drivers/brcm/spi.h
04cc0e519d24a6729fbf6f89e981eaf992fe19d5 - arm-trusted-firmware/include/drivers/brcm/sf.h
f1e9babc3d5e854ba472c64f889f2fb01138cff0 - arm-trusted-firmware/include/drivers/brcm/chimp.h
40a4365490452d1db063c69f305c46be1d20e9f5 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_chal_sd.h
c3be01e418a0c44f650529178aabc99c5fdbef33 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_api.h
5657b1337210a575a742026dfa31f3136b5bb625 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_chal_types.h
d6123ce1d15ed92eb457d0e0d13d66841deb34ea - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_pboot_hal_memory_drv.h
af14073522c90e3d69b0abc31fd3a2820dc54d47 - arm-trusted-firmware/include/drivers/brcm/emmc/bcm_emmc.h
38ad4c8652f178df916a5a1622fad23851187ba2 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_csl_sd.h
5e1781b653944c224e65bec032fae482c1925591 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_csl_sdprot.h
eafab2881a9d078ab544df13644c4b47b0670003 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_csl_sdcmd.h
869edd881664c3e2332d5b2e6765e7dacbb0afb7 - arm-trusted-firmware/include/drivers/brcm/emmc/emmc_brcm_rdb_sd4_top.h
829056e15314b731c22b87d62a2c8606e72e1fb8 - arm-trusted-firmware/include/drivers/brcm/i2c/i2c.h
ba4c82c4f42cf7c6060c7266d23de675e741a191 - arm-trusted-firmware/include/drivers/brcm/i2c/i2c_regs.h
281ab6dc0343aa92cc689456d9b8b56e7e853961 - arm-trusted-firmware/include/drivers/brcm/mdio/mdio.h
d9fee9976962b8d9daffbf4d4cb1e7400e14c745 - arm-trusted-firmware/include/drivers/ti/uart/uart_16550.h
b5e8788fcbe8f7e5a29ea20b0496f5b331fe6b4b - arm-trusted-firmware/include/drivers/measured_boot/event_log/tcg.h
bf12d4c88947dab864a8f411bd8b3d752bcece3f - arm-trusted-firmware/include/drivers/measured_boot/event_log/event_log.h
0601d762e1bfda8d93d085ea44202fdbff2d1ad9 - arm-trusted-firmware/include/drivers/allwinner/sunxi_rsb.h
1fad8ad24347aab9e6da6d46f5cf581f938d2ab8 - arm-trusted-firmware/include/drivers/allwinner/axp.h
490bae640af8d15a10cc4a530a23cd51226ca709 - arm-trusted-firmware/include/drivers/mentor/mi2cv.h
898f43097b2545ca29358b143d6e97761f1dbce4 - arm-trusted-firmware/include/drivers/rpi3/rng/rpi3_rng.h
8865e3a5b086a9f57937f94373c1488796422a75 - arm-trusted-firmware/include/drivers/rpi3/mailbox/rpi3_mbox.h
d3887ee8e4681e5e21d22c78756f8bb537359ef0 - arm-trusted-firmware/include/drivers/rpi3/sdhost/rpi3_sdhost.h
affa2c8404660a48bcd956f29a50e79120b1cc3b - arm-trusted-firmware/include/drivers/rpi3/gpio/rpi3_gpio.h
5c2e0ca868faae2060e6a9f3bf20896783564942 - arm-trusted-firmware/include/drivers/marvell/ccu.h
a3de98e4cc085d3cf7d5d52931b5b3623d0a619f - arm-trusted-firmware/include/drivers/marvell/mci.h
d7bc8fa93e6253a8b9ef6c39613ea88489703b1f - arm-trusted-firmware/include/drivers/marvell/gwin.h
000c88b50b95ab8b54fed58ab9f840b9bb69e06c - arm-trusted-firmware/include/drivers/marvell/i2c.h
15475b1e40e5c5bddbfabed61f7f24162136b1f7 - arm-trusted-firmware/include/drivers/marvell/amb_adec.h
69f49992d9c55ee0e777a11643d0b52001cb7622 - arm-trusted-firmware/include/drivers/marvell/aro.h
02710fe143b7937c1b4fad8c1e757146513ac135 - arm-trusted-firmware/include/drivers/marvell/io_win.h
2a16f04ed2b2358e61aa3683ec3d1f2b3960dd2b - arm-trusted-firmware/include/drivers/marvell/cache_llc.h
fd4a5e7af241c3b0572f5c9e81decf1868f17fb4 - arm-trusted-firmware/include/drivers/marvell/thermal.h
9b00b75ebe2ac0600a4eb5f6e9b76c2c77e19a94 - arm-trusted-firmware/include/drivers/marvell/ap807_clocks_init.h
7f1222ae6a5838bc830b1300ab199a3d42290790 - arm-trusted-firmware/include/drivers/marvell/addr_map.h
6fb4915c93922ffd80c2b7082f5219b13d64a4a9 - arm-trusted-firmware/include/drivers/marvell/iob.h
9fe146fde5aec71f5cc47d07590e1f76602bc9cc - arm-trusted-firmware/include/drivers/marvell/mochi/ap_setup.h
80057d817a90e75ad1e4eab0e4c81c6a62aa3911 - arm-trusted-firmware/include/drivers/marvell/mochi/cp110_setup.h
1bd923068f35229b4648825afdbe2d5ee74ba4fe - arm-trusted-firmware/include/drivers/marvell/uart/a3700_console.h
c269f40255323bed655d0c076e5fc771bee91550 - arm-trusted-firmware/include/drivers/arm/cci.h
3c63f525fa4ab772695c59df263364d15f606582 - arm-trusted-firmware/include/drivers/arm/sp804_delay_timer.h
8d3c051e8ba42150549dab299eca67bf73caf21d - arm-trusted-firmware/include/drivers/arm/tzc_common.h
7ca64097543e0475ded88ff1b0c756ea3e68dce4 - arm-trusted-firmware/include/drivers/arm/tzc400.h
be5093d8f8d48610060e70ed9a8ee5602ad6739b - arm-trusted-firmware/include/drivers/arm/tzc_dmc620.h
cd54a5c35b74beeacb16c618204bb31eaa33126b - arm-trusted-firmware/include/drivers/arm/gic_common.h
93e88fa1b74eaf244a0d0a7346c849ee43adbfee - arm-trusted-firmware/include/drivers/arm/smmu_v3.h
cad3fc32b992ec321fb47398d69df28d800ddfda - arm-trusted-firmware/include/drivers/arm/gic600_multichip.h
0f5d3819208e8ad3ef2356f332aceaa4239dd8b3 - arm-trusted-firmware/include/drivers/arm/arm_gicv3_common.h
84502e34dabd2a899d93664cb540910ed8183f7a - arm-trusted-firmware/include/drivers/arm/gicv2.h
23cae352c3c5ae2fd377288763e52e1e46e9903b - arm-trusted-firmware/include/drivers/arm/gicv3.h
eb064e58fc5aaf99768b3c9f167e6a369c5d51b2 - arm-trusted-firmware/include/drivers/arm/pl011.h
742d685c4e3046c1a64e99c18d00be7f1f9066fa - arm-trusted-firmware/include/drivers/arm/ethosn.h
2fa5a8cfd7f005b8d48960df0fa9dab5568d8059 - arm-trusted-firmware/include/drivers/arm/dcc.h
1f2f3ae5b2636732d8a2b76e04392deacdc51203 - arm-trusted-firmware/include/drivers/arm/ccn.h
c313d8aea2aa56300528293ebb42d4b35d46b18c - arm-trusted-firmware/include/drivers/arm/nic_400.h
ea5359158383d2c575b976cf638b586aa030cc49 - arm-trusted-firmware/include/drivers/arm/gic600ae_fmu.h
0282c52c2cf6a737b53c9bcebcd089c5bf35ab24 - arm-trusted-firmware/include/drivers/arm/tzc_dmc500.h
8971a6e6b857b7b1e6544d6c3c9a52ca567a9e11 - arm-trusted-firmware/include/drivers/arm/scu.h
ea619e78dc1630857e7bca57a8fb64b7d45583ba - arm-trusted-firmware/include/drivers/arm/pl061_gpio.h
dcca36bec1c965c6413ab49729c23a771108058e - arm-trusted-firmware/include/drivers/arm/sbsa.h
abaea50a4f3861dfaa3f55cba235dc00114b68f4 - arm-trusted-firmware/include/drivers/arm/sp805.h
3d28678861c6be73909a9fafa1e03dc8bed75dd5 - arm-trusted-firmware/include/drivers/arm/dsu.h
f18d30ed876fb854340d329c32144778921ba136 - arm-trusted-firmware/include/drivers/arm/tzc380.h
749ed7a2a602879315a2a407faa53d9fcc6f4242 - arm-trusted-firmware/include/drivers/arm/fvp/fvp_pwrc.h
7d87f35690f4d41b9739eb995465900a8070b7d9 - arm-trusted-firmware/include/drivers/arm/cryptocell/cc_rotpk.h
bf88a456fd40edb9bb68b2450d6251cda06f2465 - arm-trusted-firmware/include/drivers/arm/cryptocell/713/cc_sec_defs.h
a8d2ea546937a35c7f822dd9e1a7e8eb3fd4438f - arm-trusted-firmware/include/drivers/arm/cryptocell/713/cc_boot_defs.h
93088698293330d0f56eaabb73e01615b19fed64 - arm-trusted-firmware/include/drivers/arm/cryptocell/713/cc_pka_hw_plat_defs.h
b69f3dd73cff9fd442b44ed25f2edbb0bc3baa5f - arm-trusted-firmware/include/drivers/arm/cryptocell/713/bsv_api.h
5ff025817e96abd32dab9c26c2d10d5116b211f8 - arm-trusted-firmware/include/drivers/arm/cryptocell/713/bsv_crypto_api.h
fb12a0265111fe6f1b941f06d20f54b9439c689a - arm-trusted-firmware/include/drivers/arm/cryptocell/713/bsv_error.h
a182cb9bf34d396f46abd93062d06ce6ee8889c1 - arm-trusted-firmware/include/drivers/arm/cryptocell/713/cc_address_defs.h
f48f4abf712cac68d01844cb146aa3c6e787e97c - arm-trusted-firmware/include/drivers/arm/cryptocell/713/bsv_crypto_defs.h
a9419e34fbc18ae5da0ef1566f5febc0cf829211 - arm-trusted-firmware/include/drivers/arm/cryptocell/713/cc_pal_types.h
513b5a19f2f0b580cf670eca60e57e793cac539f - arm-trusted-firmware/include/drivers/arm/cryptocell/713/bsv_crypto_asym_api.h
13f5321936540bd85461ffa7ef611ca5d4082977 - arm-trusted-firmware/include/drivers/arm/cryptocell/713/cc_pal_types_plat.h
5d04efda071e5940b11e2d270b3dae82a55dc93d - arm-trusted-firmware/include/drivers/arm/cryptocell/712/cc_sec_defs.h
49417191c51d1d9274572285c8ba5a8c8146e57f - arm-trusted-firmware/include/drivers/arm/cryptocell/712/nvm.h
6e4f8a88b84a4ce3b762b6c7f14ac5fec8744012 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/secureboot_gen_defs.h
d82ceff72eee2f6f805404b84357273d1eb09561 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/sbrom_bsv_api.h
3ffecadd4db08d4069780170baac205025ed7194 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/rsa.h
10652996fa07e69877d9fb73449f7ab46d59ffa3 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/util.h
c55427770d64593e3cf15b3ed93e6488363b575d - arm-trusted-firmware/include/drivers/arm/cryptocell/712/cc_pal_types.h
e610cb68e48f78caf111024d142af863b6398636 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/crypto_driver.h
e14a50e8d5c68b36920485b6db04f106817437e3 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/cc_crypto_boot_defs.h
4639b7108f03bef1a92e980f8ee8eff03be1d869 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/secureboot_base_func.h
d73a1ca5bfea93a55e5c13b2b3f2051e3c0d7c12 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/cc_pal_types_plat.h
fc07b65f9cc014a0b1524b0068e8beccf88374cc - arm-trusted-firmware/include/drivers/arm/cryptocell/712/cc_pal_sb_plat.h
260990d658ffc91bafbece3081bb60c30618fa38 - arm-trusted-firmware/include/drivers/arm/cryptocell/712/nvm_otp.h
fdc34a2731639423ad5caeb5261f3207a4183cb1 - arm-trusted-firmware/include/drivers/arm/css/css_mhu.h
faa54f13bf1956078c447ae298b4696adc11ec16 - arm-trusted-firmware/include/drivers/arm/css/css_mhu_doorbell.h
644885f6d536f0b9fecf9b19db5324cebdb1cd00 - arm-trusted-firmware/include/drivers/arm/css/scmi.h
2199dceebbe76121f35942566cde95a239340491 - arm-trusted-firmware/include/drivers/arm/css/sds.h
c4e97cf187b8de349d494ab89ca4f5c1a83aadc7 - arm-trusted-firmware/include/drivers/arm/css/css_scpi.h
cb3a4608dbc689332bbeee2134f523d78ea6fcb8 - arm-trusted-firmware/include/drivers/arm/css/css_scp.h
bd4bb47e71397b065ce00f2af2e6c24b3a8e1d45 - arm-trusted-firmware/include/drivers/partition/efi.h
53d9f7bd2b149b510835abe889d7520b7f40b916 - arm-trusted-firmware/include/drivers/partition/gpt.h
1c27aa6ecf64d9c63f2e200bb4b4f34c1493e6b4 - arm-trusted-firmware/include/drivers/partition/mbr.h
526e7a59fda5b797d17357c6594325b695dae294 - arm-trusted-firmware/include/drivers/partition/partition.h
21f2b4221f273c0afed79420c75126131f6cbd5a - arm-trusted-firmware/include/drivers/auth/tbbr_cot_common.h
487e2e7025ad4207cb2dc1e52045c91796c5f00d - arm-trusted-firmware/include/drivers/auth/auth_mod.h
125b1a75a3651ff04f7dd19ba665ccb6846f3a0b - arm-trusted-firmware/include/drivers/auth/auth_common.h
2a6f91687b0799d7e9d7d79ea9480d7b0f57c185 - arm-trusted-firmware/include/drivers/auth/crypto_mod.h
c7235a5c0dc2db938ba5586b4a94294d0c1cef98 - arm-trusted-firmware/include/drivers/auth/img_parser_mod.h
8990234b68caadc3262242514364a5e4326b0c2f - arm-trusted-firmware/include/drivers/auth/mbedtls/mbedtls_common.h
317b0bab814dd8e2cce909a57a2c8be90b0f5273 - arm-trusted-firmware/include/drivers/auth/mbedtls/mbedtls_config.h
8d5bb836b8836f486476f20753a83ca09d64567e - arm-trusted-firmware/include/drivers/coreboot/cbmem_console.h
04830d2bd9eaac4d5ab2cf414e66ae7439c3832d - arm-trusted-firmware/include/drivers/cfi/v2m_flash.h
6092827f0eb5f3c784b6a1da04df8d26918b01c5 - arm-trusted-firmware/include/drivers/renesas/rcar/console/console.h
56618eda200d872addc06447897a8b7ec619ffb8 - arm-trusted-firmware/include/drivers/nxp/pmu/pmu.h
69289264b7a28a5ce23aa04ce828d8b4af255860 - arm-trusted-firmware/include/drivers/nxp/flexspi/xspi_error_codes.h
7989591e2a2162069486ebab7e2728208c51b5c2 - arm-trusted-firmware/include/drivers/nxp/flexspi/fspi_api.h
ce837ddd809c0d8f381cefc82d212e9a1a20209b - arm-trusted-firmware/include/drivers/nxp/flexspi/flash_info.h
d0fc8c7cc714365c4b36dc3b12083432b0173dd3 - arm-trusted-firmware/include/drivers/nxp/ddr/immap.h
190e1845f17fd2f9c9e7fdcb31f62f22735c2401 - arm-trusted-firmware/include/drivers/nxp/ddr/ddr.h
2b66abb34254db06ee8c88f5e0596c908b2d2026 - arm-trusted-firmware/include/drivers/nxp/ddr/utility.h
90e8213c057c2449b5ba645b49e85458c0dc2e43 - arm-trusted-firmware/include/drivers/nxp/ddr/dimm.h
f76687e9c42877c6684b9f0f42809be11e898f2e - arm-trusted-firmware/include/drivers/nxp/ddr/opts.h
a38ba636dc7402ba5f0f12fac9db9813190a8c39 - arm-trusted-firmware/include/drivers/nxp/ddr/regs.h
3b20fa259fde3f160db7996e9571edfc5ab34bc5 - arm-trusted-firmware/include/drivers/nxp/ddr/ddr_io.h
d8d9fce57d178fdfd41f5be63879bfa85d2e2e15 - arm-trusted-firmware/include/drivers/nxp/ddr/fsl-mmdc/fsl_mmdc.h
b0e9643a90314ef89452944214806403f53b7b54 - arm-trusted-firmware/include/drivers/nxp/tzc/plat_tzc400.h
225ffbb6a71c970da33f40390a7828768770c824 - arm-trusted-firmware/include/drivers/nxp/tzc/plat_tzc380.h
cd9ce08e3ca357e9ac083fd384e2ffd154288032 - arm-trusted-firmware/include/drivers/nxp/ifc/ifc_nand.h
7f0601b767be7522d2b3b053924b860224900737 - arm-trusted-firmware/include/drivers/nxp/ifc/ifc_nor.h
46896393ac73e49d174031ad9db2b897a5a53cd5 - arm-trusted-firmware/include/drivers/nxp/timer/nxp_timer.h
e81281948e932f6635309e0cc817672144dd5cc1 - arm-trusted-firmware/include/drivers/nxp/dcfg/scfg.h
95b4d87dfcfc29bdf2b6cd0bbb06749112243507 - arm-trusted-firmware/include/drivers/nxp/dcfg/dcfg_lsch3.h
060901911b3564bae52c8476be0a91ea019b2283 - arm-trusted-firmware/include/drivers/nxp/dcfg/dcfg_lsch2.h
99694a5f2e9c541d163aa4fc3bae8f07cdd32b4c - arm-trusted-firmware/include/drivers/nxp/dcfg/dcfg.h
2388bdc4442c2695122e844d49738f95b18a84cf - arm-trusted-firmware/include/drivers/nxp/csu/csu.h
3d4947f956585eb9cfe3b8245ad4c1749cdc72b1 - arm-trusted-firmware/include/drivers/nxp/sec_mon/snvs.h
be8a6b00a6db26fef151d90020cd12c856e4cacd - arm-trusted-firmware/include/drivers/nxp/i2c/i2c.h
ccb0701fec1000c00375edbf0318bdce6617b109 - arm-trusted-firmware/include/drivers/nxp/smmu/nxp_smmu.h
4453a2af06ed170ae6c69f42b415c69314fd3d9b - arm-trusted-firmware/include/drivers/nxp/auth/csf_hdr_parser/csf_hdr.h
3584254639e10b77ffd6ccf07f7a59923b337ffe - arm-trusted-firmware/include/drivers/nxp/sfp/sfp_error_codes.h
f75c54f08edcc8069804184e40a6d8a74d3d1b42 - arm-trusted-firmware/include/drivers/nxp/sfp/sfp.h
b6baa4f2facaae8fcb1873db219796f86e62cbbf - arm-trusted-firmware/include/drivers/nxp/sfp/fuse_prov.h
07aabe0c38fbe8ae82313542589e8b6013f0a704 - arm-trusted-firmware/include/drivers/nxp/qspi/qspi.h
26748e486ff05a3ed33d842cba65e4fecc362aae - arm-trusted-firmware/include/drivers/nxp/gpio/nxp_gpio.h
91adf35b394ad394248624343b9c5b19fa0c2b09 - arm-trusted-firmware/include/drivers/nxp/crypto/caam/jobdesc.h
460f93da77ff4c52f61d06eca41dc83c56a92b6d - arm-trusted-firmware/include/drivers/nxp/crypto/caam/rsa.h
fc12ffe1d77603728f2c875a296218ae6cddb095 - arm-trusted-firmware/include/drivers/nxp/crypto/caam/caam_io.h
2c95c38a7f65a3ef7eb3992c7136879ef75e4c7a - arm-trusted-firmware/include/drivers/nxp/crypto/caam/caam.h
bf836adf23266f3749b5e68af59a31d0ac0ea00a - arm-trusted-firmware/include/drivers/nxp/crypto/caam/jr_driver_config.h
66189a3d70ccfb57441e34458abfc9cd72c29d19 - arm-trusted-firmware/include/drivers/nxp/crypto/caam/sec_hw_specific.h
57d421cf90453e8aa05285508bc43ed0e325a7a7 - arm-trusted-firmware/include/drivers/nxp/crypto/caam/hash.h
8308e3c4607508799254cc82d52ec5d4aba905e2 - arm-trusted-firmware/include/drivers/nxp/crypto/caam/sec_jr_driver.h
141c6ec9750c86044338eb19ee622331b9a6c0d8 - arm-trusted-firmware/include/drivers/nxp/gic/gicv2/plat_gic.h
3e33fa498602a762c87ce6d18b27e00fd4d9e153 - arm-trusted-firmware/include/drivers/nxp/gic/gicv3/plat_gic.h
eb200bcc06472d689f3a7419f0710c4c3d8ce0c5 - arm-trusted-firmware/include/drivers/nxp/interconnect/ls_interconnect.h
4229b536f33d8f4775076953d8c91ea47ad378a5 - arm-trusted-firmware/include/drivers/nxp/console/plat_console.h
aabedc9062342279b677c72861038190cfa65939 - arm-trusted-firmware/include/drivers/nxp/sd/sd_mmc.h
ddd09be972db2607bb424326a6c8fbb441dbfec2 - arm-trusted-firmware/include/drivers/rambus/trng_ip_76.h
53e733abf11ec08954e5e64474973896323d428b - arm-trusted-firmware/include/services/arm_arch_svc.h
d02d80eef605a92cc293597811496a9801e4761b - arm-trusted-firmware/include/services/rmmd_svc.h
30872b92c4859ac9f8e3a28f996c947b74edbb61 - arm-trusted-firmware/include/services/spmd_svc.h
eda413e9067c54fd7cb0718642eb3cb770fb5c79 - arm-trusted-firmware/include/services/ffa_svc.h
583482e243ae52386041c084650c8579a1f113ab - arm-trusted-firmware/include/services/std_svc.h
18b02402ab43e28399a4a595544148f960b65c9c - arm-trusted-firmware/include/services/sdei.h
3b7a4c6d6c8ce3c42694e589dd7dd5d4ed7a4ced - arm-trusted-firmware/include/services/spm_mm_svc.h
bd59ae9370224873185cfa4dfc1459db223f86d3 - arm-trusted-firmware/include/services/spm_core_manifest.h
d3bd4cf8e1c91ab4b8019456b7e19c3fd4675567 - arm-trusted-firmware/include/services/spm_mm_partition.h
f9e8e6beb1285dc1b188488dc9a217ba805b04e1 - arm-trusted-firmware/include/services/pci_svc.h
6b3525de0de5c707191677733b6c49dba80eed96 - arm-trusted-firmware/include/services/sdei_flags.h
5d3f25945b7e037c8732ee7c4702366e6ceef5a0 - arm-trusted-firmware/include/services/trng_svc.h
1f0f251429978e8646a05d91d3f3263364aac596 - arm-trusted-firmware/include/services/trp/platform_trp.h
e1699b761cd12de148f701d78db5c24eb3aa7251 - arm-trusted-firmware/include/export/README
5091c9e14c49f9799bc9985442295e882a14d3b0 - arm-trusted-firmware/include/export/lib/utils_def_exp.h
72b925e2450734e1991799db8cc30f6a8609462a - arm-trusted-firmware/include/export/lib/bl_aux_params/bl_aux_params_exp.h
60669a2cabdf40b63773d538d47861c1a584f800 - arm-trusted-firmware/include/export/common/param_header_exp.h
91e15bef63bb89bfd921b4d01d17b37dbeff291b - arm-trusted-firmware/include/export/common/bl_common_exp.h
45ecabce41da084db92b27dd88e6e89f30506036 - arm-trusted-firmware/include/export/common/ep_info_exp.h
c2a9a69314ba3b3f2369c8c876b39d8acda1b018 - arm-trusted-firmware/include/export/common/tbbr/tbbr_img_def_exp.h
9367cefce0520648ccdaad1fe3a402422becdf55 - arm-trusted-firmware/include/export/drivers/gpio_exp.h
dcd0ca426668c19ab921df2fefbf2d83ca5afdd8 - arm-trusted-firmware/include/export/plat/rockchip/common/plat_params_exp.h
9bb9fdc2ec0963a6cbbd0188ae70e368e67755f2 - arm-trusted-firmware/include/export/plat/mediatek/common/plat_params_exp.h
6d533c4b5b87dfa62fc19f93ea9a2a7d91fa7e0a - arm-trusted-firmware/include/bl31/interrupt_mgmt.h
b296aa0c1c6575bc1a961fcbf21420aa5e6c0d3b - arm-trusted-firmware/include/bl31/bl31.h
40a0dcdf3add2805bf312c4548d2ee377fc8e4db - arm-trusted-firmware/include/bl31/ehf.h
89971e627f1aaad3902b29c72eef83520766be40 - arm-trusted-firmware/include/bl31/ea_handle.h
d7f8e1c595627094eb1807e5f15cbb7674cb02d5 - arm-trusted-firmware/include/plat/brcm/common/bcm_console.h
5d91bb2b767050d467d072d4e6d7036d8c71d06a - arm-trusted-firmware/include/plat/brcm/common/bcm_elog.h
0ad5bfa2837c10aafe72e696c238db4ebd82794f - arm-trusted-firmware/include/plat/brcm/common/plat_brcm.h
e639b2614ce8c77a52995ee2da45fe54fbb8dc2e - arm-trusted-firmware/include/plat/brcm/common/brcm_def.h
c53ee85e00ac16a676b82b8903e11ab23a0818cd - arm-trusted-firmware/include/plat/common/platform.h
ec1ba9f6e5e5199a8174963440c8673120fd65e0 - arm-trusted-firmware/include/plat/common/common_def.h
9cd1950e6a5ff8b2dcd0143c1dfe498c7804a1f0 - arm-trusted-firmware/include/plat/common/plat_trng.h
9dd486928223e599a25bc6f13b414fc57c242b36 - arm-trusted-firmware/include/plat/marvell/armada/common/marvell_pm.h
8cdfa6f8ca1d681ba760da2fe49c8f365ef0dcbe - arm-trusted-firmware/include/plat/marvell/armada/common/marvell_plat_priv.h
dc4318dff472842b4c63c7b87f23c3688def3c5a - arm-trusted-firmware/include/plat/marvell/armada/common/mvebu.h
b7faf2c71aa5d9ab793eadfeb28cd9effe284930 - arm-trusted-firmware/include/plat/marvell/armada/common/aarch64/marvell_macros.S
e2d034b7bbecdf28360fcf107159eae0bf87de48 - arm-trusted-firmware/include/plat/marvell/armada/common/aarch64/cci_macros.S
48923d6fcb9d9e02790b158b5eaf6edb34db109d - arm-trusted-firmware/include/plat/marvell/armada/a8k/common/efuse_def.h
36e0657b50b40ad54b3ef6b8b6848377fa423ee2 - arm-trusted-firmware/include/plat/marvell/armada/a8k/common/marvell_def.h
79fec062b150f074e53c3a4b1987aea42e5a4eff - arm-trusted-firmware/include/plat/marvell/armada/a8k/common/board_marvell_def.h
6e72bb219cdd7c32b97b3df3a2fd695dab5d6fc4 - arm-trusted-firmware/include/plat/marvell/armada/a8k/common/plat_pm_trace.h
8d91b9ddc816f6cc8b89cdde08ef32b86e76f779 - arm-trusted-firmware/include/plat/marvell/armada/a8k/common/plat_marvell.h
5eb5b60a95f1d5821d119a38a870719cd6345ca8 - arm-trusted-firmware/include/plat/marvell/armada/a8k/common/armada_common.h
98c1515593c3e784076edd107c7aa20f26d00900 - arm-trusted-firmware/include/plat/marvell/armada/a3k/common/marvell_def.h
71dfe89c5f0b7453c5e1af8a81c440aea8ecb34b - arm-trusted-firmware/include/plat/marvell/armada/a3k/common/board_marvell_def.h
618289fd2c98548dbc401a283df9d3c6386ce002 - arm-trusted-firmware/include/plat/marvell/armada/a3k/common/plat_marvell.h
e6b0db0b8079bfb25c6c3257a0bc6403591a354f - arm-trusted-firmware/include/plat/marvell/armada/a3k/common/armada_common.h
b6516d7703c189ab60f935aae9db8c643bb2d84b - arm-trusted-firmware/include/plat/arm/common/plat_arm.h
eb2f94f2fc7e75343b6ebf27607b356ad90cdb7f - arm-trusted-firmware/include/plat/arm/common/arm_fconf_getter.h
9437b8c5d8cf84ec02a69c03b1658cfe00ce9a70 - arm-trusted-firmware/include/plat/arm/common/arm_tzc_dram.ld.S
62a021ac07cc197af73c3a77f81b2e3c269b7cb0 - arm-trusted-firmware/include/plat/arm/common/fconf_ethosn_getter.h
76e5f8f29adea5aef863105a24eb9d29d8be3952 - arm-trusted-firmware/include/plat/arm/common/arm_def.h
971368d067997c8cf7b990346646cedab7fb9189 - arm-trusted-firmware/include/plat/arm/common/fconf_nv_cntr_getter.h
1fd41daca5740b134bd9df3d981f66ab2fea4f52 - arm-trusted-firmware/include/plat/arm/common/arm_reclaim_init.ld.S
44ce8058a0b197c5c89e419bcebc0ddcd8434c36 - arm-trusted-firmware/include/plat/arm/common/arm_spm_def.h
bcb4189176bf949ae7ccbb1fb72c9d29b366f7e4 - arm-trusted-firmware/include/plat/arm/common/arm_pas_def.h
36a2614776249ab76e9c86d1f08fd0057bab8263 - arm-trusted-firmware/include/plat/arm/common/arm_config.h
32a205b639eaf056873e852af9f2f925782878ef - arm-trusted-firmware/include/plat/arm/common/fconf_arm_sp_getter.h
0afd9c0926d88821488dcd5686914fd1ccee3763 - arm-trusted-firmware/include/plat/arm/common/fconf_sdei_getter.h
b9070936733be0fa95be33772381b15e63ef79b2 - arm-trusted-firmware/include/plat/arm/common/arm_sip_svc.h
fdc727288dd453b4dcf18b744fc052a039bed405 - arm-trusted-firmware/include/plat/arm/common/arm_dyn_cfg_helpers.h
88fe915ca8ec7f1f3499a57f534e1396c6b7c98e - arm-trusted-firmware/include/plat/arm/common/smccc_def.h
f0fb541bb623a169168129c94b788f2a409ffb5b - arm-trusted-firmware/include/plat/arm/common/fconf_sec_intr_config.h
85db4d68c709e11a4b63da0a434f5aeeef2aadec - arm-trusted-firmware/include/plat/arm/common/arm_fconf_io_storage.h
3bb163e8411b70a5b6f5913631e64392b3154151 - arm-trusted-firmware/include/plat/arm/common/aarch64/arm_macros.S
657f1176fd4f82dc1155d86438b6fbf624d2747a - arm-trusted-firmware/include/plat/arm/common/aarch64/cci_macros.S
fe0efb2292b7b971908fcd44d634894276a51f1c - arm-trusted-firmware/include/plat/arm/board/common/v2m_def.h
81ed90e8c99ac6343426728d9299d8ad48305d39 - arm-trusted-firmware/include/plat/arm/board/common/board_css_def.h
40577c7bc2464cf873f1f2708e2db8112b51374f - arm-trusted-firmware/include/plat/arm/board/fvp_r/fvp_r_bl1.h
68405ab09471b8d13fcf6f7e2b8f07a8012d11b8 - arm-trusted-firmware/include/plat/arm/css/common/css_pm.h
0081d14a9dd87bdab5919da6391eb2275fa7e94a - arm-trusted-firmware/include/plat/arm/css/common/css_def.h
406bbb095f6bf7f140e7814e98b0ea99062ad767 - arm-trusted-firmware/include/plat/arm/css/common/aarch64/css_macros.S
a4c302b222e019205abf65fd01745d571d810ce7 - arm-trusted-firmware/include/plat/arm/soc/common/soc_css_def.h
64f1e7c2408515cbabe2321cf6584901213dcf2b - arm-trusted-firmware/include/plat/arm/soc/common/soc_css.h
1fda7d8e566efd28aaedd2f5d1ae43b5bf4d2705 - arm-trusted-firmware/include/tools_share/tbbr_oid.h
5219a8b9ae1ae1722063974c9bedee960cfa351f - arm-trusted-firmware/include/tools_share/sptool.h
a628d4b48c67b17cc32449aacf6052a52eea1705 - arm-trusted-firmware/include/tools_share/uuid.h
3e0251958205aa29f860e4627e7f29098e266f1d - arm-trusted-firmware/include/tools_share/firmware_image_package.h
b279cf845b5ea6ce93f6563029c2dfbe6f85a541 - arm-trusted-firmware/include/tools_share/firmware_encrypted.h
58d6bf8cd75f220139c010d1d5fb6e0a96d4564a - arm-trusted-firmware/include/tools_share/dualroot_oid.h
11335e71ce700055225b4223bb4218122db63853 - arm-trusted-firmware/include/bl2u/bl2u.h
2953c9cd650429f472333ef0f7cb9ab6c69488c0 - arm-trusted-firmware/include/bl1/bl1.h
f3d565fadbf6176b3034b8359d22fa8c03772f95 - arm-trusted-firmware/include/bl1/tbbr/tbbr_img_desc.h
76f24b5df32a33ff953257acc268f140bef007d8 - arm-trusted-firmware/include/bl2/bl2.h
0fc051c6d2c2e54cfe39b37cf1a1f85f883f31e3 - arm-trusted-firmware/drivers/usb/usb_device.c
8e0afaebcd5d1ed41d30457bdb8543f3617640eb - arm-trusted-firmware/drivers/synopsys/emmc/dw_mmc.c
1d5e94fb3b734e7c9eb7b1628230f3d140a8e958 - arm-trusted-firmware/drivers/synopsys/ufs/dw_ufs.c
f1d5a7ca46b231b4291d715aa7312bc93c8c8d3c - arm-trusted-firmware/drivers/cadence/uart/aarch64/cdns_console.S
bb264060cf147f5fd4feae216d66ad8c9c66f891 - arm-trusted-firmware/drivers/io/io_fip.c
88a6a7b48a8b3da04a2a2bb9d5bcb70f03c372d3 - arm-trusted-firmware/drivers/io/io_encrypted.c
78ab979470824d9703736ca6da3735d7c11fcba1 - arm-trusted-firmware/drivers/io/io_mtd.c
78d0bb21fe92f684f28119691c173b36006dbbb5 - arm-trusted-firmware/drivers/io/io_semihosting.c
fe0286bc53aeb4cae686fb9d63d9ffe2283cf119 - arm-trusted-firmware/drivers/io/io_dummy.c
a28c85766eedc583fd38c5f1cb94aa9d5caf8935 - arm-trusted-firmware/drivers/io/io_block.c
858e3130488ef425faa5341098347a0cd446a49d - arm-trusted-firmware/drivers/io/io_memmap.c
2975f82e852f74ac877b00bfa9bcaa8c3baec7e2 - arm-trusted-firmware/drivers/io/io_storage.c
07bb0b5fe46d4ebca6c6e1feee9d8a9e7d83d6a5 - arm-trusted-firmware/drivers/st/usb/stm32mp1_usb.c
27adf1000d6bd7ce04979d79256995a5fbb83b5f - arm-trusted-firmware/drivers/st/io/io_stm32image.c
baededfb86b8f337d27173f84b9cc1bac0556f62 - arm-trusted-firmware/drivers/st/io/io_mmc.c
a9d894b2465b17dff1217d99ed6752861aadc069 - arm-trusted-firmware/drivers/st/iwdg/stm32_iwdg.c
f01b87c2b668e9cc15338565f21d115dbeaf62cc - arm-trusted-firmware/drivers/st/regulator/regulator_fixed.c
1c77b842fc094c883b8e6abc3522e2a5ed4ebb3d - arm-trusted-firmware/drivers/st/regulator/regulator_core.c
6b50346722811da8d96bca6f539f0d5e772d467e - arm-trusted-firmware/drivers/st/reset/stm32mp1_reset.c
d45d152334200ea2acdee930619eff5f1fbbfb5a - arm-trusted-firmware/drivers/st/ddr/stm32mp1_ddr.c
5ed9e1be8f844737db535ecd2e049e7d820af601 - arm-trusted-firmware/drivers/st/ddr/stm32mp_ddr_test.c
9e30ea137b7c1d34dfae32a3c5180396f6fa8bb1 - arm-trusted-firmware/drivers/st/ddr/stm32mp1_ram.c
f5e59973fc84a601316882610f6aa00a70ec8e1f - arm-trusted-firmware/drivers/st/ddr/stm32mp_ram.c
88fb79719982f0a2687d7f693109e940e3cdba9f - arm-trusted-firmware/drivers/st/ddr/stm32mp1_ddr_helpers.c
4a37a23560ebb26a66cba83a6a77aafee65a783a - arm-trusted-firmware/drivers/st/ddr/stm32mp_ddr.c
76ef733f3d1d7b8a934c301f2e05724663827f36 - arm-trusted-firmware/drivers/st/etzpc/etzpc.c
67125c1a18a170ed78552d01772ae577463e506a - arm-trusted-firmware/drivers/st/uart/stm32_uart.c
ab1a40e17764664876964683ffac32bd86def125 - arm-trusted-firmware/drivers/st/uart/aarch32/stm32_console.S
6bf9357dbb7589b0078e1896de5a58f760761979 - arm-trusted-firmware/drivers/st/clk/stm32mp1_clk.c
f0d5a528ed1a6d54f39bc84a21586d25029d60b2 - arm-trusted-firmware/drivers/st/clk/clk-stm32mp13.c
09b3e4f32ad36ab93f598fd53971e18cdb4eed9f - arm-trusted-firmware/drivers/st/clk/stm32mp_clkfunc.c
abd5092c485b60d2dc6d910618e64227d766ff87 - arm-trusted-firmware/drivers/st/clk/clk-stm32-core.c
c8a2a84e6453323aa9b1b1cd2a29c6ad56036b5e - arm-trusted-firmware/drivers/st/clk/clk-stm32-core.h
2f6084a9d8f84bf599746cd3288b02a0d4755d3c - arm-trusted-firmware/drivers/st/bsec/bsec2.c
9d7512560e4e1f8767fd18a115db9ee7ff100448 - arm-trusted-firmware/drivers/st/i2c/stm32_i2c.c
943095f905fcfc655c86f6aca5d3287192546feb - arm-trusted-firmware/drivers/st/spi/stm32_qspi.c
5324162d65037588a526042c0e40fab08cab0e73 - arm-trusted-firmware/drivers/st/gpio/stm32_gpio.c
f71262877fdd2511c5cd086021c2af9d763f9ec1 - arm-trusted-firmware/drivers/st/crypto/stm32_hash.c
def00bc3c52b54611ea6f11a6f5206cf0b3cc08a - arm-trusted-firmware/drivers/st/fmc/stm32_fmc2_nand.c
31f2612aff5d24d64b3826cbe5c7a9f93ff7eb70 - arm-trusted-firmware/drivers/st/pmic/stm32mp_pmic.c
dc5909c790f8267bcb9bbc047b904810550cb78b - arm-trusted-firmware/drivers/st/pmic/stpmic1.c
f73a865d9abd49d6a37720d4000b86bc1f6b362c - arm-trusted-firmware/drivers/st/mmc/stm32_sdmmc2.c
53e86084002c599472f206bebfee855f6de44547 - arm-trusted-firmware/drivers/amlogic/crypto/sha_dma.c
4e52ca94a347a31cef85fc1cbbd480490ff065b1 - arm-trusted-firmware/drivers/amlogic/console/aarch64/meson_console.S
366c422651f720b64f0d606e537b12713c405d8e - arm-trusted-firmware/drivers/fwu/fwu.c
9b9a1876a8dd35bdd34baeedd3e531617f4b2e03 - arm-trusted-firmware/drivers/brcm/iproc_gpio.c
99056505e9afb98d0bf6b55cbc9c64814734d610 - arm-trusted-firmware/drivers/brcm/sotp.c
2f55d6018c61491a206aef1e089af2001db52b87 - arm-trusted-firmware/drivers/brcm/rng.c
340b2a1703f14c42abdade167ac06919ec7deed5 - arm-trusted-firmware/drivers/brcm/chimp.c
490663a4660be758e46f4878a43d7cb947b072e0 - arm-trusted-firmware/drivers/brcm/spi_sf.c
e8c6d05d166788f91925b45e27853f92f98251e5 - arm-trusted-firmware/drivers/brcm/scp.c
df0910b2680c7694f0b75737fda7682a8712fb64 - arm-trusted-firmware/drivers/brcm/spi_flash.c
9156a544c31c11073920be56fe54eb346a8b018b - arm-trusted-firmware/drivers/brcm/ocotp.c
1e16b849ee30029570c17198cc65dd8c232fbd53 - arm-trusted-firmware/drivers/brcm/emmc/emmc_csl_sdcard.c
d89024f769cfa2a2d90ab6fb83691b494227d848 - arm-trusted-firmware/drivers/brcm/emmc/emmc_pboot_hal_memory_drv.c
a70c96d7324a040b39217a657625b8b369ed65f9 - arm-trusted-firmware/drivers/brcm/emmc/emmc_csl_sdcmd.c
f9de2aeddc61d9a8b63a2bb3d10edd5e5459ac61 - arm-trusted-firmware/drivers/brcm/emmc/emmc_chal_sd.c
26f0937fbff1f7b2effe7d035d4e6d2c2a9c463f - arm-trusted-firmware/drivers/brcm/i2c/i2c.c
de63fe21caac7ce499c3a244965fca77766a1d19 - arm-trusted-firmware/drivers/brcm/spi/iproc_qspi.h
2dc1c9032a1e64aa390c69bcdf0a42359e402b5a - arm-trusted-firmware/drivers/brcm/spi/iproc_spi.c
653b6a961a19436e1cdba80c2b3b153c1d89a954 - arm-trusted-firmware/drivers/brcm/spi/iproc_qspi.c
c9c8847417d95e3ba03ff5c005edbe8a088cee14 - arm-trusted-firmware/drivers/brcm/mdio/mdio.c
eefd56420faeb9d836077b23eea175eb7e022871 - arm-trusted-firmware/drivers/mtd/nor/spi_nor.c
47003ec4d5650ecd811ae9fe4404621c369f61c6 - arm-trusted-firmware/drivers/mtd/nand/raw_nand.c
010e3cc7bf5be7ac20119f77ab261bdf528f2d2d - arm-trusted-firmware/drivers/mtd/nand/core.c
122bf5d15d1cdbcad5bee82566c57049e3fc5bb5 - arm-trusted-firmware/drivers/mtd/nand/spi_nand.c
46c3bb0a303498f1a79fd2bc48b1becffddbfd71 - arm-trusted-firmware/drivers/mtd/spi-mem/spi_mem.c
b98ff0dbd7f6535bc154869089df5f242b23f799 - arm-trusted-firmware/drivers/ti/uart/aarch64/16550_console.S
cf240f037fbcd65fb3db19fb6994d2f4aaaa52f9 - arm-trusted-firmware/drivers/ti/uart/aarch32/16550_console.S
2e8560e1fee7e0d9ba844f802772a8be3e6be7ad - arm-trusted-firmware/drivers/measured_boot/event_log/event_log.c
150bd08bfbcc1de20e05b6d07950021df0a46322 - arm-trusted-firmware/drivers/measured_boot/event_log/event_print.c
5dda361745c9b337192dcd67fc63865e04a3a8a5 - arm-trusted-firmware/drivers/allwinner/sunxi_rsb.c
c841aaad58e92f728c90bb7cab1771d2578be18a - arm-trusted-firmware/drivers/allwinner/sunxi_msgbox.c
f3f36bb92d56df7e9785cc98f6b13594df6404c0 - arm-trusted-firmware/drivers/allwinner/axp/axp803.c
956dadae6d826687fecfa1b522fd8b5c4fdfc764 - arm-trusted-firmware/drivers/allwinner/axp/axp805.c
304398c75526a767b8b3caaeb5722e41955e9803 - arm-trusted-firmware/drivers/allwinner/axp/common.c
7ff3e84af33c3fcf6ee55936d6400a52d52203b4 - arm-trusted-firmware/drivers/mentor/i2c/mi2cv.c
d53b18f9aba437cc5d23117338ddac6edd9ba447 - arm-trusted-firmware/drivers/clk/clk.c
5506b6895fb8d1c468b2bcaeb55a18fba8ecdcff - arm-trusted-firmware/drivers/rpi3/rng/rpi3_rng.c
1529e10e42582df4a41e7632598e85d97dd59ebb - arm-trusted-firmware/drivers/rpi3/mailbox/rpi3_mbox.c
ecd654f25b5590f6fd4dfb3c349577da03a78337 - arm-trusted-firmware/drivers/rpi3/sdhost/rpi3_sdhost.c
9383db5e25bb3e3bb240d302eb1e2c81b067f1fd - arm-trusted-firmware/drivers/rpi3/gpio/rpi3_gpio.c
e352b30931747ba506a85329d7c6fe69935dd5b0 - arm-trusted-firmware/drivers/marvell/ccu.c
d0ef41df34b7a9ed1d587f10727ba0ee57d04c83 - arm-trusted-firmware/drivers/marvell/ddr_phy_access.h
c523b2dcff8e39c5cacc416584d42aa530a93315 - arm-trusted-firmware/drivers/marvell/mci.c
f00e9719e8be0259cb5e171298f2ffb0d09c4fef - arm-trusted-firmware/drivers/marvell/gwin.c
6dc9f5af1b3c165888d4faae36b6da72adb6faf0 - arm-trusted-firmware/drivers/marvell/cache_llc.c
e082e89bfcb90fcea87099285d6eb142fff1f589 - arm-trusted-firmware/drivers/marvell/io_win.c
77e98f136f88749eb01cf7092f9d086cae652384 - arm-trusted-firmware/drivers/marvell/thermal.c
b724830f0762dc7701cc9fd88c863c7b53f405c5 - arm-trusted-firmware/drivers/marvell/iob.c
a275b56587e6c0c05df6a7985ad0cf0e2216e4f8 - arm-trusted-firmware/drivers/marvell/comphy.h
6256615787b3a1bb1f9b4fc3d64794006722b859 - arm-trusted-firmware/drivers/marvell/ap807_clocks_init.c
c8524aa6f76d32913ffaffda10350b753e429b5b - arm-trusted-firmware/drivers/marvell/ddr_phy_access.c
857ba1731ec174905f4cccd68d02bdd3abf08b6e - arm-trusted-firmware/drivers/marvell/amb_adec.c
5a1bf4459a810008901d22e77f2e66c2af4ca7f9 - arm-trusted-firmware/drivers/marvell/secure_dfx_access/dfx.h
12a1ccf32210f9e1106d8d27942f264ab96f58fd - arm-trusted-firmware/drivers/marvell/secure_dfx_access/armada_thermal.c
e586fb95d55e301bd75a1db9d6ac7b843f45984f - arm-trusted-firmware/drivers/marvell/secure_dfx_access/misc_dfx.c
bb5f60fb041d3fbc6812ce56b8976c686be8105a - arm-trusted-firmware/drivers/marvell/mochi/ap807_setup.c
9a1f55dbc2fc4e8ca97f9af3e7d435f1bddfd83c - arm-trusted-firmware/drivers/marvell/mochi/cp110_setup.c
cd9af6970ea49226ec63b2b04d0b06b86d503eae - arm-trusted-firmware/drivers/marvell/mochi/apn806_setup.c
02f2c79a0efffc643c301848b83a26b232291cec - arm-trusted-firmware/drivers/marvell/uart/a3700_console.S
6426cc04f9e4ae36d19a6624130d17fd035ba491 - arm-trusted-firmware/drivers/marvell/mc_trustzone/mc_trustzone.h
282cbabd8ee584e3d6c2657cd202c11bbbf31685 - arm-trusted-firmware/drivers/marvell/mc_trustzone/mc_trustzone.c
1ceb9ca7a78559ee70cb2833d391d99c2ccb3334 - arm-trusted-firmware/drivers/marvell/comphy/phy-comphy-common.h
52740dfd3574268d954c81e6a708c55188bca7e1 - arm-trusted-firmware/drivers/marvell/comphy/comphy-cp110.h
6b20ef2ea4fdeded083ed64a100d2e10cc8c4fdb - arm-trusted-firmware/drivers/marvell/comphy/phy-comphy-3700.c
dc409874b01f2f616b65f4f9e8497ba172fb2535 - arm-trusted-firmware/drivers/marvell/comphy/phy-comphy-cp110.c
4fc44238fa459de070b3ffae100986f736c5e3d2 - arm-trusted-firmware/drivers/marvell/comphy/phy-default-porting-layer.h
041d0631d9cb0fe39ee3d1f8d20629d3d2225f86 - arm-trusted-firmware/drivers/marvell/comphy/phy-comphy-3700.h
db0bb43d5c002bc3633403571c9e8c06da7c0ead - arm-trusted-firmware/drivers/marvell/comphy/phy-comphy-cp110.h
10ce6fa5d5bbc4205013818f591e235cbcadccd1 - arm-trusted-firmware/drivers/marvell/mg_conf_cm3/mg_conf_cm3.h
f89de6e4fae5d6f6d1778f6c5a92d7f25ab403b9 - arm-trusted-firmware/drivers/marvell/mg_conf_cm3/mg_conf_cm3.c
57712978c67a02cb381ba1e9203dc26e762d8b43 - arm-trusted-firmware/drivers/arm/dsu/ppu.c
9cb6b217ac9499219fd1bb05530709e1ed53c3ff - arm-trusted-firmware/drivers/arm/ccn/ccn.c
79f4ef16ca7e0a07b86de03a9a04dcb9c6c3673d - arm-trusted-firmware/drivers/arm/ccn/ccn_private.h
a9cab74a3aa9f59289ec4dac11558cb1e6e3c2a4 - arm-trusted-firmware/drivers/arm/cci/cci.c
64e24a32626429bd2dad6a02c91a123b79fe7528 - arm-trusted-firmware/drivers/arm/dcc/dcc_console.c
9697dd84615aa7c7da7ffe22eb0e3a38c6ace390 - arm-trusted-firmware/drivers/arm/sbsa/sbsa.c
668315548e4d6f930b744983a6542e01f81caae2 - arm-trusted-firmware/drivers/arm/fvp/fvp_pwrc.c
b2e58e1a761614ee8bb95e48797500fcd9f66c4c - arm-trusted-firmware/drivers/arm/tzc/tzc_dmc500.c
73c05b4fdb011d3783f2f3f3ed7285ca58a63cc9 - arm-trusted-firmware/drivers/arm/tzc/tzc400.c
d0a784c19a578becbc821a36080372d78af9b3b5 - arm-trusted-firmware/drivers/arm/tzc/tzc380.c
ed924dc3ed7f91ecff8a2e441fa5152d9fe2b9de - arm-trusted-firmware/drivers/arm/tzc/tzc_common_private.h
0e845129705069d3fce0df742ab8d56a7966edbc - arm-trusted-firmware/drivers/arm/tzc/tzc_dmc620.c
1c897f5bd19b9a4c18e905afda282375cbf4f5ba - arm-trusted-firmware/drivers/arm/sp804/sp804_delay_timer.c
9fdd5749ba87bd5ded91306fd6826fa2cf990806 - arm-trusted-firmware/drivers/arm/css/sds/sds_private.h
595853f3864138408a5e5b51034dd366cc9a3b7a - arm-trusted-firmware/drivers/arm/css/sds/sds.c
e609accbdf6501d2f83400b84b7690aaa2bca38a - arm-trusted-firmware/drivers/arm/css/sds/aarch64/sds_helpers.S
f55aeff6049754049ad1b23958094a7dd255200f - arm-trusted-firmware/drivers/arm/css/sds/aarch32/sds_helpers.S
4faf8ddbac2e8bfc4ab77ba7365ff0c50187a2d4 - arm-trusted-firmware/drivers/arm/css/scp/css_sds.c
80686a47331e2b609be783462ef53eb0ad73279e - arm-trusted-firmware/drivers/arm/css/scp/css_pm_scpi.c
cd0ed71ff125804ccf8f2d187005ce075bc2b8e6 - arm-trusted-firmware/drivers/arm/css/scp/css_pm_scmi.c
7aaa9f31ec7c9d36e48fb2d95a6b3895cbef43ae - arm-trusted-firmware/drivers/arm/css/scp/css_bom_bootloader.c
9b45f1ebc9a189e59d1fdade91bde81f2ea110c0 - arm-trusted-firmware/drivers/arm/css/scpi/css_scpi.c
6dfee94cccd0efeaeda770f83e1d10227886d137 - arm-trusted-firmware/drivers/arm/css/mhu/css_mhu.c
4f259f1ca4437445346bfd338702c7c257c31470 - arm-trusted-firmware/drivers/arm/css/mhu/css_mhu_doorbell.c
b81d931e597cde97768e39fdad4325133c31b76d - arm-trusted-firmware/drivers/arm/css/scmi/scmi_ap_core_proto.c
50defd7dfa4e38cf230f830fa7e03358ccfcdbb0 - arm-trusted-firmware/drivers/arm/css/scmi/scmi_sys_pwr_proto.c
12e2ef4efff1bfd584d3424cee31bbcbaf0f9a1c - arm-trusted-firmware/drivers/arm/css/scmi/scmi_private.h
e76c3b0b1252232e7854b8af9db8a9ce94192cd1 - arm-trusted-firmware/drivers/arm/css/scmi/scmi_pwr_dmn_proto.c
1530ff134d89ce18b2380b7d03828ec84c8eca25 - arm-trusted-firmware/drivers/arm/css/scmi/scmi_common.c
e4a68362e5109d4e46f1d720d9b02c8fb20a88c1 - arm-trusted-firmware/drivers/arm/css/scmi/vendor/scmi_sq.h
13cf0f0a02adf3ae0f9e2bdbe493ba7c9b58ddf5 - arm-trusted-firmware/drivers/arm/css/scmi/vendor/scmi_sq.c
fcdbc7d1ba6dd59840b82ac787ebf67cf36fe4eb - arm-trusted-firmware/drivers/arm/sp805/sp805.c
1c35b7e5adf1b63d6732729e7c2113d1ea1a74fe - arm-trusted-firmware/drivers/arm/smmu/smmu_v3.c
960e4d083c1d4f31df54f443dbe23554889af0de - arm-trusted-firmware/drivers/arm/pl061/pl061_gpio.c
4d212a96f8ab9a54d15002b53f16df7bcd046e6c - arm-trusted-firmware/drivers/arm/ethosn/ethosn_smc.c
3777989a45b625cf209fc89bcf8a91a468f52a3a - arm-trusted-firmware/drivers/arm/scu/scu.c
c0c5af62081f2d6628a6de94cd6a9507723228e3 - arm-trusted-firmware/drivers/arm/pl011/aarch64/pl011_console.S
91c557c46edc8be3bd2e4c2efcf9ef8693a9fc0e - arm-trusted-firmware/drivers/arm/pl011/aarch32/pl011_console.S
28b6eb0d5d5856997722ea707dd42c5ad7448dd1 - arm-trusted-firmware/drivers/arm/gic/common/gic_common_private.h
47db01b738865c987fa5dbb3656b6b1dab2df5d7 - arm-trusted-firmware/drivers/arm/gic/common/gic_common.c
20000ccb435ae8423c5a2294ecb47fd7961e90f2 - arm-trusted-firmware/drivers/arm/gic/v2/gicv2_helpers.c
8f83171e122be92a8d5e4b0c5ecb35e4918ead83 - arm-trusted-firmware/drivers/arm/gic/v2/gicv2_private.h
ff4e151fab3e5a027139f8ccb78ada694380998a - arm-trusted-firmware/drivers/arm/gic/v2/gicv2_main.c
0325f0421798955c9df7f963bd6f917152f3f9fc - arm-trusted-firmware/drivers/arm/gic/v2/gicdv2_helpers.c
73bb04bd3b4d9fbaec23c129c93b2e89e276c7d5 - arm-trusted-firmware/drivers/arm/gic/v3/gicrv3_helpers.c
702d95a03697ab01bc50559d686681042cec6d16 - arm-trusted-firmware/drivers/arm/gic/v3/gic600_multichip.c
209b5b0ef79ee3104941281500febec4c3fa7e19 - arm-trusted-firmware/drivers/arm/gic/v3/gic600_multichip_private.h
1b9888584629f7d2bc9379be5294ff21dd7cf240 - arm-trusted-firmware/drivers/arm/gic/v3/gic600ae_fmu_helpers.c
40a6d56cd9675136db1659b7b45c5ff8c919793e - arm-trusted-firmware/drivers/arm/gic/v3/gicv3_private.h
dce046c95b41b14df9edd7678263c9ffc64f6697 - arm-trusted-firmware/drivers/arm/gic/v3/gic-x00.c
d6c6dda421cd11c62d7cca73f2b76e30ca21d37a - arm-trusted-firmware/drivers/arm/gic/v3/gicv3_helpers.c
0cdfd59744b1db36c123258d6ed80a21b369e0cc - arm-trusted-firmware/drivers/arm/gic/v3/arm_gicv3_common.c
2f6133c16287ae451bd19aacf3a49e086d8fb119 - arm-trusted-firmware/drivers/arm/gic/v3/gicv3_main.c
736cd9f59b4b2ae65ddc093bd132bea8ace60805 - arm-trusted-firmware/drivers/arm/gic/v3/gicdv3_helpers.c
457472881d1edadb4da2a64ec3252636e576b054 - arm-trusted-firmware/drivers/arm/gic/v3/gic600ae_fmu.c
20129a454f6019ae086f0fc760ccbe6441c75105 - arm-trusted-firmware/drivers/scmi-msg/clock.c
51f712caca20f1532dbd7a569fab515695f574f9 - arm-trusted-firmware/drivers/scmi-msg/reset_domain.c
0f8a382f7d1dc362cfb9bf7d2a7189987b1bd9f4 - arm-trusted-firmware/drivers/scmi-msg/entry.c
6854b6e16a5d00e32471a842ac82a42307f4fd25 - arm-trusted-firmware/drivers/scmi-msg/reset_domain.h
5d761434daa9ee97981a3e3264d4196b1b9710f7 - arm-trusted-firmware/drivers/scmi-msg/base.c
9a06fcf18608dead4701ec10a63da3ace748fe3d - arm-trusted-firmware/drivers/scmi-msg/smt.c
ed00d8b9bd19e5b6e1f8ecd2721a613d1a9043ef - arm-trusted-firmware/drivers/scmi-msg/power_domain.c
d0830b0dd0dcad2627d7e25042e0b04f9172507d - arm-trusted-firmware/drivers/scmi-msg/common.h
6494de9c4e6d28e03514a090db2224f8b96327ba - arm-trusted-firmware/drivers/scmi-msg/power_domain.h
3793e73034176c719a8160e57d2216f834867aea - arm-trusted-firmware/drivers/scmi-msg/base.h
a9219fa6261f43e472c7b1655189ae66022de0e2 - arm-trusted-firmware/drivers/scmi-msg/clock.h
05e51189eff0f94ffa7616efa4a5cd4c11a90a81 - arm-trusted-firmware/drivers/partition/gpt.c
e5c3d888d354f7edd20c09b85d55293a3302d4ad - arm-trusted-firmware/drivers/partition/partition.c
bf6cd6123996ffba448042a934561a9845514132 - arm-trusted-firmware/drivers/imx/uart/imx_uart.h
2b9b4163928ad22b375942df6a419ac25791d15b - arm-trusted-firmware/drivers/imx/uart/imx_crash_uart.S
30ead9b9f8c8e8a0d0443291726c90dcc10f24ef - arm-trusted-firmware/drivers/imx/uart/imx_uart.c
e7fdf9ac8aa8e62e2b82e935887ea9fa71277e50 - arm-trusted-firmware/drivers/imx/timer/imx_gpt.c
b0d5b078d9666eb577b6d96327526056a9c5ff46 - arm-trusted-firmware/drivers/imx/timer/imx_gpt.h
11d6bed45c0c1633f53d1a14e935db95a494322d - arm-trusted-firmware/drivers/imx/usdhc/imx_usdhc.h
d92351086a1b0b0b82cfa7bab9e352d5725339d7 - arm-trusted-firmware/drivers/imx/usdhc/imx_usdhc.c
639d42262958e84f1bd83a574ec62649802513a1 - arm-trusted-firmware/drivers/auth/img_parser_mod.c
a7feb170a20eb5ee10c9d197dc0097785f67943b - arm-trusted-firmware/drivers/auth/crypto_mod.c
c16134fe5a7698bda76781fff2f959b23e9effe3 - arm-trusted-firmware/drivers/auth/auth_mod.c
bb94b0069937941cd0d158f609df28bc66e7f7df - arm-trusted-firmware/drivers/auth/mbedtls/mbedtls_crypto.c
aa57938a1ca87b1c2d69b27e2cb210dd52b72f92 - arm-trusted-firmware/drivers/auth/mbedtls/mbedtls_common.c
ca516c7a1c11d4ea7d2a36636ad140645e6b3ef0 - arm-trusted-firmware/drivers/auth/mbedtls/mbedtls_x509_parser.c
6e817c6fdbf62d3e636fe69752f1f0bb9281c3a8 - arm-trusted-firmware/drivers/auth/cryptocell/713/cryptocell_plat_helpers.c
07632d2568b5990250c7539319c93e9b64c05004 - arm-trusted-firmware/drivers/auth/cryptocell/713/cryptocell_crypto.c
0931c7209af239bcc95387de431d932bf01175ec - arm-trusted-firmware/drivers/auth/cryptocell/712/cryptocell_plat_helpers.c
1527e9ad692eabc3e379a8f7f0a4eecc68b9f9bb - arm-trusted-firmware/drivers/auth/cryptocell/712/cryptocell_crypto.c
fbcbbd0aa417147f5e544e91c47edef162f6aa41 - arm-trusted-firmware/drivers/auth/tbbr/tbbr_cot_common.c
62b38ec608a3b1763bbd31827be93360dc10c4d3 - arm-trusted-firmware/drivers/auth/tbbr/tbbr_cot_bl2.c
98690b7915852b4a6a1950623e848b467186a09e - arm-trusted-firmware/drivers/auth/tbbr/tbbr_cot_bl1_r64.c
efedb0eaa10e440edf6b73b4b2df6a6d164066da - arm-trusted-firmware/drivers/auth/tbbr/tbbr_cot_bl1.c
ea1ff4dd6466dd5bba2280092f7ad0037f0e3791 - arm-trusted-firmware/drivers/auth/dualroot/cot.c
c83fb1312ae05c6e624572806f085c6919f189af - arm-trusted-firmware/drivers/coreboot/cbmem_console/aarch64/cbmem_console.S
5bf3028d91229a2bab7d9be2fbf3db5b63dbdac5 - arm-trusted-firmware/drivers/cfi/v2m/v2m_flash.c
d4b40e69b2bea69f35d8d12ed25d623c4bafc89e - arm-trusted-firmware/drivers/renesas/common/pfc_regs.h
96023687d119cdc2a88f0f96847b71070be44d0e - arm-trusted-firmware/drivers/renesas/common/common.c
eb5eaa562bc901bbcea6e5e722e629a4ffe14fa3 - arm-trusted-firmware/drivers/renesas/common/ddr_regs.h
b31c95edffddbecf9d51e7ba6d57f59b07381718 - arm-trusted-firmware/drivers/renesas/common/qos_reg.h
197394f4b9c3387bbbe8ade40aed6fd5ba67cd49 - arm-trusted-firmware/drivers/renesas/common/iic_dvfs/iic_dvfs.c
81389d507ab4f6c15c8302b9d4a550e929350170 - arm-trusted-firmware/drivers/renesas/common/iic_dvfs/iic_dvfs.h
cc69cc1cdbf38f685bfb8c4e843841fc12c17072 - arm-trusted-firmware/drivers/renesas/common/io/io_private.h
ff8a273a7c0157436d3d58824bb0822c1e4c8880 - arm-trusted-firmware/drivers/renesas/common/io/io_emmcdrv.c
94592c6b00d8f46906214144913018912da2cdb1 - arm-trusted-firmware/drivers/renesas/common/io/io_emmcdrv.h
7c0cd66835bf24e2086572d390e9e42847b2cc7c - arm-trusted-firmware/drivers/renesas/common/io/io_rcar.h
4c9c3edfff804648e78fdb6173511fedc8d655c9 - arm-trusted-firmware/drivers/renesas/common/io/io_rcar.c
2a9a321a7d2d3f302f63914ea61c0b24ef77ae46 - arm-trusted-firmware/drivers/renesas/common/io/io_memdrv.c
7e6776a062962247d7356aa2a4e3db30e8ec9a35 - arm-trusted-firmware/drivers/renesas/common/io/io_common.h
d954a56fdaa915b42433e7f02b933ff5a7f4d553 - arm-trusted-firmware/drivers/renesas/common/io/io_memdrv.h
9c78d4764ec4942f586af7e70fa2906b79718e72 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_def.h
e38e56acce60e8f8ba79bf52ebdccbfbb84e60e7 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_utility.c
7526f3b1661670d99bae978d76b826697f8eafcc - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_registers.h
d18f211fb0f471b7b72797133ccf3a89ff3fe561 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_mount.c
53d888462033b6fd9f510352b7ef5a997db98215 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_std.h
e3d0fe455add19648ab1dab17abbf8a036851187 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_read.c
ae1066faf4581bdf2b74fc79c6880b4541c50262 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_hal.h
b95edfb86992c01b146085a6a3a6fa260f62cfb1 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_config.h
da6c00a918a45fb21f34a94a1153a619126f856e - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_init.c
1f0175831d01e9a83091abf339b764707fa15732 - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_interrupt.c
1806c4fed1e8009245193be345f42a0bc99a88ff - arm-trusted-firmware/drivers/renesas/common/emmc/emmc_cmd.c
3567bb0ce5e977a1fe4ee5a8fed4db8dc67ccca3 - arm-trusted-firmware/drivers/renesas/common/ddr/dram_sub_func.h
bbe9ec354aa9a66731a4a68b1214e7c88433e78e - arm-trusted-firmware/drivers/renesas/common/ddr/boot_init_dram.h
f6092db4bdf15b55332ebf36fb13af42ee1b8f8e - arm-trusted-firmware/drivers/renesas/common/ddr/dram_sub_func.c
b5212a79f0a8c1abb0c5088b5730968747253bd9 - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_a/ddr_init_v3m.c
55a51a3127d0a24e084fc5ad73c0ddc5d5b2fe3b - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_a/boot_init_dram_regdef.h
24c58c71c66617770ef83cfba554a31128de8f35 - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_a/ddr_init_d3.c
f5798c0927729a362f779e583438e52a2da51faf - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_a/ddr_init_e3.c
178140849c7796c20b8a14ef9af086d4ffb485f1 - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/boot_init_dram_regdef.h
94ab11fdbe4c8a942cb23f6604e8a013e0c6c083 - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/boot_init_dram_config.c
e40feff18e0868d48c4bdcc23024fa824eb612ad - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/init_dram_tbl_h3ver2.h
d8448100b460ddc591a2eefae6d2d0abecab166a - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/init_dram_tbl_m3.h
fe75f352b6a7e1643f0857f578e85a4c301d504f - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/boot_init_dram.c
1f8f7c4a456ce374f80860dcefeb3a1eed7e1b7d - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/init_dram_tbl_m3n.h
56a16c8b12428935f7d194f7bdbda33ebc432e4f - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/init_dram_tbl_h3.h
b014a41cf8b77ed434dc0aaeae7efd1a154065c4 - arm-trusted-firmware/drivers/renesas/common/ddr/ddr_b/ddr_regdef.h
db6311bc705a8c1d60a616425947adcee84d1063 - arm-trusted-firmware/drivers/renesas/common/delay/micro_delay.h
724917ae7e24d07722880d4b74d6a9730336be06 - arm-trusted-firmware/drivers/renesas/common/delay/micro_delay.c
08b9d46b2389e6316b27218e1e80071e3891915b - arm-trusted-firmware/drivers/renesas/common/rom/rom_api.h
fe518460e8298941fd3ff47df2330afba56085ca - arm-trusted-firmware/drivers/renesas/common/rom/rom_api.c
f6c548f6ac120c9eae0551d5ca111a654a28e241 - arm-trusted-firmware/drivers/renesas/common/avs/avs_driver.c
04d76f4dff98e3290cc3b56689eea7eae6973401 - arm-trusted-firmware/drivers/renesas/common/avs/avs_driver.h
8e9c2ed157c641c0bec372759c5f0d1a29495392 - arm-trusted-firmware/drivers/renesas/common/watchdog/swdt.c
6173062885150750f1c102edb35796e50d6a012a - arm-trusted-firmware/drivers/renesas/common/pwrc/pwrc.h
11290dbdcaf0fc67e9947d59e3177ac503f1276c - arm-trusted-firmware/drivers/renesas/common/pwrc/pwrc.c
c11df9b69a5d8144823fe6b09c8aee8c6dac3579 - arm-trusted-firmware/drivers/renesas/common/pwrc/call_sram.S
23d0235cda981605fc638d9031316ff71003ea9f - arm-trusted-firmware/drivers/renesas/common/rpc/rpc_driver.c
5737620466366563b17443ac716f582a4a0e1e8b - arm-trusted-firmware/drivers/renesas/common/rpc/rpc_registers.h
3a2172abc0cd0c826ca5c1f958e47c616e2d0c2c - arm-trusted-firmware/drivers/renesas/common/auth/auth_mod.c
26bba8a723b7f85d907e8da853e41cb0ec1bc46c - arm-trusted-firmware/drivers/renesas/common/console/rcar_console.S
e285ce8fb65a4579da74f1406d12000d292f45ad - arm-trusted-firmware/drivers/renesas/common/console/rcar_printf.c
f81a020bdd63ac732719bf014ffb749bc0f35bba - arm-trusted-firmware/drivers/renesas/common/console/rcar_printf.h
ba0424f1fb02f541d26148c808ee8576203fae19 - arm-trusted-firmware/drivers/renesas/common/dma/dma_driver.c
648595ebf99d157ff5bec437919b34a18258b411 - arm-trusted-firmware/drivers/renesas/common/scif/scif.S
8ae500671f7227739bb3b389ee74418bae4974ee - arm-trusted-firmware/drivers/renesas/rzg/board/board.h
fe1e1e2a68a2409c85008f78bb7f4048be6dc1c9 - arm-trusted-firmware/drivers/renesas/rzg/board/board.c
2802b6fb340525ddb96baca00341a6a25f703c74 - arm-trusted-firmware/drivers/renesas/rzg/qos/qos_init.h
4186c27c3850565f08118234f39f3224a0094fb6 - arm-trusted-firmware/drivers/renesas/rzg/qos/qos_common.h
fa11d997720f3e8e38a41e393a485385f56a4981 - arm-trusted-firmware/drivers/renesas/rzg/qos/qos_init.c
d1016ddc5354d7e63a3ef654ae6899c8c078ce00 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2E/qos_init_g2e_v10_mstat390.h
d0a732f21ab78828c622303f2eb7f2ab8e85c92a - arm-trusted-firmware/drivers/renesas/rzg/qos/G2E/qos_init_g2e_v10_mstat780.h
98bd2a7be1d0dcdf1cc534ac4dfa0adf7b3bd752 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2E/qos_init_g2e_v10.c
635fa9d52596ee34cf2cbf85617657684fb653c1 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2E/qos_init_g2e_v10.h
2e4f2532cb1b9aee27f82677a76fc8598ae3e720 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2H/qos_init_g2h_qoswt195.h
0d2a4685c4bd34d6ec121270bc38ec212c7b1e0a - arm-trusted-firmware/drivers/renesas/rzg/qos/G2H/qos_init_g2h_qoswt390.h
a084e9fcbfdc195d063eee7f1561a5b311238aa2 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2H/qos_init_g2h_v30.c
6bfed6bf0d3eb45780762fbb929d5d57eaeaaedd - arm-trusted-firmware/drivers/renesas/rzg/qos/G2H/qos_init_g2h_mstat390.h
05c9d8b400726b0d87a72783f40f17a2a061c31b - arm-trusted-firmware/drivers/renesas/rzg/qos/G2H/qos_init_g2h_v30.h
6a2add07f71f904a80881847adbb4576860c245d - arm-trusted-firmware/drivers/renesas/rzg/qos/G2H/qos_init_g2h_mstat195.h
8146506bb0d47e4499b692d8a0b0d168c697db9a - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v11.c
7262dc7de38f8216be32a2cf973c4077da6a5ced - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v11.h
49c7e8143b952aa89509efb296f2a3d848f1fcf1 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v10.h
d1c7d38c66ff34e537261485132cb0beb3ab4765 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v11_mstat195.h
4fc3b8212dd33e6a33a9bbf4b96d0ffdb7032083 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v30_qoswt390.h
ae6bc783ddb0cb6feec22e234a5383965ad75a8b - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v30.h
1ebeec74f28d94d33ad88f9e3cb8abeb2ff4462b - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v11_mstat390.h
046e1d3b18c291d99e7f1f95658f5a6bb9f7c207 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v30_mstat390.h
17c66fa0e8ef76563d00547c6c281d4fcd025dbf - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v10_mstat.h
e074216ecbdf97f24cb3e12cc7f5d8e5c99721b5 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v11_qoswt390.h
5cf260b6fef6d9a6c0ddbe6c45bed9d54daf027e - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v30.c
c9bbbceaf55fd9cdcf0943b427f8b302c902199f - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v30_qoswt195.h
3ebe3831af51ff6dd31f04c19ed726ea47d12ffb - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v11_qoswt195.h
ba3202740e2551524bc86abc295cc82374fea770 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v30_mstat195.h
4120c27434066995e75487d1311e78e2dcf57cb3 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2M/qos_init_g2m_v10.c
7c37eb45f9f11ee9f370e775f741dd1075944a69 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2N/qos_init_g2n_v10.h
3ca890e94b8943ef7719c09f20c3a71ad9e60295 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2N/qos_init_g2n_v10_qoswt195.h
330b138c5e24e14484fbdcc38db468c06168918a - arm-trusted-firmware/drivers/renesas/rzg/qos/G2N/qos_init_g2n_v10_mstat390.h
282efe9d196e496f3be41e3be701e9dc02c1bfc5 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2N/qos_init_g2n_v10_qoswt390.h
80605fd39dfaf3536b1da46e80b450127a5ac723 - arm-trusted-firmware/drivers/renesas/rzg/qos/G2N/qos_init_g2n_v10.c
33416277d7d82e170d6f1d7ef205870c003c8aff - arm-trusted-firmware/drivers/renesas/rzg/qos/G2N/qos_init_g2n_v10_mstat195.h
45854b76c28a405b83a3ad2f7975038a6a8a34c1 - arm-trusted-firmware/drivers/renesas/rzg/pfc/pfc_init.c
987d099de106542df3c8adb7613b27edcfd5cb76 - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2E/pfc_init_g2e.c
fa65175525fa82bac340b43f6d95f68574a6cd59 - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2E/pfc_init_g2e.h
08bed1ad3f35993a6b63c3a553c0cd1f817cdf72 - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2H/pfc_init_g2h.h
313d480f7fd9b09de41195d3fe75df7e06b8fad2 - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2H/pfc_init_g2h.c
fb75fabcb7a5cccd23dafcb83996362d131b28e4 - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2M/pfc_init_g2m.c
3e16dde8ddd77df4368ed97df8dedfcd363f2195 - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2M/pfc_init_g2m.h
9850cfe7fffb94712b5526ba4dd947a9cec6efbf - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2N/pfc_init_g2n.c
42cec83a589b1e8282a06dc496c09fa4d8019bdf - arm-trusted-firmware/drivers/renesas/rzg/pfc/G2N/pfc_init_g2n.h
c2b1735bd5896fe759c99cc8b22c392af5bb841b - arm-trusted-firmware/drivers/renesas/rcar/cpld/ulcb_cpld.c
ba3873513a76a74ceff9f6818187870191d1faba - arm-trusted-firmware/drivers/renesas/rcar/cpld/ulcb_cpld.h
ef114d85e930b49c92bef6398031e37cb6afcbb3 - arm-trusted-firmware/drivers/renesas/rcar/board/board.h
cf8b9626df3b3f81ae4674acc1f379aaf9eea1b5 - arm-trusted-firmware/drivers/renesas/rcar/board/board.c
50775f0e3315375d2b392a52b57df2e19834d985 - arm-trusted-firmware/drivers/renesas/rcar/qos/qos_init.h
cb0d0e4e929b276e850cc30884ddfd8846a9048f - arm-trusted-firmware/drivers/renesas/rcar/qos/qos_common.h
bab2ef59fc4f4088c90466ebb4823889a1bf3996 - arm-trusted-firmware/drivers/renesas/rcar/qos/qos_init.c
4c577e5e3e00506da4ab89990b8dae561786e20a - arm-trusted-firmware/drivers/renesas/rcar/qos/M3N/qos_init_m3n_v10_qoswt390.h
60944cd086bb0354e4747ae185b5149ae3f85f72 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3N/qos_init_m3n_v10.h
96354da81a56cb6373ff756124b8eee42409bfca - arm-trusted-firmware/drivers/renesas/rcar/qos/M3N/qos_init_m3n_v10_mstat390.h
3d6b988f34914a47bf479526f1f10849a2ae3ae5 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3N/qos_init_m3n_v10.c
2bb5c4f7c8795b5aeecf3a8997f515c4890514ae - arm-trusted-firmware/drivers/renesas/rcar/qos/M3N/qos_init_m3n_v10_mstat195.h
aa7f8d7b49fdee6efbfc48acf8e8bddb01fd52a4 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3N/qos_init_m3n_v10_qoswt195.h
824a3717d01b009cea509c61015e64d1722fc212 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v10_mstat.h
bd60292a364659d7f11eeecac384213969357c04 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v20_mstat195.h
8eea8028ec6b2cd4e6e1c5e0a8d8fd9af01ff4fd - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3n_v30_mstat390.h
59c0f7639b01b8af843d8142eb013348e6a1ba18 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3n_v30_qoswt195.h
bc682493eeddc9cec3b24b5dd37418a00e0c064a - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v20_qoswt390.h
12e645da3e7fc81893eb36796412a928fc06e57e - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v30.c
dae17d610957cce3799fa9c9946c0196c67d46ac - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v11_mstat.h
7c805660400d6f609148f8124439843b39232355 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3n_v30.c
811eb1fecd60de207e7c92a5986acb80e7ecf0f3 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v30_qoswt195.h
6ea58175e376d869ac3c2a4f103d934df3c2c465 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v30_mstat195.h
630b48fd35a697ed4d1daa03bfc67d0d299a2776 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v11.h
504bd76520d259ea03e8b93380c763a3c17ffeb0 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v30_qoswt390.h
8b5287985d180436c31df99d29c586fa8ddf0f26 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v20.c
23507b41fbfc9c3a39c4c3f5daf7562d67d10b1b - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v20_mstat390.h
b7890473a9576eca8081825037d037349512add5 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v10.c
700940ac5d64f4902064fbf6670e6e59150d9fd0 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v30.h
8623a6e816d06c37ce20ab1b6e410fc23c052d43 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v30_mstat390.h
7131d3227d06785258892fe7a42df3c91cc8c9f9 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v20.h
f5fd4a9a5d50b214bc6ebdebed3c35ae0f1f2be4 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v20_qoswt195.h
a6934a3af85414d49cca5e5d99e162bbe9ca133b - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v10.h
8dbbe234d937dcc1acc85648ecf831824fb5fa48 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3_v11.c
f0db0106cc97b359f7a0ab316784658b79e9d544 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3n_v30_qoswt390.h
f8c08f7eee854de735ce3c60a3e23d3f74fd73f8 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3n_v30_mstat195.h
7329eefcfc343e2cafffcbc3a208b34789e57968 - arm-trusted-firmware/drivers/renesas/rcar/qos/H3/qos_init_h3n_v30.h
d50c2a6a6c4e4910f4fabd7c774ce1986b97ea19 - arm-trusted-firmware/drivers/renesas/rcar/qos/V3M/qos_init_v3m.c
70405034a321bd4ced206115508ab438f2f536f6 - arm-trusted-firmware/drivers/renesas/rcar/qos/V3M/qos_init_v3m.h
21ada158d24d4473b1e20f73c499f4d5600e3c8b - arm-trusted-firmware/drivers/renesas/rcar/qos/V3M/qos_init_v3m_mstat.h
6dea13df81dd5a2913039ff42dcb9216eb922586 - arm-trusted-firmware/drivers/renesas/rcar/qos/E3/qos_init_e3_v10_mstat390.h
48f7ee0d258f661040d23d898a98d0bc9c066613 - arm-trusted-firmware/drivers/renesas/rcar/qos/E3/qos_init_e3_v10.h
114cb09f888b76f0b1356fb126a483be754d2cd6 - arm-trusted-firmware/drivers/renesas/rcar/qos/E3/qos_init_e3_v10.c
81d4efe56b1d9f4c44c942700d01a9ede1677bae - arm-trusted-firmware/drivers/renesas/rcar/qos/E3/qos_init_e3_v10_mstat780.h
c2f5bcbfd3751341e871e36cd4d2f278b2a4150d - arm-trusted-firmware/drivers/renesas/rcar/qos/D3/qos_init_d3.h
fb1b1122066b12b184582d53d643246b1a414b3b - arm-trusted-firmware/drivers/renesas/rcar/qos/D3/qos_init_d3.c
b8ba25ef62d360d72dd17d26934062bc0eeea376 - arm-trusted-firmware/drivers/renesas/rcar/qos/D3/qos_init_d3_mstat.h
a6126e66f35f584f38379a6ee5529fed08edf8d8 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v11_mstat195.h
2717b8ac46d4da69ba6b99a7f25097f9e314aad3 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v30_mstat390.h
bf20ed2160ab9535cba30cc680a7bf881b5a442a - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v11_qoswt390.h
7cbcad70fd46dc5761bb14b31f104d6806752af8 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v30_qoswt195.h
8aa68f57355243a72231c3848caec899565cf5da - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v11.h
f1b2a6505d48a1a6566f88c1e80b4f27cb09896e - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v30_mstat195.h
a3a502f90241a6c8f8be7ed9af2e0b6cfe9e59e5 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v30_qoswt390.h
ec016158b5c3b5502240e5835181cf7929e6fb5e - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v10.h
2a066b2fcd7583651082fa57bbf12dfe4352326f - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v10_mstat.h
7e2114420402542982a251fc6b54152f32b0dd88 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v11.c
77f8e84524f8a31cd4e5261eca8974eec4bd131a - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v11_mstat390.h
8c12bb78bc33032ca8926351b3eedbe5b2b4c81b - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v10.c
6b699b1443429c5428b8a7056804ed3da10f02f8 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v11_qoswt195.h
10f2fc91f336438e4f2073ea1a665d5d67fb79c7 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v30.c
758dc7396c31d1186836e5ed6c7cafd0a678b4f6 - arm-trusted-firmware/drivers/renesas/rcar/qos/M3/qos_init_m3_v30.h
3ae8c8947fe42e322d70fb7903ada181bfd006ed - arm-trusted-firmware/drivers/renesas/rcar/pfc/pfc_init.c
1a2dd6951973faf90ec734331605c3fb336bde9f - arm-trusted-firmware/drivers/renesas/rcar/pfc/M3N/pfc_init_m3n.h
ed9b151f951387e31b4a9fc5a26f0d4621beaf13 - arm-trusted-firmware/drivers/renesas/rcar/pfc/M3N/pfc_init_m3n.c
83dad15a244674be1d30dc0200428aa0e82090e6 - arm-trusted-firmware/drivers/renesas/rcar/pfc/H3/pfc_init_h3_v1.c
7a112959b420ec60382c2d5688ddced8ca0affd4 - arm-trusted-firmware/drivers/renesas/rcar/pfc/H3/pfc_init_h3_v2.c
5eda21c234b108bb6ed5b65d5e58825ec9ac0210 - arm-trusted-firmware/drivers/renesas/rcar/pfc/H3/pfc_init_h3_v1.h
8472797f3f7c7a334dd21719d4dd718c5df01e47 - arm-trusted-firmware/drivers/renesas/rcar/pfc/H3/pfc_init_h3_v2.h
cc2f31ac87f68592bc44f9d3435c79d99e7dc0e6 - arm-trusted-firmware/drivers/renesas/rcar/pfc/V3M/pfc_init_v3m.c
b9d9644305cbbf1e06e176a46903dd18819761a4 - arm-trusted-firmware/drivers/renesas/rcar/pfc/V3M/pfc_init_v3m.h
c7dfaadbc4d96d1fceadc4fae5536b1e1a9cdd59 - arm-trusted-firmware/drivers/renesas/rcar/pfc/E3/pfc_init_e3.c
c248864592a61213518c8881be85e4f65fe0a3a2 - arm-trusted-firmware/drivers/renesas/rcar/pfc/E3/pfc_init_e3.h
6465a6a55c524b8ffb1dca351757b9d96e79d203 - arm-trusted-firmware/drivers/renesas/rcar/pfc/D3/pfc_init_d3.c
a7f9c2cb5010e2bfe1f501830a449d314d447ce7 - arm-trusted-firmware/drivers/renesas/rcar/pfc/D3/pfc_init_d3.h
6fb897befbc4164b71d8975b2d5322b9e77412b4 - arm-trusted-firmware/drivers/renesas/rcar/pfc/M3/pfc_init_m3.c
3802b683cd17e49eba932611e33205446291cde4 - arm-trusted-firmware/drivers/renesas/rcar/pfc/M3/pfc_init_m3.h
627856de3e6c6e4ff2ba2bf3dc3803a13f08d1bb - arm-trusted-firmware/drivers/gpio/gpio.c
1c9fa968ab5e023d06dcdbe0d3d12847d4e13273 - arm-trusted-firmware/drivers/nxp/pmu/pmu.c
396f26a188a6fb1077b280cdc459ee52ac4dec89 - arm-trusted-firmware/drivers/nxp/flexspi/nor/test_fspi.c
ce75912d66d9d45c7fb5514c2d883363346b1a48 - arm-trusted-firmware/drivers/nxp/flexspi/nor/fspi.c
af21526870ded933cf4e5455fdd2935a82cea61b - arm-trusted-firmware/drivers/nxp/flexspi/nor/flexspi_nor.c
0c3739bdd3d04953083299f803b7c30e40e3fa93 - arm-trusted-firmware/drivers/nxp/flexspi/nor/fspi.h
d354d19d9f42611b3ad0f293660bac71ee3a801c - arm-trusted-firmware/drivers/nxp/flexspi/nor/flexspi_nor.h
6ba34d8cf6a1e66a6b8781b632305c8192f8c47f - arm-trusted-firmware/drivers/nxp/ddr/phy-gen1/phy.c
7c05bf68f35c9cbbeb751db67f075cc1bc864b72 - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/messages.h
aac92f8b51eb5a99b8c6c1b861b65d8ed56c92b9 - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/csr.h
7547f7a2396ef42e0140f69a68424c714c210b19 - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/phy.c
9c36d85b72ea62f1b3e6d8df34efe02d50c468ca - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/pie.h
8ced20b50814e640a734b45571534428a03235aa - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/input.h
f222d8d69c33519c4908bafaaeb6a2482f35bb20 - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/phy.h
ac55bbcc1387d5092bdce1d236686694d82f2a87 - arm-trusted-firmware/drivers/nxp/ddr/phy-gen2/ddr4fw.h
e083ea048179544e9c8e52f7a48d7c315f03a475 - arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/README.odt
442cb1d00ad113cbdc5ce076abc56124655dbe2d - arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/regs.c
fed7a4d64f892002dd30f1e1bf50d5fbf537281d - arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/dimm.c
59117917987eb057fe4003d4da4c3125ea76dbc9 - arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/ddr.c
eaefee9029f7ccfd854a5813aae54ad816808645 - arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/utility.c
33929846548a6a6731c652caf6050b64dea2f9d7 - arm-trusted-firmware/drivers/nxp/ddr/nxp-ddr/ddrc.c
d9b4015568e26bddf900e57b2034588011dc76fe - arm-trusted-firmware/drivers/nxp/ddr/fsl-mmdc/fsl_mmdc.c
73a87390ee3b46e2b5587087457d8a10a6f4cd35 - arm-trusted-firmware/drivers/nxp/tzc/plat_tzc400.c
06049b8071d1258dcc7829e02727d935c561fa1a - arm-trusted-firmware/drivers/nxp/tzc/plat_tzc380.c
85860d4c7284e5f15ce31d18787f687d6bde61b8 - arm-trusted-firmware/drivers/nxp/ifc/nor/ifc_nor.c
c7adb94bca0f7e2a86394a503007aacd278de299 - arm-trusted-firmware/drivers/nxp/ifc/nand/ifc_nand.c
3976af866b0f1353ade3d95b9d4ef92a7a2169ea - arm-trusted-firmware/drivers/nxp/ifc/nand/ifc.h
bf7712fb75e6373abf6791b46d9a4563fd00feb7 - arm-trusted-firmware/drivers/nxp/timer/nxp_timer.c
1d31a2492e42b2087d68ef756a91274f671987c7 - arm-trusted-firmware/drivers/nxp/dcfg/dcfg.c
f29d54b17cb5dd1f602641d092227c883cb6a57b - arm-trusted-firmware/drivers/nxp/csu/csu.c
5579fdab0db3121aceafcaf39eab316e0253aee3 - arm-trusted-firmware/drivers/nxp/sec_mon/snvs.c
3a182ddb4f6fa33eaf8b5ae0c60f6bdf113f4fcc - arm-trusted-firmware/drivers/nxp/i2c/i2c.c
e9bddb61157fc79a6db73771f3abc44b0fa2180e - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_pbi_ch3_2
9489f5c75aa894fc166bb99b848883d0413170cb - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_bl2_ch3_2
8b7ec36599206f1c121cf2a9565bc043b6049dba - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/csf_hdr_parser.c
58bff9b3422ffad20520362a80a6f322da632da3 - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_bl2_ch2
aaaf596468de0e2b0f1fd9df798408ccae3ec67c - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/cot.c
dd7d454c97e1855bb1c228cacfecb6238f4e487d - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_bl2_ch3
bc6fe6b33a974e9a9e2ae522e3ac00b9f7ff4967 - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_pbi_ch3
cb8400c786b03ab4685825c49454f7915622e629 - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/plat_img_parser.c
753107ce7c270d602a0018c1cabb0ef8e7d3c54a - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_blx_ch3
9b849f025149e6cf51b2500c8f70b38703ed5078 - arm-trusted-firmware/drivers/nxp/auth/csf_hdr_parser/input_blx_ch2
5a7943b124da3fea7995adb004eff6a0b928e921 - arm-trusted-firmware/drivers/nxp/auth/tbbr/tbbr_cot.c
e87ea077dcc89cfad504b38c454094873eb4bbae - arm-trusted-firmware/drivers/nxp/sfp/sfp.c
904d53ac1f2e9c98f1e176eae19be267e985db33 - arm-trusted-firmware/drivers/nxp/sfp/fuse_prov.c
7e7c03a074969dc0547afeb5dbe289ae008dae93 - arm-trusted-firmware/drivers/nxp/qspi/qspi.c
45cce82acdd1f75c2e31f56de0a27738ec712b09 - arm-trusted-firmware/drivers/nxp/gpio/nxp_gpio.c
d4cf1b07b3a081078c4e7da1e354adc42f41f7ca - arm-trusted-firmware/drivers/nxp/crypto/caam/src/sec_hw_specific.c
e4343fd48fd3beed200fd430ec2f84482e7171bf - arm-trusted-firmware/drivers/nxp/crypto/caam/src/hw_key_blob.c
32d20982227d5346d95e069f256ec3556d52ecfe - arm-trusted-firmware/drivers/nxp/crypto/caam/src/rng.c
ba408ad853e9ef0e53ce8319419a8b3d8a3da7ed - arm-trusted-firmware/drivers/nxp/crypto/caam/src/jobdesc.c
eeaa299335bd10e0531ff65d6a24c6a4da294057 - arm-trusted-firmware/drivers/nxp/crypto/caam/src/caam.c
bb9ccbfadb1dba83a0035f9bf7b3d22a48fa01ff - arm-trusted-firmware/drivers/nxp/crypto/caam/src/sec_jr_driver.c
02475a8e210c6615aa5138943337551fc8b9087f - arm-trusted-firmware/drivers/nxp/crypto/caam/src/auth/hash.c
ff23fd02b2c8ce84423f099d2b1bea12faf82aec - arm-trusted-firmware/drivers/nxp/crypto/caam/src/auth/nxp_crypto.c
eb5515126eb5fa4bef2f7976e79e3f9fd0944afa - arm-trusted-firmware/drivers/nxp/crypto/caam/src/auth/rsa.c
cbb35d75dea21db6209d5ab41ce216af0acbd5f3 - arm-trusted-firmware/drivers/nxp/gic/ls_gicv2.c
a8b2be0d9781815f941f3b5c54c06d66869ebbb8 - arm-trusted-firmware/drivers/nxp/gic/ls_gicv3.c
fa805a963aca474eb7b99d376fc23bf898fe4457 - arm-trusted-firmware/drivers/nxp/interconnect/ls_ccn.c
a4736e2e943ff2c95ee55ab5550d95dbf4e9fae5 - arm-trusted-firmware/drivers/nxp/interconnect/ls_cci.c
d3e9bd0226d74dffd59af6ef1c8f029ca195db90 - arm-trusted-firmware/drivers/nxp/console/console_16550.c
f15b111b5f8ec4a947c36b642e6c6331bb5331a4 - arm-trusted-firmware/drivers/nxp/console/console_pl011.c
5128d83df7b28a2a4bd817b834e17b74206a84d7 - arm-trusted-firmware/drivers/nxp/console/16550_console.S
7da82df0c542d1d8ae8e69affe9e30ba233590a2 - arm-trusted-firmware/drivers/nxp/sd/sd_mmc.c
b601addd7e20d9e7f019014eac336024a1e57b8f - arm-trusted-firmware/drivers/ufs/ufs.c
1fa3c347f937895d6e5869cff641faf35158d0e0 - arm-trusted-firmware/drivers/intel/soc/stratix10/io/s10_memmap_qspi.c
1a38fc90bd2ad3b33e7c09de2e338d2f993efe99 - arm-trusted-firmware/drivers/console/multi_console.c
48cb55cb2ee35cd09c7a0759acecc0e5facfe576 - arm-trusted-firmware/drivers/console/aarch64/skeleton_console.S
b837201998c7093cf24c9131e39734b99ab455be - arm-trusted-firmware/drivers/console/aarch32/skeleton_console.S
3325b2a520df18fb8bd8859eafba82aa1c89eec1 - arm-trusted-firmware/drivers/rambus/trng_ip_76.c
0d32873988a7299902bc11961218f9034c494f5b - arm-trusted-firmware/drivers/delay_timer/generic_delay_timer.c
a5328f6dfd065a9ddc6acad1d5ea28176f33e623 - arm-trusted-firmware/drivers/delay_timer/delay_timer.c
279f67f2161b938ba13883aeab4439e24b76eaf2 - arm-trusted-firmware/drivers/mmc/mmc.c
12473d63d565d1782e4e3273a27c29c04adaf86f - arm-trusted-firmware/tools/amlogic/doimage.c
58ef2523c26b02365fb70cb1cebc29cba026be23 - arm-trusted-firmware/tools/amlogic/Makefile
1474476f05acda23a8bb1e859fcc314baf5a4fda - arm-trusted-firmware/tools/stm32image/Makefile
75e7e633ff5fcf6dca970eef0c2acd786d23f188 - arm-trusted-firmware/tools/stm32image/stm32image.c
495a7786c563fdb9134410b75a95c3e1c3149eb3 - arm-trusted-firmware/tools/memory/print_memory_map.py
6a4752c84a78127a0b99ece7396ae317661ac61a - arm-trusted-firmware/tools/sptool/sp_mk_generator.py
4a137ea4eb638729bda39a72491cc6519fc26da5 - arm-trusted-firmware/tools/sptool/Makefile
ee49dbe19d032c60cf3e963764253c2d808b9de5 - arm-trusted-firmware/tools/sptool/sptool.c
37ff8b0160a90437e9b84efce7ef73833b96eb39 - arm-trusted-firmware/tools/sptool/Makefile.tmk
158eb04fba82028aacc8b3cc3884314b37d8a862 - arm-trusted-firmware/tools/fiptool/fiptool.c
022ce17862a03fb1b68881c15cc964cd56706532 - arm-trusted-firmware/tools/fiptool/Makefile
6dcc9e2c01e4d8e4c0b531154c0598192ba190c7 - arm-trusted-firmware/tools/fiptool/fiptool_platform.h
12207fca29ab69b8fccc71ef7a95f9d551ec744f - arm-trusted-firmware/tools/fiptool/win_posix.c
323e507fdf87c7d4a94d0bbbaa72bd905c2d641d - arm-trusted-firmware/tools/fiptool/win_posix.h
30931543e94deea26c28007433bf6d837f1839aa - arm-trusted-firmware/tools/fiptool/tbbr_config.h
2b824a81f75e43fe0eb8f52e822974093ad0f246 - arm-trusted-firmware/tools/fiptool/fiptool
02dcc44205d31ccd5e69fd5008848cebfa14b775 - arm-trusted-firmware/tools/fiptool/tbbr_config.c
ff33081f63178813dd9c9235d17538954c29d7c6 - arm-trusted-firmware/tools/fiptool/fiptool.h
d47913d50cdf551a4f0677629c59c1464b96f606 - arm-trusted-firmware/tools/fiptool/Makefile.msvc
0ec11eeb14668d925e198fc42145f8b0fd3d02d8 - arm-trusted-firmware/tools/marvell/doimage/doimage.c
2bbefb66f05e50612c3b0d215f0bd185e076cf20 - arm-trusted-firmware/tools/marvell/doimage/Makefile
f35a6333e76f3fb2bed05bad996a131317f5ac9d - arm-trusted-firmware/tools/marvell/doimage/secure/csk_priv_pem3.key
8602871bb27d59d5b5ce180448e1ceb232027bad - arm-trusted-firmware/tools/marvell/doimage/secure/csk_priv_pem1.key
954bc6cdf269e0eaa9581057657a1e2bf9621f38 - arm-trusted-firmware/tools/marvell/doimage/secure/csk_priv_pem0.key
8fc012a12a4398216ad6fd4b97199ccd159711e5 - arm-trusted-firmware/tools/marvell/doimage/secure/sec_img_7K.cfg
f848ecb51058182d4c908f7c9a88561dbdce34bd - arm-trusted-firmware/tools/marvell/doimage/secure/kak_priv_pem.key
c8f9244b21f28bb382b1befed8dce13e4eae06f9 - arm-trusted-firmware/tools/marvell/doimage/secure/csk_priv_pem2.key
5b6535dd6c94832d3113588ea938b9526b06b0fc - arm-trusted-firmware/tools/marvell/doimage/secure/sec_img_8K.cfg
105f766aba0c8abdca2e88e258a34b28a656edd4 - arm-trusted-firmware/tools/encrypt_fw/Makefile
843248736f6bce43a9ac3f11f9bfa6a094face5a - arm-trusted-firmware/tools/encrypt_fw/include/debug.h
08dcc81abf0dd5a951f1d7cb36e2d05628055bec - arm-trusted-firmware/tools/encrypt_fw/include/cmd_opt.h
f37ed62897799b6165569c0842904eb6fe5d21d5 - arm-trusted-firmware/tools/encrypt_fw/include/encrypt.h
29f5f62fba8f9c0fb9e528df8a7c5f9a264d9bad - arm-trusted-firmware/tools/encrypt_fw/src/cmd_opt.c
93d36734d229d79068472d13bb173cb9b1537d9d - arm-trusted-firmware/tools/encrypt_fw/src/encrypt.c
5093ed93e150e683b735ad26979460536e2419f3 - arm-trusted-firmware/tools/encrypt_fw/src/main.c
638ff14128d59a95756979954071615bb74eb3c4 - arm-trusted-firmware/tools/cert_create/Makefile
843248736f6bce43a9ac3f11f9bfa6a094face5a - arm-trusted-firmware/tools/cert_create/include/debug.h
491ae06a09039151d3d2fbccaf89bf4de779dd5a - arm-trusted-firmware/tools/cert_create/include/ext.h
0a307fbdd842fe9ae8212a2362b356addf0a38df - arm-trusted-firmware/tools/cert_create/include/sha.h
134c6c14b6a384f0e036827b128d4adf08612d9a - arm-trusted-firmware/tools/cert_create/include/cmd_opt.h
26baf6654b744217670bc74a0372533b7a9347d9 - arm-trusted-firmware/tools/cert_create/include/key.h
f5c9fe91b01c2e36483376d6f0ef0c2794343406 - arm-trusted-firmware/tools/cert_create/include/cert.h
a015fcfd89d3e63781911e5134884343975d6284 - arm-trusted-firmware/tools/cert_create/include/tbbr/tbb_cert.h
728ba9b1bbfe33e0ca3e33eb166f04922947e3e3 - arm-trusted-firmware/tools/cert_create/include/tbbr/tbb_key.h
0c696ba78f7d568469b58576262a035b3074ae67 - arm-trusted-firmware/tools/cert_create/include/tbbr/tbb_ext.h
596785e69869c848d5fdb306b8084f282876abe7 - arm-trusted-firmware/tools/cert_create/include/dualroot/cot.h
82813403f6e7250a54d55d8c1409be0c9c3538e0 - arm-trusted-firmware/tools/cert_create/src/ext.c
718afca8b5d04a3f76605646abacc1e597be801b - arm-trusted-firmware/tools/cert_create/src/key.c
29f5f62fba8f9c0fb9e528df8a7c5f9a264d9bad - arm-trusted-firmware/tools/cert_create/src/cmd_opt.c
1188485867e47cb5d105325c1736aafc8f6b0073 - arm-trusted-firmware/tools/cert_create/src/sha.c
ba404574148313fc2ff134ae8bf798150a5cd0d5 - arm-trusted-firmware/tools/cert_create/src/cert.c
a485a01a7aa89b241a4a2b28b2fbe50c469d51c4 - arm-trusted-firmware/tools/cert_create/src/main.c
11fe1d417bcbf3a47d588f48d738d47a156b9c49 - arm-trusted-firmware/tools/cert_create/src/tbbr/tbb_ext.c
c5571efb1999abfd481ddccdf9cfa8db65d5e440 - arm-trusted-firmware/tools/cert_create/src/tbbr/tbb_key.c
a71f6edc951824d84282d7f0262e1ebd260a5a38 - arm-trusted-firmware/tools/cert_create/src/tbbr/tbb_cert.c
87b7868a92308d1b74bbf003f8fb00f89c405d2c - arm-trusted-firmware/tools/cert_create/src/dualroot/cot.c
01000b7d50599a58601322b9a12174d81bd80571 - arm-trusted-firmware/tools/renesas/rzg_layout_create/sa0.ld.S
3d9335fb1238d08df68e2770f69a0e1bec960069 - arm-trusted-firmware/tools/renesas/rzg_layout_create/makefile
f51f929a6294d60d681b03dbf0f3f1fe0835fa3a - arm-trusted-firmware/tools/renesas/rzg_layout_create/sa0.c
8c2b63db003e2e330f2af95b94c2132bc2fc9725 - arm-trusted-firmware/tools/renesas/rzg_layout_create/sa6.ld.S
4085a8d4104eac744977d5ec6feacf08b8a1283a - arm-trusted-firmware/tools/renesas/rzg_layout_create/sa6.c
a728eb1898ea80778d60fcf57b727f977c29ec98 - arm-trusted-firmware/tools/renesas/rcar_layout_create/sa0.ld.S
ba6ab775fd9474718d717b35f4220e716f7b7ae6 - arm-trusted-firmware/tools/renesas/rcar_layout_create/makefile
213e1746ba029a55b6baf19ac0d8863713811b64 - arm-trusted-firmware/tools/renesas/rcar_layout_create/sa0.c
c6acebe37afdaba95dbaf9f814eb4bba5dd989a9 - arm-trusted-firmware/tools/renesas/rcar_layout_create/sa6.ld.S
b4ecd67c81a19d47e59f9a72dd81fc392fff3aea - arm-trusted-firmware/tools/renesas/rcar_layout_create/sa6.c
e9b252cbfa9bd844023146ac38470829ac72342a - arm-trusted-firmware/tools/conventional-changelog-tf-a/package.json
9bdff25d946a2c61d8312e1f53c49802d66d3577 - arm-trusted-firmware/tools/conventional-changelog-tf-a/index.js
65198bc7a494eba7c91745808f3ada1e3034659a - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/note.hbs
5e9ebb4c1ffaf478200ddbd8bd5bbef2b0f2d2f6 - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/commit-section.hbs
da39a3ee5e6b4b0d3255bfef95601890afd80709 - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/footer.hbs
99f27ae0dfb07952b2130a819e32599cfc2d78c6 - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/header.hbs
bdd671375b10dbdabd4f1f87941d3071e275ff64 - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/commit.hbs
1d1032e5160d84f70af7f7ab6dddaf003244f768 - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/note-section.hbs
85453d72f48122ba14bd00512fac19ef0fc42d07 - arm-trusted-firmware/tools/conventional-changelog-tf-a/templates/template.hbs
294a1e169dc8c2e940e56cad57a08e5d4adb3b9f - arm-trusted-firmware/tools/nxp/create_pbl/Makefile
2ec990b299f9fd69d0e0a85e98faba9055f56bab - arm-trusted-firmware/tools/nxp/create_pbl/README
6883483605723caec745103ffaafc790ec284c8d - arm-trusted-firmware/tools/nxp/create_pbl/create_pbl.c
d66ad3c8e97d38face17234980203ac71836e11f - arm-trusted-firmware/tools/nxp/create_pbl/byte_swap.c
ee87af83d314b14a8d8a41acb7fa47c97f7dda56 - arm-trusted-firmware/tools/nxp/plat_fiptool/plat_def_uuid_config.c
621d8ec57a445f0149ebb8b216ef913ed05f8754 - arm-trusted-firmware/tools/nxp/cert_create_helper/include/pdef_tbb_key.h
3d16696dce452bf99b18bdd1a964fe7ad191477b - arm-trusted-firmware/tools/nxp/cert_create_helper/include/pdef_tbb_ext.h
46fb0f5a24245e631af2a4690c0d7202204c0e54 - arm-trusted-firmware/tools/nxp/cert_create_helper/include/pdef_tbb_cert.h
f328e450c8ae941e8109578f1721860acbfafbbe - arm-trusted-firmware/tools/nxp/cert_create_helper/src/pdef_tbb_cert.c
4065b3a492865b1f4525586a648df384bf7c961a - arm-trusted-firmware/tools/nxp/cert_create_helper/src/pdef_tbb_ext.c
506a53ab2e813a5ce578765b25e1e3fe0f1e643e - arm-trusted-firmware/tools/nxp/cert_create_helper/src/pdef_tbb_key.c
bc64867c51e6a4f26dc11e07d3be01304f8b78e3 - arm-trusted-firmware/services/std_svc/std_svc_setup.c
250540ab4306221c494658c2239ffed65aa3fbd9 - arm-trusted-firmware/services/std_svc/pci_svc.c
9f72d160e0732ed98d19b7f82e62c8434b043846 - arm-trusted-firmware/services/std_svc/spm_mm/spm_mm_private.h
e3e6228d6ff51d8d1940c9d13b884a9699bc1a6e - arm-trusted-firmware/services/std_svc/spm_mm/spm_mm_shim_private.h
5ddc8c374ed249405453ffb9dd8519ddc8a7a34b - arm-trusted-firmware/services/std_svc/spm_mm/spm_mm_xlat.c
79d13846ac86474d81cf97529b0dcb9876156531 - arm-trusted-firmware/services/std_svc/spm_mm/spm_mm_main.c
27e07360421aaf616722735cfdc19c90d91af4a0 - arm-trusted-firmware/services/std_svc/spm_mm/spm_mm_setup.c
92bbf065b55bbb16728230902e84c1ae124cdd26 - arm-trusted-firmware/services/std_svc/spm_mm/aarch64/spm_mm_shim_exceptions.S
f3b6abb1b262ca29c81fe896193453e05ae2fd50 - arm-trusted-firmware/services/std_svc/spm_mm/aarch64/spm_mm_helpers.S
c53e4b9cdb4eaee27196d9759c484c4faeaf7d06 - arm-trusted-firmware/services/std_svc/trng/trng_entropy_pool.h
0f3a50749094ad519b427c0a9c94db4f8dd32988 - arm-trusted-firmware/services/std_svc/trng/trng_entropy_pool.c
99c265f55fed0f586d388c5654338897d9e296e6 - arm-trusted-firmware/services/std_svc/trng/trng_main.c
45b49532e2610460e0fba1e6cbf18573f216da9e - arm-trusted-firmware/services/std_svc/rmmd/rmmd_attest.c
5d93ba8b111b69b7ef12b9a1ce621d9740284e41 - arm-trusted-firmware/services/std_svc/rmmd/rmmd_main.c
26be0a6e880962cffc338be91ad0f344e8aee9ef - arm-trusted-firmware/services/std_svc/rmmd/rmmd_initial_context.h
4268337ed8b89db9b3ad75537a8f1e2a008fc949 - arm-trusted-firmware/services/std_svc/rmmd/rmmd_private.h
51c4bc5d5a6c9b18e2f3f2c951d3f8abe0869ba2 - arm-trusted-firmware/services/std_svc/rmmd/aarch64/rmmd_helpers.S
83a9c2e476136e139d80cac740c65fee111c0ba6 - arm-trusted-firmware/services/std_svc/rmmd/trp/trp_private.h
6b1ef22efba95bff3270de056f0a4e2484528dee - arm-trusted-firmware/services/std_svc/rmmd/trp/linker.lds
06bef6d6d25e76eef2278253f480a4afbaebabf3 - arm-trusted-firmware/services/std_svc/rmmd/trp/trp_entry.S
ca2e1ed2396b9c004b00095f04cbe848e743043d - arm-trusted-firmware/services/std_svc/rmmd/trp/trp_main.c
6da223d4cbc8ff07b002a40446860274397aa283 - arm-trusted-firmware/services/std_svc/spmd/spmd_main.c
3e424bb10206165d477d92627a1a6d8955152b74 - arm-trusted-firmware/services/std_svc/spmd/spmd_private.h
eb2fb622fab718a44678ea1273fb7df9d3dd49be - arm-trusted-firmware/services/std_svc/spmd/spmd_pm.c
eb5c9e4113243964f83a249807ed07711dc6f145 - arm-trusted-firmware/services/std_svc/spmd/aarch64/spmd_helpers.S
e020a86b0568edbbb8e8a93f2cee43fc4812d475 - arm-trusted-firmware/services/std_svc/sdei/sdei_intr_mgmt.c
2fd31858f771c3fa2d49ac883b8e3bb8486cebae - arm-trusted-firmware/services/std_svc/sdei/sdei_event.c
ed3a4e16186524a88ed19aa95176bc233b0928fe - arm-trusted-firmware/services/std_svc/sdei/sdei_dispatch.S
b8207b17922c0b2192565df4c3bc9e1e9e726afa - arm-trusted-firmware/services/std_svc/sdei/sdei_state.c
36f054958b6c01f03eed070113b49903ce936a5d - arm-trusted-firmware/services/std_svc/sdei/sdei_private.h
1e4e0e78fee886b98de1d70b344442002fd6344a - arm-trusted-firmware/services/std_svc/sdei/sdei_main.c
55c35f079c4fec17128f7c644425b13fd516f2e8 - arm-trusted-firmware/services/spd/trusty/smcall.h
2bbaae4a856f5eba1f98688458729049af38a448 - arm-trusted-firmware/services/spd/trusty/generic-arm64-smcall.h
405a4e398e27192766391869719c952a77d4e789 - arm-trusted-firmware/services/spd/trusty/generic-arm64-smcall.c
912f672668f3beed13a6a55a3fab7666e147ea6c - arm-trusted-firmware/services/spd/trusty/sm_err.h
cb38cd65497ea7679a3c5ced33d2e833c2f82797 - arm-trusted-firmware/services/spd/trusty/trusty.c
ba437dffc2a576e12cd8b8b5e8331a43244754b0 - arm-trusted-firmware/services/spd/trusty/trusty_helpers.S
36db67e2b644b85662e0440abdf6bb464032dfb1 - arm-trusted-firmware/services/spd/tspd/tspd_main.c
c41250dd18f5502066bab243f1a2f33acf9079f5 - arm-trusted-firmware/services/spd/tspd/tspd_private.h
f9cf95e919ab4903bc80205e402547ddebe078a8 - arm-trusted-firmware/services/spd/tspd/tspd_helpers.S
45855bd72493c075e03c590cfade6075e5656654 - arm-trusted-firmware/services/spd/tspd/tspd_common.c
d68051c573aae1f65601f9c9307d095259f8de63 - arm-trusted-firmware/services/spd/tspd/tspd_pm.c
176e5bf39535fbb39c81b2deb17ee470cac87159 - arm-trusted-firmware/services/spd/tlkd/tlkd_pm.c
e4543798b8feb237167dc8c495b7aeb079d1b290 - arm-trusted-firmware/services/spd/tlkd/tlkd_private.h
61ff410fd8dae3d3ecffc63595125321444d53c7 - arm-trusted-firmware/services/spd/tlkd/tlkd_main.c
c213fbde43c8075e8fe28297dd6934f2f7c5f6fa - arm-trusted-firmware/services/spd/tlkd/tlkd_common.c
14bc8b1de264fc27498c195073dcf7c1dd736c4d - arm-trusted-firmware/services/spd/tlkd/tlkd_helpers.S
04de846e914d22f5925ba665f709fd3b0793ea5c - arm-trusted-firmware/services/spd/opteed/teesmc_opteed.h
e6df3878f8d4759c9f52ea98cbd0d6303bd2983b - arm-trusted-firmware/services/spd/opteed/teesmc_opteed_macros.h
4577f90d8a829f8cb934271e6991bd34844e1854 - arm-trusted-firmware/services/spd/opteed/opteed_common.c
8887d0d62a1b5248423fbc54ee536be3e5131d91 - arm-trusted-firmware/services/spd/opteed/opteed_private.h
b4e16e85997824311dd82861c4c22d6ed046b817 - arm-trusted-firmware/services/spd/opteed/opteed_main.c
c7af1a7de6cb5d79bf42271e846f04a18df96b63 - arm-trusted-firmware/services/spd/opteed/opteed_pm.c
c8ea87fefa1ecd86c162a85206e9427be8c93afb - arm-trusted-firmware/services/spd/opteed/opteed_helpers.S
32f05b17684cd616a34fd51c98e75162d384217a - arm-trusted-firmware/services/arm_arch_svc/arm_arch_svc_setup.c
0b30444600f51212f5be53588f4f68cba0bf92fe - arm-trusted-firmware/docs/glossary.rst
cdd7c87e02f5cae26200b35f5869f20aa1a526cc - arm-trusted-firmware/docs/Makefile
d2e89e46ca5ae89064b0a9b0d7983272a60e60a6 - arm-trusted-firmware/docs/conf.py
4e66ff242f442cdfb5239bef53026c402990b912 - arm-trusted-firmware/docs/change-log.md
0b02d28e0d9881fab1b08360d2d9bbef021685c0 - arm-trusted-firmware/docs/license.rst
0677c6b28a895fccae194309f759b9f4e0f4c9f5 - arm-trusted-firmware/docs/requirements.in
ea9ab85da5d526fc32f3436878dc80c33fbbe334 - arm-trusted-firmware/docs/index.rst
add0156b84b7d9f7760db313170bf81a672a66a6 - arm-trusted-firmware/docs/resources/TrustedFirmware-Logo_standard-white.png
19e287ff6d7c25917fd56356da40bee3e5ef120e - arm-trusted-firmware/docs/resources/diagrams/sec-int-handling.png
165d02fd6baf4c31ce0c1b034477b6596c724abe - arm-trusted-firmware/docs/resources/diagrams/Makefile
10d343a1dfde1e76a19cfc7a0f8a9ca28710ee17 - arm-trusted-firmware/docs/resources/diagrams/reset_code_no_cpu_check.png
40dca2e6d5cf7cdc88398bf5e2df39f3fce31bab - arm-trusted-firmware/docs/resources/diagrams/spm-threat-model-trust-boundaries.png
66f1f1fd09b5146cb2a5e1c538de29ea7f88ed7e - arm-trusted-firmware/docs/resources/diagrams/fwu_states.png
a68fd21bb442987ce7a67e0eb08d150b81bfe901 - arm-trusted-firmware/docs/resources/diagrams/secure_sw_stack_tos.png
d2522911e613a4005eb1e10931779a1bb350a363 - arm-trusted-firmware/docs/resources/diagrams/FIP_in_a_GPT_image.png
aacd72a3c084647a884d67147510a1b0c26d8359 - arm-trusted-firmware/docs/resources/diagrams/reset_code_flow.dia
77da82b847d9c9a0cecaa2e43e40dac166a66399 - arm-trusted-firmware/docs/resources/diagrams/cmake_framework_structure.png
d10eb3ff6f8cf071330205ec0d59126d79f939f4 - arm-trusted-firmware/docs/resources/diagrams/non-sec-int-handling.png
08ebe00cb9823cd55d80c05b4aaaa64c103093ce - arm-trusted-firmware/docs/resources/diagrams/xlat_align.dia
ada526023821d5e57e3e1aa979b38d2c8708227e - arm-trusted-firmware/docs/resources/diagrams/ff-a-spm-sel2.png
02a0166ec0c907a8725efa2ff467ea4d5984a35c - arm-trusted-firmware/docs/resources/diagrams/secure_sw_stack_sp.png
17e11d01f23f073cec01fb44acaa3c976495e982 - arm-trusted-firmware/docs/resources/diagrams/cmake_framework_workflow.png
80b81639bb1aa78723d3635f0359764c595e38c8 - arm-trusted-firmware/docs/resources/diagrams/romlib_design.png
7c4678ac4952c496df4536445b336d96139b0066 - arm-trusted-firmware/docs/resources/diagrams/ffa-secure-interrupt-handling-swd.png
84f99bb590f5c8748bc6e47f3e7bd4bf5890447d - arm-trusted-firmware/docs/resources/diagrams/xlat_align.png
4ab0332c836fdf5e5596c2b7ecc6ea4bccb62b8c - arm-trusted-firmware/docs/resources/diagrams/reset_code_no_checks.png
40ffa83fe202970879802b809b75c10ed360c7d4 - arm-trusted-firmware/docs/resources/diagrams/romlib_wrapper.png
2417a250f3f2552f5e881830e947024a92e55adf - arm-trusted-firmware/docs/resources/diagrams/arm-cca-software-arch.png
d9a6dc06e1a28c0235940539e527ac285c179342 - arm-trusted-firmware/docs/resources/diagrams/reset_code_no_boot_type_check.png
c05984305daded35b5f3a14ea3c5ac88319f4292 - arm-trusted-firmware/docs/resources/diagrams/romlib_design.dia
763017cfa85171acb7422b0f8ef1c40ba69443a3 - arm-trusted-firmware/docs/resources/diagrams/rt-svc-descs-layout.png
2e886fd02f6b39a545824f0819608260e0671c14 - arm-trusted-firmware/docs/resources/diagrams/context_mgmt_existing.png
c279d33545695cac4327bf14a8d84b4237dc8387 - arm-trusted-firmware/docs/resources/diagrams/MMU-600.png
04a65e98eceabb17ea534a6dea187021477a1fb2 - arm-trusted-firmware/docs/resources/diagrams/int_handling.dia
a6a4256584fddbb776f1e274748edeff4289cf4a - arm-trusted-firmware/docs/resources/diagrams/psci-suspend-sequence.png
1586bdc989b8698512851e436d39fed8ad375030 - arm-trusted-firmware/docs/resources/diagrams/romlib_wrapper.dia
64d840596ae8dbdfb803bfdd471e3d4e7955ca82 - arm-trusted-firmware/docs/resources/diagrams/fwu_flow.png
9bd9241452f165fcc7e5018bf8a24204767fa036 - arm-trusted-firmware/docs/resources/diagrams/ffa-ns-interrupt-handling-sp-preemption.png
4d2668ab5814fb9b799f65b69b427db29952658b - arm-trusted-firmware/docs/resources/diagrams/ffa-secure-interrupt-handling-nwd.png
a0ca882a9a47bf5642759780b006f69f3c667fff - arm-trusted-firmware/docs/resources/diagrams/context_management_abs.png
d5775195107610d6a67d5d7f8af6590e4e53e570 - arm-trusted-firmware/docs/resources/diagrams/default_reset_code.png
961fd0fc52b27792b27c6cc8b9f210be8959e285 - arm-trusted-firmware/docs/resources/diagrams/ffa-ns-interrupt-handling-managed-exit.png
b42c9e2672802e26c9137df29eff6a1c68652ea6 - arm-trusted-firmware/docs/resources/diagrams/context_mgmt_proposed.png
ad73cbcd10b1b5e45ca3a01df6c435b345686322 - arm-trusted-firmware/docs/resources/diagrams/draw.io/ehf.svg
a2eed4587b5987e97e3f8207a2c9783c5e322c90 - arm-trusted-firmware/docs/resources/diagrams/draw.io/ras.svg
2c5f1b895b01d75ebe2fd874d61f728fe18fca4a - arm-trusted-firmware/docs/resources/diagrams/draw.io/ras.xml
4eb0b99548ee5cdbff9d0e01b3455c7c1e1af275 - arm-trusted-firmware/docs/resources/diagrams/draw.io/ehf.xml
732ce8b12943c9ca218e89a1aa3eae1379952d12 - arm-trusted-firmware/docs/resources/diagrams/plantuml/fip-secure-partitions.puml
0130e90e98cac66f9ac28a56d8fa17af801ead7a - arm-trusted-firmware/docs/resources/diagrams/plantuml/io_dev_init_and_check.puml
cde708741ffdd39f92d8670aea4a93ef451cd611 - arm-trusted-firmware/docs/resources/diagrams/plantuml/spm_dfd.puml
7ca50157b91a940fdcd61fed7da54e93501b2c3e - arm-trusted-firmware/docs/resources/diagrams/plantuml/io_framework_usage_overview.puml
e357fbb8d83445182b61abea380d1885e484c4cb - arm-trusted-firmware/docs/resources/diagrams/plantuml/tfa_dfd.puml
0cbedd3989e3d4fc11c3401d7b250d8b14411c50 - arm-trusted-firmware/docs/resources/diagrams/plantuml/sdei_explicit_dispatch.puml
2c516abafcee77f3889360526590d0764a35d61c - arm-trusted-firmware/docs/resources/diagrams/plantuml/bl2-loading-sp.puml
89429fb35fc54ad81b4aab0c9d5860b228aab347 - arm-trusted-firmware/docs/resources/diagrams/plantuml/fconf_bl2_populate.puml
7eb6ecf49d5ec8a975cccdc3aeb0d994e07362a0 - arm-trusted-firmware/docs/resources/diagrams/plantuml/fconf_bl1_load_config.puml
9e7994a98a6d3531ff8f3c7e16b9e27ae0240805 - arm-trusted-firmware/docs/resources/diagrams/plantuml/io_arm_class_diagram.puml
853a892ccba3dedfcb4491b7ad449b46d6a4d47c - arm-trusted-firmware/docs/resources/diagrams/plantuml/sdei_general.puml
695a4bfc3f0c50586104d10e16a8527c37f3541f - arm-trusted-firmware/docs/resources/diagrams/plantuml/io_dev_registration.puml
125013620e921736b4b48b912f62657eb06ae363 - arm-trusted-firmware/docs/threat_model/threat_model_spm.rst
6370cee0ae902a8040401edd8f2ce7aa0d67a170 - arm-trusted-firmware/docs/threat_model/threat_model.rst
c39c2e4ba3f12fbad74aac5304a27e5b3c3fc272 - arm-trusted-firmware/docs/threat_model/index.rst
6fd5a13007e2c86b56b83ed08af9e4343890c44d - arm-trusted-firmware/docs/threat_model/threat_model_fvp_r.rst
3c9105f13eb03be1b0c0035eb88daafdd219f4a1 - arm-trusted-firmware/docs/design_documents/context_mgmt_rework.rst
1cf19041279928d9215bdd8c91a1559b37e426b4 - arm-trusted-firmware/docs/design_documents/measured_boot_poc.rst
b5585102476dfaccde6a472ab5485236468a4d14 - arm-trusted-firmware/docs/design_documents/cmake_framework.rst
458dad419f00db20225a3987ea193db385391688 - arm-trusted-firmware/docs/design_documents/index.rst
d0aa75e869685b4dadea831588e9175113411e43 - arm-trusted-firmware/docs/about/features.rst
3d4d6eeef77d8e11c9b5da38bf3008531d4cdff8 - arm-trusted-firmware/docs/about/acknowledgements.rst
bd485ae1fd78b7134ac1b633b73d320c4de37262 - arm-trusted-firmware/docs/about/index.rst
b797ee1a8501bb526a8f4e22f7bf644d83ffc96d - arm-trusted-firmware/docs/about/maintainers.rst
4717f5ce955ade54d71c40eb4edc26c2ae63540a - arm-trusted-firmware/docs/about/release-information.rst
15453cf4faa84e1c067c1b9125f90e625547f47d - arm-trusted-firmware/docs/about/contact.rst
a928b648d0677930c926401b40e335f052e97be5 - arm-trusted-firmware/docs/plat/mt8195.rst
9085fb1504d30c5d3e75304a86dfa8a1225967b3 - arm-trusted-firmware/docs/plat/qemu.rst
45f03fd73a50f2fe124a2bd1d70fb40243ba0e82 - arm-trusted-firmware/docs/plat/warp7.rst
53f0692ccc04d5d659e88ac1dc1080af6dcda94d - arm-trusted-firmware/docs/plat/qti.rst
f2bbe77ac618ba9be663de2bba3cee62eaf17f60 - arm-trusted-firmware/docs/plat/mt8186.rst
0db6c8e13659db1d29238baa7d8a870a4e821546 - arm-trusted-firmware/docs/plat/stm32mp1.rst
a970558632482b93ee96aba756982061d20ea4e8 - arm-trusted-firmware/docs/plat/intel-agilex.rst
556090a5f980031e56bccbb5c6d93f41384aad09 - arm-trusted-firmware/docs/plat/intel-stratix10.rst
1fb07134c685f21246757d77653a8c6bb12d949c - arm-trusted-firmware/docs/plat/socionext-uniphier.rst
a80443b8a04209092463f6005843be7eb0dc832d - arm-trusted-firmware/docs/plat/rpi3.rst
de25efbc7acce27ba0385c2c51a59fbc0f7f7124 - arm-trusted-firmware/docs/plat/brcm-stingray.rst
84cb8ce1de6f042d0693d8a1a4bb2265ef8a7ed0 - arm-trusted-firmware/docs/plat/meson-axg.rst
4905e051c0a996867dcc2389b8bd5430b0741699 - arm-trusted-firmware/docs/plat/imx8.rst
8b88e9d6cfe72a03efd7e226122d5cd33334fe66 - arm-trusted-firmware/docs/plat/ti-k3.rst
a06622efc4dca7ce03e6ea2e305e8a0b8d422bef - arm-trusted-firmware/docs/plat/deprecated.rst
12b7c2db7722b49705438fabf8b96c0943d163bd - arm-trusted-firmware/docs/plat/meson-g12a.rst
df909307e45e07ec88f455e8ef27abedd18e3592 - arm-trusted-firmware/docs/plat/rockchip.rst
b54be1ac4f13d0a724629f301e245bbcc4379d44 - arm-trusted-firmware/docs/plat/nvidia-tegra.rst
15d03048959cdd154b540a3b91f7aa6b48f7a7ef - arm-trusted-firmware/docs/plat/allwinner.rst
2ed0c805bd3cba59619101f0918aeac59d4e6fd3 - arm-trusted-firmware/docs/plat/rcar-gen3.rst
ddffb1cc078fd2d3c58ed8cde2b32388ccd532c9 - arm-trusted-firmware/docs/plat/meson-gxl.rst
9bfeb07c04a47aacac6ae649f75799c894e74067 - arm-trusted-firmware/docs/plat/mt8183.rst
01b97fb19ab7a8e8baa5a1a96d35f2cb5dc0a05c - arm-trusted-firmware/docs/plat/rpi4.rst
3cefd2238957aeadfec4d578846bb38b56ca5c26 - arm-trusted-firmware/docs/plat/hikey960.rst
ed1a65471d042b402028616f2e38ed56b42dc891 - arm-trusted-firmware/docs/plat/qti-msm8916.rst
9e85f6fbc5306c4b0604e98de5fcbddb385c4ce1 - arm-trusted-firmware/docs/plat/mt8192.rst
f8d9d0b4336229fecb1a12937b0f1a9b6060aa0b - arm-trusted-firmware/docs/plat/xilinx-versal.rst
d714f1279de4aa5eb4519255578a2718fc8e3a1e - arm-trusted-firmware/docs/plat/imx8m.rst
05664e895ce6375be6ad98e9576013d1209cb012 - arm-trusted-firmware/docs/plat/hikey.rst
a6c4746123e21eba44253912da4e92f0fd31a6cc - arm-trusted-firmware/docs/plat/rz-g2.rst
028d90ceedfb507b0ee1532f28cb8842f1f5b19f - arm-trusted-firmware/docs/plat/index.rst
d0ad3f088b7307bd002023c2fcda2de07a36f40f - arm-trusted-firmware/docs/plat/synquacer.rst
25ec8ee5167ea3d60afe26566de20782ee6aa44c - arm-trusted-firmware/docs/plat/qemu-sbsa.rst
080191f60f9e441f7527257b977a2c8f6d8c5533 - arm-trusted-firmware/docs/plat/poplar.rst
2a492964dd82db785e381f828fae2b2a729f6749 - arm-trusted-firmware/docs/plat/meson-gxbb.rst
4b9ecd5b7418c0a333435d823205f0569bf5e668 - arm-trusted-firmware/docs/plat/xilinx-zynqmp.rst
e5e2720a56dd4b68568aae99f664a7478121e8cf - arm-trusted-firmware/docs/plat/marvell/index.rst
5315af3195d5a7c46ec750dccbf4f684c0df4e81 - arm-trusted-firmware/docs/plat/marvell/armada/porting.rst
c143e2ca6a4cf9f94d9017f083b9d5dac2a5167d - arm-trusted-firmware/docs/plat/marvell/armada/build.rst
bcb055e4f5b81eda0adb88f8b79f78b72b1332b9 - arm-trusted-firmware/docs/plat/marvell/armada/misc/mvebu-amb.rst
30afe5cabdcd30362317ee05e9fc4203912e1e30 - arm-trusted-firmware/docs/plat/marvell/armada/misc/mvebu-a8k-addr-map.rst
3b71f880342eddec219418df7f6e6034cce505b5 - arm-trusted-firmware/docs/plat/marvell/armada/misc/mvebu-ccu.rst
0af03a25bc9938840be478afe1f0c3375e852dc7 - arm-trusted-firmware/docs/plat/marvell/armada/misc/mvebu-iob.rst
4496a36f12db50b8075c93550ad2b7a23c24e490 - arm-trusted-firmware/docs/plat/marvell/armada/misc/mvebu-io-win.rst
aa2be0dce19adf3702025c84d42587a8d1febeb0 - arm-trusted-firmware/docs/plat/arm/index.rst
3abb2d351f8ba63685ce15c862339db9da2d3ce2 - arm-trusted-firmware/docs/plat/arm/arm-build-options.rst
dc03d6c732257847d92bd05db0e2b93163870fd7 - arm-trusted-firmware/docs/plat/arm/corstone1000/index.rst
46e0aef67518d4e85f7b3f9dc17b5e3a36fc9640 - arm-trusted-firmware/docs/plat/arm/morello/index.rst
e2a46aa8e82f95847753a68a0be016142edd63d4 - arm-trusted-firmware/docs/plat/arm/juno/index.rst
b2ee822aa3f35f04c12fdc9ab44cd66e70b96f38 - arm-trusted-firmware/docs/plat/arm/fvp/index.rst
b10bad88c8647f9ecfe8b3bad163830573cfbdc0 - arm-trusted-firmware/docs/plat/arm/arm_fpga/index.rst
a845be9736fc1cfcd3cefda5b6a0bde2419f9bc0 - arm-trusted-firmware/docs/plat/arm/fvp_r/index.rst
09ec3654ccddcc7942d92d28d1cf1ccc973ba893 - arm-trusted-firmware/docs/plat/arm/tc/index.rst
839b91011a0ebdde7ac9b056ab0a3b087ef11114 - arm-trusted-firmware/docs/plat/arm/fvp-ve/index.rst
7b3072f9759a1fe276a22dcb70d936006608d299 - arm-trusted-firmware/docs/plat/nxp/nxp-layerscape.rst
ed3ec7c6e5baceda79c359ce661ac80dbf660d61 - arm-trusted-firmware/docs/plat/nxp/nxp-ls-tbbr.rst
231fc05a0b2de9270bfe513d92b37243b1cc9601 - arm-trusted-firmware/docs/plat/nxp/nxp-ls-fuse-prov.rst
5d7bd6f5908ace2c36015e0535f2deacac9a2956 - arm-trusted-firmware/docs/plat/nxp/index.rst
af63c8f1c70b2c589dba26872e3ba5244236722f - arm-trusted-firmware/docs/design/reset-design.rst
6e60dedac282498dc34de3ebcecd6f0119e7348d - arm-trusted-firmware/docs/design/trusted-board-boot.rst
b15afee5cbc5225a2ef2f709e9761fa2cd73d65e - arm-trusted-firmware/docs/design/psci-pd-tree.rst
ffda28459589a0ec22cacc12c5b92103ed64fbbc - arm-trusted-firmware/docs/design/auth-framework.rst
f880dd25cbf380065e9d345752376e40bc756664 - arm-trusted-firmware/docs/design/interrupt-framework-design.rst
ff4749d1e71cf1665bbc340e11787c971b395fbc - arm-trusted-firmware/docs/design/trusted-board-boot-build.rst
a3f0b5a39e2120fdbcad8de599b7c1a18345cfcc - arm-trusted-firmware/docs/design/alt-boot-flows.rst
c090c0207efbf2dd33e604231ac981d68aeef308 - arm-trusted-firmware/docs/design/cpu-specific-build-macros.rst
d789165adbc9c0e0ace7d7326f1cf7512fa63c88 - arm-trusted-firmware/docs/design/index.rst
b5b729e65177f7baad24fd693c9b5a9993c50776 - arm-trusted-firmware/docs/design/firmware-design.rst
3fe053ce17752ae01f7d815a5df51f4887d2749f - arm-trusted-firmware/docs/_static/css/custom.css
ff8ad4850057cbaba3caddae15b9429bb9c42b66 - arm-trusted-firmware/docs/perf/tsp.rst
3e1557ac89eff3ea7cb96e090dcc6cd147117008 - arm-trusted-firmware/docs/perf/psci-performance-juno.rst
a19b41fb4dbff6144a8b5f04eb7c296b63c442d6 - arm-trusted-firmware/docs/perf/index.rst
840dcafe1996d0299a5922474d7980b6d2eb779c - arm-trusted-firmware/docs/perf/performance-monitoring-unit.rst
939eb2b8d82c68d6c9a4e8c1271bd83151818553 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-1.rst
1b8c8e49a1eac7ac65f01b730ef3d22dee6de50f - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-5.rst
b748a01e82c3ad35dacc68ae9295e4553d57beab - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-3.rst
e03dee87868096ffa7982026e20837ddfc9a6aa3 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-4.rst
266a8326bc618859a7a18572589b40f197ed1a82 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-6.rst
fab06483aeca0f68846039c9146a6d828ab12518 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-7.rst
5a8ee89be8b54261b0e207ca882fab66cb4db5b9 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-2.rst
63e67342811855c2803be11bca43aa4c60543575 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-8.rst
48c2d42e738237365f9158ca022d56408ef538e9 - arm-trusted-firmware/docs/security_advisories/index.rst
1441246fa837376cb589e45510656ca210e18bb6 - arm-trusted-firmware/docs/security_advisories/security-advisory-tfv-9.rst
32237d53d0db21dee6eedd6143e60e46dec6d79e - arm-trusted-firmware/docs/getting_started/docs-build.rst
9c961219684a654a9367ffdf4856dd21080cfc97 - arm-trusted-firmware/docs/getting_started/porting-guide.rst
da2d29864297e0b06dc8f7ac1d17288a078ae5c6 - arm-trusted-firmware/docs/getting_started/psci-lib-integration-guide.rst
6cc854b04d58541fc0e9043f88c7ece6a68c925d - arm-trusted-firmware/docs/getting_started/tools-build.rst
6ea980565b00e400d102f63072c110d6471b0818 - arm-trusted-firmware/docs/getting_started/initial-build.rst
6914f4b323e042c91ae58018d9217b08f655997d - arm-trusted-firmware/docs/getting_started/image-terminology.rst
97122206fcc716ab5581232da8de4685ba9e7df9 - arm-trusted-firmware/docs/getting_started/rt-svc-writers-guide.rst
e95ba49d1a46a2db605b69f5425a6bc6069d9a41 - arm-trusted-firmware/docs/getting_started/prerequisites.rst
34beaf5d32a409eabaabd8b492f4ffb95daf2b70 - arm-trusted-firmware/docs/getting_started/index.rst
96e5d7607dc9d3c5db2cc3e15eb9b771a429b761 - arm-trusted-firmware/docs/getting_started/build-options.rst
9fcde12a65498faac5c43825aec87d7fd0f2ecb2 - arm-trusted-firmware/docs/process/security-hardening.rst
3f4a6d7ff70fb05d5b604632a17c4f84f8c5ab3a - arm-trusted-firmware/docs/process/faq.rst
2e72ba549eae51afb536d262d8daa4d81aa9a18a - arm-trusted-firmware/docs/process/coding-guidelines.rst
947dfc47181528100c27204431008074dead97a4 - arm-trusted-firmware/docs/process/commit-style.rst
642d7817092741083f4726c2c178f0c3d0e9bba2 - arm-trusted-firmware/docs/process/security.rst
5d47110e0bea04401c509ac372927b21ea650e12 - arm-trusted-firmware/docs/process/contributing.rst
0f5d2a3f45d1b5b5a634ea677c87983ab7a5e769 - arm-trusted-firmware/docs/process/platform-compatibility-policy.rst
3a4d85651ee64cc9eeb924af2325478bcf1f71e2 - arm-trusted-firmware/docs/process/coding-style.rst
bfb4f8dc9ec952cc5582f0a704de50db89072cf8 - arm-trusted-firmware/docs/process/code-review-guidelines.rst
b69510d5984b9f3bc4ecb789acab9ba5308eb6b6 - arm-trusted-firmware/docs/process/index.rst
9db58fa601138b8e16c395f19913a1f106be570c - arm-trusted-firmware/docs/components/realm-management-extension.rst
164b5be074959cef709b8de7cd264d2b720e0386 - arm-trusted-firmware/docs/components/secure-partition-manager.rst
5064b1a7d15e72b127c8fbacf8f11b087446958a - arm-trusted-firmware/docs/components/secure-partition-manager-mm.rst
d2201aab60e237cccd20ad636c8ad4224d7f0571 - arm-trusted-firmware/docs/components/romlib-design.rst
a4af3a93464aafab3bb5428082fa9dec58ed73b5 - arm-trusted-firmware/docs/components/ras.rst
ca2c86b55376dc70e6bbbb76058286ac38e35ba0 - arm-trusted-firmware/docs/components/sdei.rst
963a2ee9d3bf60564d3ab545fed12694fec33fff - arm-trusted-firmware/docs/components/cot-binding.rst
3018701b7ef2e5eca172d3608726f506c4b22909 - arm-trusted-firmware/docs/components/debugfs-design.rst
ec0ac249385853eeb84cc0e4151f612b9d23cadf - arm-trusted-firmware/docs/components/ffa-manifest-binding.rst
b8d62ed8d8e52992c481b3f032a11c132ddc32ca - arm-trusted-firmware/docs/components/mpmm.rst
aca3aea7df00338e307623d4735b027b76f48985 - arm-trusted-firmware/docs/components/platform-interrupt-controller-API.rst
75d075c879040f97f06e2a7b3b6bd34df86b48ac - arm-trusted-firmware/docs/components/activity-monitors.rst
193002dc879b3270f34cff05228d20d88d099fce - arm-trusted-firmware/docs/components/index.rst
8a1dffa8292f295ef5014ac04a74011b4aeea398 - arm-trusted-firmware/docs/components/exception-handling.rst
11abe92eab64d997319223639ad2693b7f7c8535 - arm-trusted-firmware/docs/components/arm-sip-service.rst
602d20bd46337be44a23550620a7a1f748130fb9 - arm-trusted-firmware/docs/components/xlat-tables-lib-v2-design.rst
72ac59432a0693df36a09334d6f57a6f9491189f - arm-trusted-firmware/docs/components/granule-protection-tables-design.rst
e267bb8c86ec7cc1d683daacbb53bd387881178d - arm-trusted-firmware/docs/components/firmware-update.rst
d795da44f403a2a0bc4010ba95915fcabbef3c31 - arm-trusted-firmware/docs/components/fconf/amu-bindings.rst
10529cbd50c1b2a10d7bf7669a515a30f564db2c - arm-trusted-firmware/docs/components/fconf/mpmm-bindings.rst
1d91355dae9ce87dd6d332bfe96019333abb6da0 - arm-trusted-firmware/docs/components/fconf/fconf_properties.rst
c3411adb08049c0735f5b9be29bc976bbcde69c8 - arm-trusted-firmware/docs/components/fconf/index.rst
68d992f28a446b0ffe6adad209b6189f9f0dd6a9 - arm-trusted-firmware/docs/components/spd/trusty-dispatcher.rst
e583074d9e81fffee8804f560b145fa486f1aba8 - arm-trusted-firmware/docs/components/spd/optee-dispatcher.rst
5d7421fde74010efb451e6e515079f37ec3227e2 - arm-trusted-firmware/docs/components/spd/tlk-dispatcher.rst
ee5cface9280894c7d9860dccb78eda3849c9cab - arm-trusted-firmware/docs/components/spd/index.rst
e289a8345f0c801d0e1d079b94c6752a31a28396 - arm-trusted-firmware/docs/components/measured_boot/event_log.rst
f39c4c5b080cb5537f0260d9f3e477e02aa63bfa - arm-trusted-firmware/docs/components/measured_boot/index.rst
ae44163001e4ade4c2e29f6afb43316e7584ee41 - arm-trusted-firmware/bl31/interrupt_mgmt.c
5c6a4c08a854ddd3d464e6d96f605ff5e28fcf28 - arm-trusted-firmware/bl31/ehf.c
ccc40b094b337f6e60b8a4f2a7470ab4c1264f4f - arm-trusted-firmware/bl31/bl31_main.c
75c196ade8ef57a9775c286e3c2f88b52c492e67 - arm-trusted-firmware/bl31/bl31_context_mgmt.c
57600ae63b254bd5341c3728038049d1e9526b9a - arm-trusted-firmware/bl31/bl31.ld.S
64b21af0df86a3f591cbf9889b0990e313980048 - arm-trusted-firmware/bl31/aarch64/ea_delegate.S
86ee5f1020a1ae3e8788204817e6b6fcb0da5922 - arm-trusted-firmware/bl31/aarch64/bl31_entrypoint.S
7c846b0cc5af2d57b0a9ccac7bb940b95f682bce - arm-trusted-firmware/bl31/aarch64/crash_reporting.S
a6aee212d05e2c649a137adf37160a8d24360040 - arm-trusted-firmware/bl31/aarch64/runtime_exceptions.S
edb672bfa3c76059c60544793fb08658398cb3b2 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_fip_def.h
c7727e6a5eb36a39432103f9641b5d1c522fb1a7 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_def.h
d0b4272a97d261d88b6bff05bd2162e0d939ffbb - arm-trusted-firmware/plat/st/stm32mp1/plat_bl2_mem_params_desc.c
dacc55b49253b5d86f120fe7e2ed1de0aaadadcc - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_private.c
71c56ab2e235cc9495de74461f1e2035229c09c0 - arm-trusted-firmware/plat/st/stm32mp1/plat_image_load.c
58a5d9c283fcb21c6328e65dda44190d07fe6bb2 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_syscfg.c
b900c2f6ef836a0f77c00c851815a09220d8c5e3 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_fconf_firewall.c
4ee1c481f43d2f2b9798ffc1f9c6cafa4d1cc371 - arm-trusted-firmware/plat/st/stm32mp1/plat_bl2_stm32_mem_params_desc.c
10b1e53e6d0c0b259d531d284d6b2f64978ff33d - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_boot_device.c
0f0baced38fb65393cd300bdc024b68e707f5f4b - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_topology.c
ec9fe0a8eec79fee1d3dd34bf1a969b8f0b93f4a - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_shared_resources.c
f171c1cd88d3ea2070a747ca519f7d6b9e8257f5 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_usb_dfu.c
3cdcc47dcc28c6e6de2c940df01b5c91d95af92c - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_helper.S
9ad0a2f43f8a0c69c26073e06425579f59986e7b - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_pm.c
7b00ed042c247bac94b4766cb42dddc0e21764fc - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_scmi.c
77c94644e0ef95316e08e0a339fb16a856ae5d97 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_dbgmcu.c
3139c2b0c93ae17696224f59b5486f65e1649dc7 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_gic.c
43753b990fdb953ffc38ef29474ef4af453444b7 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_stack_protector.c
743906eebddff48371349626564704fa54fcdd27 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1.ld.S
e53bc6a3ed66be157fcca494d961241c4a067815 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_security.c
c0910ed9fa547ff95728b0592ee3be13b3615d98 - arm-trusted-firmware/plat/st/stm32mp1/bl2_plat_setup.c
82d557ad976b6dfd8dcdce69b68986e9be70cd5a - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1.S
6a49ad3765ad1a5c42b66eea4f7aeed6c721fdc2 - arm-trusted-firmware/plat/st/stm32mp1/stm32mp1_stm32image_def.h
7eaf59b974175885a0dfccf0b42c774580444f92 - arm-trusted-firmware/plat/st/stm32mp1/include/stm32mp1_smc.h
6d6391c62306978263be31d559221680ed9b6025 - arm-trusted-firmware/plat/st/stm32mp1/include/stm32mp1_shared_resources.h
0cbf680fead56b073a247b36589a06e814bf8995 - arm-trusted-firmware/plat/st/stm32mp1/include/boot_api.h
d12872b893bf8db2b51b7243dd638bf34e9d6cfa - arm-trusted-firmware/plat/st/stm32mp1/include/stm32mp1_dbgmcu.h
6a9fdf66f28b06f20ed4b08bed769e38d88e5995 - arm-trusted-firmware/plat/st/stm32mp1/include/platform_def.h
34bda94b3b92d9b971e0e52f26c98293f35800df - arm-trusted-firmware/plat/st/stm32mp1/include/stm32mp1_private.h
86477b53739886930268a20a1950ef8cb2a1c279 - arm-trusted-firmware/plat/st/stm32mp1/sp_min/sp_min_setup.c
406790007d4d597b108faf9871360acfa7cdcf23 - arm-trusted-firmware/plat/st/stm32mp1/services/stm32mp1_svc_setup.c
3b882920ab056c9bbc38be63b2715e1d796109c4 - arm-trusted-firmware/plat/st/stm32mp1/services/bsec_svc.h
89ab811529f632c51fa5e732be395bac1ea89887 - arm-trusted-firmware/plat/st/stm32mp1/services/bsec_svc.c
356f823bccc7081e026233c6fb511c0602208101 - arm-trusted-firmware/plat/st/common/usb_dfu.c
278442fbef0471df0addfc2b3ce1b10552541e65 - arm-trusted-firmware/plat/st/common/stm32cubeprogrammer_uart.c
79d69f4be6d9e1fc494884f41f92bede1b67c8ff - arm-trusted-firmware/plat/st/common/stm32mp_dt.c
46faa99b227394b11051186b86a163d67c081adc - arm-trusted-firmware/plat/st/common/stm32cubeprogrammer_usb.c
ad3aca5d4f9af9d21c376f972399e2cbbb7102e8 - arm-trusted-firmware/plat/st/common/bl2_stm32_io_storage.c
0d0e487dbff201564fae2a5f2e0bc45059a3ad3d - arm-trusted-firmware/plat/st/common/stm32mp_common.c
b6a6f8374d7f3eadc9cd9b6ad93f62ed12f6851f - arm-trusted-firmware/plat/st/common/stm32mp_fconf_io.c
7a33a3419c93c0bbb21a2c8df792965674477cbf - arm-trusted-firmware/plat/st/common/bl2_io_storage.c
a0bc3acc4ac585d95f9023d8859733edb1ff9c9a - arm-trusted-firmware/plat/st/common/stm32mp_auth.c
dd7ae18098736e737a0482a59de65f64d5edd503 - arm-trusted-firmware/plat/st/common/include/stm32cubeprogrammer.h
b270dbb723f5c002dbf393eb752ccb946afc5baf - arm-trusted-firmware/plat/st/common/include/stm32mp_shared_resources.h
8bb1550cf77c8680e05ba46ad44ab77ff26bb8f3 - arm-trusted-firmware/plat/st/common/include/usb_dfu.h
4ca9fb0296b649411cecd45263ecadb41540d6e4 - arm-trusted-firmware/plat/st/common/include/stm32mp_fconf_getter.h
a48402444da4bcb7bce60d2e3f9972f07bebc8a4 - arm-trusted-firmware/plat/st/common/include/stm32mp_dt.h
1125720a4a5573b7f8197d2dabdf308f51407896 - arm-trusted-firmware/plat/st/common/include/stm32mp_efi.h
af93ef4188fb3950141bc4c2a6e971e965e5c071 - arm-trusted-firmware/plat/st/common/include/stm32mp_auth.h
2a0d6172df32ead3a019d2cbc33e260c3aeba294 - arm-trusted-firmware/plat/st/common/include/stm32mp_common.h
8c442ea195baf9461f2165bae528286c5a71e7ca - arm-trusted-firmware/plat/st/common/include/stm32mp_io_storage.h
3bb10820f3cac4793d72ccd0dbaa9513b9945d80 - arm-trusted-firmware/plat/rockchip/common/rockchip_gicv3.c
4a1355d1645ef943a89aa54999041bd5a970c764 - arm-trusted-firmware/plat/rockchip/common/rockchip_stack_protector.c
9213c21ad6f4d071ef85303d7f16f295b02bc212 - arm-trusted-firmware/plat/rockchip/common/rockchip_gicv2.c
32f9de1c486103a42cf6a9d291f42989b42a98e4 - arm-trusted-firmware/plat/rockchip/common/plat_topology.c
1f63c15382d48351f3d1c1709e7428545ce2cb72 - arm-trusted-firmware/plat/rockchip/common/rockchip_sip_svc.c
d30876af46d1b3b1d2c18f43fa7894f8fda3c5f8 - arm-trusted-firmware/plat/rockchip/common/bl31_plat_setup.c
91be87581dcd25681be045b39eb7934ec59a6fa9 - arm-trusted-firmware/plat/rockchip/common/sp_min_plat_setup.c
4761873c26add12f8bff6e22a79c209ce1923023 - arm-trusted-firmware/plat/rockchip/common/params_setup.c
85d08d7cf74717daed56a0770f3c79bca90280dc - arm-trusted-firmware/plat/rockchip/common/plat_pm.c
4db0b70aecaf5352c4deda76075a44c7ed772f91 - arm-trusted-firmware/plat/rockchip/common/pmusram/cpus_on_fixed_addr.S
23b124a5b49de1ae84aecc76669a8e76f9579f93 - arm-trusted-firmware/plat/rockchip/common/pmusram/cpus_on_fixed_addr.h
2360baef8c09eed0a7d7ca2b2f97f9405c9bfd92 - arm-trusted-firmware/plat/rockchip/common/include/plat_macros.S
e0b9109d2e15ba78290c67b35d231cc82990137e - arm-trusted-firmware/plat/rockchip/common/include/plat_params.h
5c6218088ea95aa4cdcffbabdfabcf2054405b9a - arm-trusted-firmware/plat/rockchip/common/include/plat_private.h
c08e0dba86277197d207590daf335b7a863f4f32 - arm-trusted-firmware/plat/rockchip/common/include/rockchip_sip_svc.h
5b690165e56aee2f4e71841059154598362ce876 - arm-trusted-firmware/plat/rockchip/common/drivers/pmu/pmu_com.h
5c96dda447934109fef22dbfc20108fea56100fe - arm-trusted-firmware/plat/rockchip/common/drivers/parameter/ddr_parameter.c
e40967392bea64496e752401f887b55eae946bf3 - arm-trusted-firmware/plat/rockchip/common/drivers/parameter/ddr_parameter.h
aceb5792fbe22f18f421f2a754469db4f6f62cac - arm-trusted-firmware/plat/rockchip/common/aarch64/plat_helpers.S
258f177b9b9412883f714cff3406818288eca04f - arm-trusted-firmware/plat/rockchip/common/aarch64/pmu_sram_cpus_on.S
47fca1d947e59a046afce81911f7f552c72c6ab5 - arm-trusted-firmware/plat/rockchip/common/aarch64/platform_common.c
63a3ba51a470fe12e6026880ee67d6de178f8590 - arm-trusted-firmware/plat/rockchip/common/aarch32/plat_helpers.S
ba0fb41c4b6e827fc3092feb1e41d096daa7e77c - arm-trusted-firmware/plat/rockchip/common/aarch32/pmu_sram_cpus_on.S
505eeb07bdc39ad3e19a4f6676774af764d3c300 - arm-trusted-firmware/plat/rockchip/common/aarch32/platform_common.c
0b8ef1037611c38ba89966b1da4ef153e47b4fb4 - arm-trusted-firmware/plat/rockchip/rk3368/rk3368_def.h
524ab6d6a8a79e76857af71a8c36886929a16243 - arm-trusted-firmware/plat/rockchip/rk3368/plat_sip_calls.c
c03dbe37ab69ed71bbbc9100b47ff77d3c1f19e9 - arm-trusted-firmware/plat/rockchip/rk3368/include/plat.ld.S
0454e2aefd623a64760090a825f3cb0c26b0a3ca - arm-trusted-firmware/plat/rockchip/rk3368/include/plat_sip_calls.h
5817c26932930a69f20037fcfd33b6f700e518a0 - arm-trusted-firmware/plat/rockchip/rk3368/include/platform_def.h
0ea97dd2ed72ec48826e4668463b1067b1e3e91a - arm-trusted-firmware/plat/rockchip/rk3368/drivers/pmu/plat_pmu_macros.S
859692a896bf24f76093c6cc1a923f3bd7f06c49 - arm-trusted-firmware/plat/rockchip/rk3368/drivers/pmu/pmu.c
985e72c79b58499d32fbf6ef6f46a741c6356e9d - arm-trusted-firmware/plat/rockchip/rk3368/drivers/pmu/pmu.h
a4fe0b238351912e5a3b7e1de16ea4b470dbcfe0 - arm-trusted-firmware/plat/rockchip/rk3368/drivers/ddr/ddr_rk3368.h
edac1a959247a82db5f820097a9f8ded6c4665b4 - arm-trusted-firmware/plat/rockchip/rk3368/drivers/ddr/ddr_rk3368.c
7a2d810a3f11780033972a9b1f3f2eb09adddfc5 - arm-trusted-firmware/plat/rockchip/rk3368/drivers/ddr/rk3368_ddr_reg_resume_V1.05.bin
22974ca90d72fb96f260417ace863c692dad5cdc - arm-trusted-firmware/plat/rockchip/rk3368/drivers/soc/soc.c
cb622b7fdee1e5387ed783d371b6cfdd0400df92 - arm-trusted-firmware/plat/rockchip/rk3368/drivers/soc/soc.h
524ab6d6a8a79e76857af71a8c36886929a16243 - arm-trusted-firmware/plat/rockchip/rk3288/plat_sip_calls.c
7d9851bfe1b3a6bff1b3fe3a5a42152bdbbdd641 - arm-trusted-firmware/plat/rockchip/rk3288/rk3288_def.h
0454e2aefd623a64760090a825f3cb0c26b0a3ca - arm-trusted-firmware/plat/rockchip/rk3288/include/plat_sip_calls.h
0a2a001f434d83ab306c453b6d60f886a0b59a96 - arm-trusted-firmware/plat/rockchip/rk3288/include/platform_def.h
58f0ccc10fae70932566781c7c34457a239e027c - arm-trusted-firmware/plat/rockchip/rk3288/include/plat_sp_min.ld.S
1321792bce42c44c3fed91fea86cceca52486ffa - arm-trusted-firmware/plat/rockchip/rk3288/include/shared/bl32_param.h
70ecc34e2c4236edbd52a088d6dc72300d1038e0 - arm-trusted-firmware/plat/rockchip/rk3288/drivers/secure/secure.h
90e4b5914845f3238bde4617bcf04acabfc52406 - arm-trusted-firmware/plat/rockchip/rk3288/drivers/secure/secure.c
db1ef060ee221e9b61acbb781c42ed42e926b26e - arm-trusted-firmware/plat/rockchip/rk3288/drivers/pmu/plat_pmu_macros.S
bcf5a24d5d284bc2b87c3b5299a9f548df4bc95f - arm-trusted-firmware/plat/rockchip/rk3288/drivers/pmu/pmu.c
53d9e3936b39e758560745d492d1473ac9c98278 - arm-trusted-firmware/plat/rockchip/rk3288/drivers/pmu/pmu.h
408d92dc22d97bff7148a2338e91746328b4bb4f - arm-trusted-firmware/plat/rockchip/rk3288/drivers/soc/soc.c
00a800ecdcad577d80ed2968cfee8abc2ff260d0 - arm-trusted-firmware/plat/rockchip/rk3288/drivers/soc/soc.h
80988c6b4c1d5c128f556b4704d2a13dca1b94ac - arm-trusted-firmware/plat/rockchip/rk3399/plat_sip_calls.c
07fcff2e4785739f2818730be2df2798395d6dd0 - arm-trusted-firmware/plat/rockchip/rk3399/rk3399_def.h
735db5fedc39c83875dd50d345431e840a75ce95 - arm-trusted-firmware/plat/rockchip/rk3399/include/addressmap.h
33691c33d59c3cbf5321efb5e9cf1ce6f908b1b3 - arm-trusted-firmware/plat/rockchip/rk3399/include/plat.ld.S
0454e2aefd623a64760090a825f3cb0c26b0a3ca - arm-trusted-firmware/plat/rockchip/rk3399/include/plat_sip_calls.h
d037385198294976c392eaac15722c2bc43171e6 - arm-trusted-firmware/plat/rockchip/rk3399/include/platform_def.h
f61d8134dfdbc2de01b130177e3623bfc96e582b - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/dram_regs.h
37de06dae36b2c9133dfa3db58b9403eca97534e - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/m0_param.h
a3ec096942a7038a658d2de2da28c8d7772e2601 - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/pmu_bits.h
dffb716056a5cfe4289bde5769bacd0a9c517467 - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/bl31_param.h
d3a8c566b07530d947493f642a829c2173e7eb3c - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/addressmap_shared.h
514bb50a35bc277734414a501833d9cf9103b613 - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/misc_regs.h
e27f9ab0eb7cc700bac4af81ef063675ddea3d16 - arm-trusted-firmware/plat/rockchip/rk3399/include/shared/pmu_regs.h
34cef331645617d77f27ee050065b2678b021605 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/secure/secure.h
12d0e498bcf7645b6d17eda0b6c88f9c68345720 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/secure/secure.c
fdf96b7b34ebbd88b6c053c20c493dfcd5d2eec6 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pmu/m0_ctl.h
4f34aa4fe829a116338b7c8cb363091b98b1df1c - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pmu/plat_pmu_macros.S
21c19d18b927a98e453d2dd32fa075e1556c8d10 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pmu/pmu.c
a203f9155033bc4a154799d63ebe669baadb7c82 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pmu/pmu_fw.c
26f96f6bfc5d8cd2811341eaa144693019daa5cf - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pmu/pmu.h
8080df60a96f3ccb59e64a8c4468c29298a40160 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pmu/m0_ctl.c
2f72933afb37b859ea9a98d233ab11f81301c9db - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/Makefile
98a096aced18ab4c9a4b3ab325773ed273acd4cd - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/include/addressmap.h
222366fd88fa37c34896b96be4724020febaf122 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/include/rk3399_mcu.h
9cfa6b80558dac90724c830c7c2b792099232962 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/src/rk3399m0.ld.S
249a2bba707f4aae60e76e4d2ca07180426f3657 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/src/stopwatch.c
3832f35bf0192ab6299ed6f72d97ea798c64ec01 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/src/dram.c
c651d2e10f915a285792aa7e66836e66a3fb3b68 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/src/startup.c
15ccafa1fb201c2bdc50eb32beb4d9331e95424b - arm-trusted-firmware/plat/rockchip/rk3399/drivers/m0/src/suspend.c
912b3ac53149ee0912cdc571503cbe6f5d9e5e31 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pwm/pwm.h
81bb90565c30ebb1d2a2074e665099c5df4b3f16 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/pwm/pwm.c
e4ba052fe71c1dbb0fd712a9e23751995fa17236 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dp/hdcp.bin
8af098c906ff4222b7fb1b8a8e528a842931e11a - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dp/cdn_dp.c
0e0164a1fd25ccd71404f643551fc197b6d3545f - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dp/cdn_dp.h
1761d34cf2fa35e5eaf8e4707cde5f3fec7345ce - arm-trusted-firmware/plat/rockchip/rk3399/drivers/gpio/rk3399_gpio.c
fde45271c5e9a03975a13a19aa58f7ce1627247b - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/dfs.c
cc96ce897ce3dfd398d571f73d60df020e312a7f - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/dram.h
d4edbc276d8a41ceabeabd135ee44750077267fb - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/dram_spec_timing.h
1a0ef7b5013eea98c8892cc73f9acf7aadc6542b - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/dram.c
91fa17de464bf17060f5d782d3addc2d250f2bcf - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/dfs.h
8bb28c62f323cba1149703071fa6c9cd723e7681 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/suspend.h
341cf7780e76c0eed9bb587ced84821148eaeba4 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/dram_spec_timing.c
455f3ca45423a7d3a17a25fa9a199ee6f33accdf - arm-trusted-firmware/plat/rockchip/rk3399/drivers/dram/suspend.c
f10fc723b4f781fa92f52d189e12ab2599f2be33 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/soc/soc.c
d6f6a92953b02dda92949d05699b4a8c09ec1ab6 - arm-trusted-firmware/plat/rockchip/rk3399/drivers/soc/soc.h
ef5a8ce281d95041b91f8f165ef782642d022de2 - arm-trusted-firmware/plat/rockchip/px30/px30_def.h
6fd13eff5a2d17a6f2e651b3eba6211a93d3522f - arm-trusted-firmware/plat/rockchip/px30/plat_sip_calls.c
be822c3b60a3f8f4215925d9c6aa8ff3d90ab56b - arm-trusted-firmware/plat/rockchip/px30/include/plat.ld.S
4abb3f49d90cc7242ff9d366432f9423ed190c44 - arm-trusted-firmware/plat/rockchip/px30/include/plat_sip_calls.h
8b1c4b26a5cf109ec97a2bd711e46dc76c20891c - arm-trusted-firmware/plat/rockchip/px30/include/platform_def.h
7129bd0759914b2bdbe0af12743e79277b990a3d - arm-trusted-firmware/plat/rockchip/px30/drivers/secure/secure.h
e5df7e7476f59e23d9c3c1097c64bad93fb273ca - arm-trusted-firmware/plat/rockchip/px30/drivers/secure/secure.c
4661321c301694bb1cfb029693c60d50387885d6 - arm-trusted-firmware/plat/rockchip/px30/drivers/pmu/plat_pmu_macros.S
338871ee4d601414cf6ab0c718cb19938c37c7b5 - arm-trusted-firmware/plat/rockchip/px30/drivers/pmu/pmu.c
6940e4242af969ec608caab6d93dd03364b78580 - arm-trusted-firmware/plat/rockchip/px30/drivers/pmu/pmu.h
288f8f52c9a5423576d1fd403f776da8e5906395 - arm-trusted-firmware/plat/rockchip/px30/drivers/soc/soc.c
dbc0dd67905cb60b55ff82d4f1d8bf96a7ec2514 - arm-trusted-firmware/plat/rockchip/px30/drivers/soc/soc.h
9eb41f0b086d93dd52f10cd88c871e9f872da485 - arm-trusted-firmware/plat/rockchip/rk3328/rk3328_def.h
c03dbe37ab69ed71bbbc9100b47ff77d3c1f19e9 - arm-trusted-firmware/plat/rockchip/rk3328/include/plat.ld.S
d0cf327dcd15f8fc85f2c3c93e82fd6199973f0b - arm-trusted-firmware/plat/rockchip/rk3328/include/platform_def.h
74e69a5d06c7c10f8fd04052bfd92c89a6b685c2 - arm-trusted-firmware/plat/rockchip/rk3328/drivers/pmu/plat_pmu_macros.S
d6fb6002e2f08bc736d1fbcfef5f7d518331e24a - arm-trusted-firmware/plat/rockchip/rk3328/drivers/pmu/pmu.c
75d3fb351c1418d28d1be951921dde7cac623d53 - arm-trusted-firmware/plat/rockchip/rk3328/drivers/pmu/pmu.h
aa37703bdb16d2d93c4cb6a1c3f5740f10400717 - arm-trusted-firmware/plat/rockchip/rk3328/drivers/soc/soc.c
888b9ca7b2dca798b061df341269bb1bf0cdc6a2 - arm-trusted-firmware/plat/rockchip/rk3328/drivers/soc/soc.h
1b86970e6e211ba1548f3469a4682db7c31577f1 - arm-trusted-firmware/plat/amlogic/common/aml_mhu.c
1c810633809eed169ef7ae47da01b6326b111a64 - arm-trusted-firmware/plat/amlogic/common/aml_console.c
f1168dcf0c90f4d7a3456d82b909e287a16875ed - arm-trusted-firmware/plat/amlogic/common/aml_topology.c
fa91c2d51bbe34be89ba41e055f4e78eba6ac67e - arm-trusted-firmware/plat/amlogic/common/aml_efuse.c
2321fbf75d8e96d90a1b6f6a14160c91b949cabc - arm-trusted-firmware/plat/amlogic/common/aml_scpi.c
22fc306f5f9b6613312023233481baaf99493614 - arm-trusted-firmware/plat/amlogic/common/aml_sip_svc.c
887d16c962bbfdec5ddb366c33ffec0ad5697447 - arm-trusted-firmware/plat/amlogic/common/aml_thermal.c
74bc476713af13ff5ee94c7bdad6c5763f99e9af - arm-trusted-firmware/plat/amlogic/common/include/plat_macros.S
5240bdc42061a821a089cae1eeca3fb799e6aa1c - arm-trusted-firmware/plat/amlogic/common/include/aml_private.h
61752908966c74b637938d2fa11e73c5d5373d9d - arm-trusted-firmware/plat/amlogic/common/aarch64/aml_helpers.S
28726387d3750ce4724f9147e5e173131ee7164f - arm-trusted-firmware/plat/amlogic/g12a/g12a_common.c
03a70925292deabd473bf5ffcd0d0d95dd70456e - arm-trusted-firmware/plat/amlogic/g12a/g12a_pm.c
fe8712d8d4a3787c6c2456ffcc2cc468b12bfd7e - arm-trusted-firmware/plat/amlogic/g12a/g12a_bl31_setup.c
495f096204283e82b03abed56414e3d1a29f9b6f - arm-trusted-firmware/plat/amlogic/g12a/g12a_def.h
8e1154709ae343cd8d783739b29005ea2b9a7c7f - arm-trusted-firmware/plat/amlogic/g12a/include/platform_def.h
3667781fa0058dcdd1cff5587b45c798978c7966 - arm-trusted-firmware/plat/amlogic/axg/axg_bl31_setup.c
d3c822e681ab6d5016ae06adb88ca9aeb6073aba - arm-trusted-firmware/plat/amlogic/axg/axg_common.c
7fdb79ffddbe1ee7f1b2c543a1eaa07f2671a2ca - arm-trusted-firmware/plat/amlogic/axg/axg_pm.c
c60f26b9eb14d703065a758062f9c76e4e70f8ed - arm-trusted-firmware/plat/amlogic/axg/axg_def.h
faf31bdcea206b83c40fbe2d878c14fa8327a37a - arm-trusted-firmware/plat/amlogic/axg/include/platform_def.h
3389361e87f5cd5e4f7e606599032c3aa3a41b72 - arm-trusted-firmware/plat/amlogic/gxbb/gxbb_def.h
25d4db1b1e385a2e45f4ffea43edbfc8bf4fef89 - arm-trusted-firmware/plat/amlogic/gxbb/gxbb_common.c
704885551348b4b44d9b7b092aafc3c54533b7e0 - arm-trusted-firmware/plat/amlogic/gxbb/gxbb_bl31_setup.c
80fbc4757d8f389dc885b90a5eef8c0c4f6e23c2 - arm-trusted-firmware/plat/amlogic/gxbb/gxbb_pm.c
d558f98c64955249d21b9227149b68808cb3e358 - arm-trusted-firmware/plat/amlogic/gxbb/include/platform_def.h
8b93edbe34b51b737299797607de4e6ff0003917 - arm-trusted-firmware/plat/amlogic/gxl/gxl_common.c
550ec6753c2e8a5f41a920ea9bfffec47ae78dc8 - arm-trusted-firmware/plat/amlogic/gxl/gxl_bl31_setup.c
5ce07f2865d514a3a8979c638337a338fa110f74 - arm-trusted-firmware/plat/amlogic/gxl/gxl_pm.c
68a18488494ea52a108462ec30b6833447e75e62 - arm-trusted-firmware/plat/amlogic/gxl/gxl_def.h
22603b51918b7c1f721eee33d26629b16cff6683 - arm-trusted-firmware/plat/amlogic/gxl/include/platform_def.h
46c13e3cff3d9c29a733d01629589bd31b37eb5e - arm-trusted-firmware/plat/rpi/common/rpi3_stack_protector.c
dc79372e77a81c53ff2886832f206db2f63873b7 - arm-trusted-firmware/plat/rpi/common/rpi3_topology.c
d2d1fd0fffc8a200fd42f1b74c8c7d54c483f219 - arm-trusted-firmware/plat/rpi/common/rpi3_trusted_boot.c
11c87bf8a084123bf9a431cc289a66e23112bade - arm-trusted-firmware/plat/rpi/common/rpi3_rotpk.S
2880e20e8241800797f95dadcd5a206d82ba45ed - arm-trusted-firmware/plat/rpi/common/rpi3_pm.c
e621f46501a2d1856f297145947d1c8d89d5f990 - arm-trusted-firmware/plat/rpi/common/rpi3_image_load.c
41feb9d914df818ac88209ee1569e1701d794248 - arm-trusted-firmware/plat/rpi/common/rpi3_common.c
854bc00d3c5fce60726920c1e5b1b7cd9352568a - arm-trusted-firmware/plat/rpi/common/rpi3_io_storage.c
c3a79cfd4e400e0a2dfa7ee5e27e50f1bcd8464b - arm-trusted-firmware/plat/rpi/common/include/rpi_shared.h
d2456dd752e5376ca6049639fe93ef04bd5aa04f - arm-trusted-firmware/plat/rpi/common/aarch64/plat_helpers.S
052815ff6a9d47f47e57d320313a74f10c8a34d3 - arm-trusted-firmware/plat/rpi/rpi3/rpi3_bl31_setup.c
20b2e08539e950f86d86538ed688408f90574454 - arm-trusted-firmware/plat/rpi/rpi3/rpi3_bl2_setup.c
d9b070fbdda2cab75cc45e6dddd9a31f84baf594 - arm-trusted-firmware/plat/rpi/rpi3/rpi3_bl1_setup.c
fd5000ab9d2eac8341e267b879e1ef29eaebf5d7 - arm-trusted-firmware/plat/rpi/rpi3/rpi_mbox_board.c
64987d2484ce3d48cc4431fee2de9e375235bb5a - arm-trusted-firmware/plat/rpi/rpi3/include/plat_macros.S
7aeb3415e697151619997c1c184f380eb310be78 - arm-trusted-firmware/plat/rpi/rpi3/include/platform_def.h
94001fd4bfa1b8e08f4d51f437c7b006362f24fd - arm-trusted-firmware/plat/rpi/rpi3/include/rpi_hw.h
5a79ec05194636d3850044f358b4673a3f0b9fa0 - arm-trusted-firmware/plat/rpi/rpi3/aarch64/rpi3_bl2_mem_params_desc.c
793e163b5e60486c53f3ff36c98ab1c8f144a1bd - arm-trusted-firmware/plat/rpi/rpi4/rpi4_bl31_setup.c
54eb696ef592336053f52bc556f47122b4e94fdc - arm-trusted-firmware/plat/rpi/rpi4/rpi4_pci_svc.c
b1c50f058d68ea165b6dd5f45af97d2b1dd33e64 - arm-trusted-firmware/plat/rpi/rpi4/include/plat_macros.S
4d8d91a23a19a15ff7c18f8e6e523c26cd453f2f - arm-trusted-firmware/plat/rpi/rpi4/include/plat.ld.S
6a73f5496572d65332bbf4a50c3c9d4faa9af438 - arm-trusted-firmware/plat/rpi/rpi4/include/platform_def.h
e2412e3cbdcc8daaecfab85f295ee3456cf1f98d - arm-trusted-firmware/plat/rpi/rpi4/include/rpi_hw.h
5e76d520f8ea85f6710a605e2c9a4db0d1a66640 - arm-trusted-firmware/plat/rpi/rpi4/aarch64/armstub8_header.S
9b8db7387e47af68fc183fe909d3060d65438cb2 - arm-trusted-firmware/plat/brcm/common/brcm_io_storage.c
6d6865834cfc5ce82506bf1ef6df2e3cb196e028 - arm-trusted-firmware/plat/brcm/common/brcm_scpi.c
d083c67e189d3cd3712a827a23e28d0aaf2964d1 - arm-trusted-firmware/plat/brcm/common/brcm_bl31_setup.c
389238486613bb86c6032f788a4605c782e7475c - arm-trusted-firmware/plat/brcm/common/brcm_gicv3.c
7c0af43209d486bb7d9b76b244d3fc5ec97b4328 - arm-trusted-firmware/plat/brcm/common/brcm_bl2_mem_params_desc.c
02ea7c4006c2910720bf4a85c3766c293d4cb8e5 - arm-trusted-firmware/plat/brcm/common/brcm_mhu.h
43da4a7bd6435c6cc7d733e6363a59cacabb9ef5 - arm-trusted-firmware/plat/brcm/common/brcm_mhu.c
43088754fcc9a1fcbb6308988d79eca0c2771d5a - arm-trusted-firmware/plat/brcm/common/brcm_ccn.c
48faf64df1848d8493a3f273494ea883a4aafb0c - arm-trusted-firmware/plat/brcm/common/brcm_common.c
303c81103a6ebbdf9e4afc16b17d17195a5b9238 - arm-trusted-firmware/plat/brcm/common/brcm_scpi.h
c02bbae941528cbae0665016d62e54bfffb74444 - arm-trusted-firmware/plat/brcm/common/brcm_bl2_setup.c
2ef6d891873792dd5af17cc1091f369c0865c70d - arm-trusted-firmware/plat/brcm/common/brcm_image_load.c
4573848f39ea4bfceb55e0932f0494af8b890d1d - arm-trusted-firmware/plat/brcm/board/stingray/driver/sr_usb.h
1071f5589a11aaf7354868d034e149b27d48adc6 - arm-trusted-firmware/plat/brcm/board/stingray/driver/swreg.c
13bbb4dc261e840997a59d4e914f071835d33fab - arm-trusted-firmware/plat/brcm/board/stingray/driver/usb_phy.c
7cc68c731d1d4e967a6b258c94afef74800e2c27 - arm-trusted-firmware/plat/brcm/board/stingray/driver/usb.c
483849480279e54ca28e4177fea05d6bd3cd36d7 - arm-trusted-firmware/plat/brcm/board/stingray/driver/ihost_pll_config.c
b4637f982a40118b9d83d3908d0b189d3524bce0 - arm-trusted-firmware/plat/brcm/board/stingray/driver/plat_emmc.c
46e832c20411ea4d2bcbcf1cc8968149375047f4 - arm-trusted-firmware/plat/brcm/board/stingray/driver/ext_sram_init/ext_sram_init.h
d0dacd8fc79f78cee10bd8513550abf93624afe2 - arm-trusted-firmware/plat/brcm/board/stingray/driver/ext_sram_init/ext_sram_init.c
eed068af90592502021f8e15b556ae302cd8db87 - arm-trusted-firmware/plat/brcm/board/stingray/driver/ddr/soc/include/board_family.h
2ef5c016a1130291e30fb58c1e1b397bb15a531c - arm-trusted-firmware/plat/brcm/board/stingray/include/platform_sotp.h
491a5116f054df365b530dc8b09613f1178c2d8a - arm-trusted-firmware/plat/brcm/board/stingray/include/sr_def.h
10104d7d5d9eeeb545dea9ac306deb2c5cf46036 - arm-trusted-firmware/plat/brcm/board/stingray/include/plat_macros.S
e7629876236e444ee69e40c96440f3f24b16fefe - arm-trusted-firmware/plat/brcm/board/stingray/include/usb_phy.h
8c57e437d9f4b2b49f005f899624af9b47121102 - arm-trusted-firmware/plat/brcm/board/stingray/include/crmu_def.h
9765542d155d4fc37ee167eda672c6a33030ca8c - arm-trusted-firmware/plat/brcm/board/stingray/include/iommu.h
90c98d478915f89433c419b06613a52965aeeef6 - arm-trusted-firmware/plat/brcm/board/stingray/include/sr_utils.h
a6bea74c09e847241ba6a156aff89b12670cc98b - arm-trusted-firmware/plat/brcm/board/stingray/include/scp_cmd.h
2817bede11ad2da4d5612a155f5a76e30b62de62 - arm-trusted-firmware/plat/brcm/board/stingray/include/paxc.h
bbaec5f331d8cf8f24898a8d172190c5f7940b6a - arm-trusted-firmware/plat/brcm/board/stingray/include/ihost_pm.h
d823df9c59408673229302e557a65ad1c404e047 - arm-trusted-firmware/plat/brcm/board/stingray/include/platform_def.h
4bc4735b9e7c2a5eab8ae91a28d110dd24a42d75 - arm-trusted-firmware/plat/brcm/board/stingray/include/sdio.h
0228e24fbe8ff775ac7a709f272d375a8e7aa3bf - arm-trusted-firmware/plat/brcm/board/stingray/include/scp_utils.h
1dea9a2af71a56fe60929b854a2c73220603d2be - arm-trusted-firmware/plat/brcm/board/stingray/include/timer_sync.h
cc26d153c04427651e12bf00d19497e5bd8cb7a3 - arm-trusted-firmware/plat/brcm/board/stingray/include/platform_usb.h
76dbcdb10f12f01d94b3c70d2f8562b0cc8b233a - arm-trusted-firmware/plat/brcm/board/stingray/include/paxb.h
b0a1c672d4d7095f6e7ec5305e084cb3a29a790e - arm-trusted-firmware/plat/brcm/board/stingray/include/bl33_info.h
0ef862af40a95d70feda6b8367e6e7452e90099b - arm-trusted-firmware/plat/brcm/board/stingray/include/board_info.h
eeabf0e8e4cda99b503b2ea41298aff2d87e1278 - arm-trusted-firmware/plat/brcm/board/stingray/include/ddr_init.h
2c4acf78dfd7c25c281471b6717273ff7920fea8 - arm-trusted-firmware/plat/brcm/board/stingray/include/ncsi.h
bd25c5d9d7605649bc1d1dee9a734ccb130101c3 - arm-trusted-firmware/plat/brcm/board/stingray/include/fsx.h
1e67ee0873eb29816b418096b514d39c3aeb7d27 - arm-trusted-firmware/plat/brcm/board/stingray/include/swreg.h
ac2b64132debec3b54ae614c64dac69067b39291 - arm-trusted-firmware/plat/brcm/board/stingray/aarch64/plat_helpers.S
78d2915d5c3a6c4b75eb97c897cd4e58b4d5b962 - arm-trusted-firmware/plat/brcm/board/stingray/src/topology.c
f89deabe82fe9129f1dde3fb24e57c940e008913 - arm-trusted-firmware/plat/brcm/board/stingray/src/bl2_setup.c
52a5e5247c12940390abe486ab490a1d8929feb4 - arm-trusted-firmware/plat/brcm/board/stingray/src/paxb.c
863c6f32899af28cd9a60fb273bdc02a29100114 - arm-trusted-firmware/plat/brcm/board/stingray/src/sr_paxb_phy.c
c01d8b9f9c48a1185129c492ab1f8ce1134ed892 - arm-trusted-firmware/plat/brcm/board/stingray/src/scp_utils.c
d746f7070f366ac250b3766606d2de76a6192436 - arm-trusted-firmware/plat/brcm/board/stingray/src/fsx.c
75de08bf7cc548fc88463a459efa719ce9dae276 - arm-trusted-firmware/plat/brcm/board/stingray/src/pm.c
085cb8e4f6dd01efc01f633680e7db315718c304 - arm-trusted-firmware/plat/brcm/board/stingray/src/ihost_pm.c
d15b82eea2aaa023805036e829ee46cd08ea72ed - arm-trusted-firmware/plat/brcm/board/stingray/src/iommu.c
e9f5650def0bf0c03c50ad69056cf6ff9d71a715 - arm-trusted-firmware/plat/brcm/board/stingray/src/tz_sec.c
062b1d173f23bc015ebb5c790f890e5f2a6934e1 - arm-trusted-firmware/plat/brcm/board/stingray/src/paxc.c
0283858faf5651d4db16f0e4b8bcaadd40bcabe1 - arm-trusted-firmware/plat/brcm/board/stingray/src/scp_cmd.c
9b0afdae90ec3159bd428d4b9f586d84a0cb55b3 - arm-trusted-firmware/plat/brcm/board/stingray/src/sdio.c
77916c4c9e55da373b1b66dba19dfed0034cde48 - arm-trusted-firmware/plat/brcm/board/stingray/src/bl31_setup.c
072e5bc5c72a860c50c3413898b60dd18931b100 - arm-trusted-firmware/plat/brcm/board/stingray/src/ncsi.c
1fd2e7122a0c63a14a64215ae5750097f050841b - arm-trusted-firmware/plat/brcm/board/stingray/src/brcm_pm_ops.c
500e36754a0240001fe7b400bf8d4806a06de6ee - arm-trusted-firmware/plat/brcm/board/common/timer_sync.c
2d3a08ac4729a455bffd5c4c70365350fec69e23 - arm-trusted-firmware/plat/brcm/board/common/bcm_elog_ddr.h
eeff346a4c2b6893ad0fa417570e747058627c11 - arm-trusted-firmware/plat/brcm/board/common/cmn_sec.h
801bb1cdab4baf3440ac23728e6190881af4264f - arm-trusted-firmware/plat/brcm/board/common/bcm_elog_ddr.c
b2a5352558dc92001c80e614a9b293a1eb19573a - arm-trusted-firmware/plat/brcm/board/common/plat_setup.c
9635661f5e56e9ab172dcec943257465bf36e634 - arm-trusted-firmware/plat/brcm/board/common/bcm_elog.c
c0ecc823e4de1814edd6bf48321b6317c448b16d - arm-trusted-firmware/plat/brcm/board/common/sbl_util.c
5f45cc70d813bf16880f4f1f4a246ad6114fbb78 - arm-trusted-firmware/plat/brcm/board/common/cmn_plat_util.h
9eda9f547bdfb6e83ef3c8d82d849e1e4cb68252 - arm-trusted-firmware/plat/brcm/board/common/brcm_mbedtls.c
aaa8593ded989c77280d5a16f541eefd45c62067 - arm-trusted-firmware/plat/brcm/board/common/cmn_plat_def.h
dfc2e7fae9dd66b664758412e1f4c06762246ed6 - arm-trusted-firmware/plat/brcm/board/common/cmn_sec.c
515e3aecc5237dcc8197e4e8ed7fd7d15765d808 - arm-trusted-firmware/plat/brcm/board/common/bcm_console.c
eca89f1edcb0c3fc702ac123a55821cde16106bb - arm-trusted-firmware/plat/brcm/board/common/err.c
779be799404c9562032c8c586f3a3b23835ad722 - arm-trusted-firmware/plat/brcm/board/common/board_arm_trusted_boot.c
c124ba5ec6d9fc3e8f1f0b72d3852473ab67e998 - arm-trusted-firmware/plat/brcm/board/common/board_common.c
a731b4badf1cf5a90a0ab197b39a2723e4c85dd9 - arm-trusted-firmware/plat/brcm/board/common/platform_common.c
a794cd95a890c951acc5192426abc008b4213a8f - arm-trusted-firmware/plat/brcm/board/common/chip_id.h
2cf7d5accbb22d89a3c89c768604f667a23bef52 - arm-trusted-firmware/plat/brcm/board/common/sbl_util.h
fc6886e5619aabaff7153e268ba005d385a73e3a - arm-trusted-firmware/plat/xilinx/zynqmp/zynqmp_ipi.c
614b7c2d4fab5909e7df0076f873699e84b1737a - arm-trusted-firmware/plat/xilinx/zynqmp/sip_svc_setup.c
fdef05d43dd39fc9b4d18e7933fadc3d7b388c0b - arm-trusted-firmware/plat/xilinx/zynqmp/plat_topology.c
91da7e2e2aedb93811b290946f5b62a4b99a6e6e - arm-trusted-firmware/plat/xilinx/zynqmp/bl31_zynqmp_setup.c
e5c72cd4f7db3ba2c52afa5ea2a6f81048fa8876 - arm-trusted-firmware/plat/xilinx/zynqmp/plat_psci.c
eed49df98140b8681bbbff7a1c514734c884b8aa - arm-trusted-firmware/plat/xilinx/zynqmp/plat_zynqmp.c
9eafad8129f35d9d02d9cc93d60e653c41e3b321 - arm-trusted-firmware/plat/xilinx/zynqmp/zynqmp_ehf.c
4018dd905c37ab4e205c88450ef0d6b0a1d45041 - arm-trusted-firmware/plat/xilinx/zynqmp/zynqmp_sdei.c
f82a0ba91d921f8782dbacd326cf93f93d406ff3 - arm-trusted-firmware/plat/xilinx/zynqmp/tsp/tsp_plat_setup.c
8ede155c56692751835019579474fd5fbda5ba26 - arm-trusted-firmware/plat/xilinx/zynqmp/include/plat_macros.S
719fc3fa9d14be22cfb4a79dd8838b27fef9f247 - arm-trusted-firmware/plat/xilinx/zynqmp/include/plat_ipi.h
04358429a766678c1ea60bc976430714db3fac40 - arm-trusted-firmware/plat/xilinx/zynqmp/include/plat_private.h
6d98421b38c7e24ec53977e85b4776275af5d9c5 - arm-trusted-firmware/plat/xilinx/zynqmp/include/zynqmp_def.h
606bd0aedd3a81bf175ef81f028eae35e7511725 - arm-trusted-firmware/plat/xilinx/zynqmp/include/platform_def.h
fcc8c8052c715326e932fd7e210fe0beefa2d175 - arm-trusted-firmware/plat/xilinx/zynqmp/include/plat_pm_common.h
bca57ae928a46e00c62d44205c7238c103d89723 - arm-trusted-firmware/plat/xilinx/zynqmp/aarch64/zynqmp_helpers.S
e9430970a771c9add648211e2c05e63b0b2bf71b - arm-trusted-firmware/plat/xilinx/zynqmp/aarch64/zynqmp_common.c
4a69759072ab900e304081d6a5542761b628115d - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_ioctl.h
d55e25c027a7950b3a7d34551ba2af0a05e70ac4 - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_svc_main.c
620a7d35e7cfe3a416c79ab84094934f41b3821e - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_sys.c
d6d44bea498c26d61f58d11284635f45c0d747fa - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_sys.h
63045bc978271095cfdd4cb91e9d2c3d416cdb6b - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_defs.h
e1e42c17e346cb2bdd9bcedf9491e65dcf5a101f - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_svc_main.h
4b8489810a7c5bd8524f87d7c37edf02b747ab48 - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_ioctl.c
4cadaaf7eb5f5f047bac44095d19052727b55a02 - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_pinctrl.c
4738dfbb7a3a9789e0e520c2d4c7f83b635e3e9b - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_pinctrl.h
6a34f58d5ec913711c12c58c945dfa18659b999a - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_clock.h
cd3edf132c54e7b51bf04235b10d9de35394acda - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_api_clock.c
7bfba4ae2b47e068f8f5ed8aeed42daad00743c8 - arm-trusted-firmware/plat/xilinx/zynqmp/pm_service/pm_client.c
f241ecfc0ce4c6677cbaca2991578232a4c20ad7 - arm-trusted-firmware/plat/xilinx/versal/sip_svc_setup.c
d959b29c70b303c44eca6045c664945b0fe74852 - arm-trusted-firmware/plat/xilinx/versal/plat_topology.c
04dac5fd40da85ec2a19ccf681ff7f4b708b31bc - arm-trusted-firmware/plat/xilinx/versal/plat_versal.c
d25ef41e434700921c3427ff0dac7aba4b81e1ba - arm-trusted-firmware/plat/xilinx/versal/versal_ipi.c
b01dcfd7b061210199bce3d5632bc39be25a89fb - arm-trusted-firmware/plat/xilinx/versal/plat_psci.c
0f5013cb9f4dd7864aec9fdc3febb4a88c603b5f - arm-trusted-firmware/plat/xilinx/versal/versal_gicv3.c
415d7b76162c6a447101507b3181aa7434887756 - arm-trusted-firmware/plat/xilinx/versal/bl31_versal_setup.c
d43cd481e9d0acc960fc0f51fbeb274b0ec28712 - arm-trusted-firmware/plat/xilinx/versal/include/plat_macros.S
50268618a09434af24c4a339c20a1b7b4a2e4901 - arm-trusted-firmware/plat/xilinx/versal/include/plat_ipi.h
34e333d135956229875de69051e5d541a789cb2d - arm-trusted-firmware/plat/xilinx/versal/include/plat_private.h
23d939fae06d7a162821162cec379264613379ad - arm-trusted-firmware/plat/xilinx/versal/include/platform_def.h
3efa1f0d849fb9568699ae3cc5e7cf111f1b8158 - arm-trusted-firmware/plat/xilinx/versal/include/versal_def.h
f22539e2e0c54efb87ad926699ecb40a60fb024d - arm-trusted-firmware/plat/xilinx/versal/include/plat_pm_common.h
6b87bc415258116316a3b89d124ff4be9d5fd944 - arm-trusted-firmware/plat/xilinx/versal/aarch64/versal_helpers.S
14340733608cc8031286a97ddc48222bc0ae7bb5 - arm-trusted-firmware/plat/xilinx/versal/aarch64/versal_common.c
6aca4366f91416b1541836b7a999ff0873c61e53 - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_svc_main.c
939082dd0654e1c9d5097e4b088ada2eefc3cc46 - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_api_sys.c
06ac8403ef4a152a6d5257c08766c878afc2c3e2 - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_api_sys.h
a984b65e29e3ddb17d3c124890861519e0a53788 - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_defs.h
cb6dce6031f613ae2ad69be266bc3eb2a5095a0d - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_svc_main.h
67797b5d7b79d4fe75c894faa289f6d4deac5929 - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_node.h
cfb673b998f65ad17832a2c1f376daa4ab836ebd - arm-trusted-firmware/plat/xilinx/versal/pm_service/pm_client.c
7c0bab3200267e448b5ee45b83104d2923cc17c8 - arm-trusted-firmware/plat/xilinx/common/ipi.c
05d21184a6dd62749ada768285e6b39b3dc5a1d4 - arm-trusted-firmware/plat/xilinx/common/plat_startup.c
e7cc80e40c4b2aff0799c9db4c351cf1179cf347 - arm-trusted-firmware/plat/xilinx/common/ipi_mailbox_service/ipi_mailbox_svc.c
453e987cd3b0c17b8ae79a6a0794d4fb44adcc3f - arm-trusted-firmware/plat/xilinx/common/ipi_mailbox_service/ipi_mailbox_svc.h
c879e06a73baec6538ce2dece09ae7a976f972df - arm-trusted-firmware/plat/xilinx/common/include/pm_ipi.h
3946a8e5b6578610dbcd1b1c9bb2ac02e357fd1a - arm-trusted-firmware/plat/xilinx/common/include/ipi.h
3f5242b1d910a45ff664bc128a6e749aa019592c - arm-trusted-firmware/plat/xilinx/common/include/pm_common.h
604b0f5de53a36f974ce1926152c895a54796482 - arm-trusted-firmware/plat/xilinx/common/include/pm_client.h
8ccd5942908d27505a9e0d68679df731210d75ca - arm-trusted-firmware/plat/xilinx/common/include/plat_startup.h
f5cda3dcfb0f4452e442cc526b8178b413b5a17a - arm-trusted-firmware/plat/xilinx/common/pm_service/pm_ipi.c
dd38f3a1079a17328d48c8cb719713d4de7361a6 - arm-trusted-firmware/plat/common/ubsan.c
cd74e2d1ac7f09f4ced54eecf4bed38f973bbdfb - arm-trusted-firmware/plat/common/plat_gicv3.c
c7afb73f40f0759cd775aec59723f92f7dd54435 - arm-trusted-firmware/plat/common/plat_bl1_common.c
ebb8418a3c0ba1d0d9362005c17fc4a3fb03cf1f - arm-trusted-firmware/plat/common/plat_gicv2.c
ca3750949173b2315d20907e7c6da4a66f32a5cf - arm-trusted-firmware/plat/common/plat_bl_common.c
ec9195d2ba3b66b6f4258c18a36b14a5cf41ac55 - arm-trusted-firmware/plat/common/plat_psci_common.c
8020a28923a271101b29516f4997bb7a1b8a6708 - arm-trusted-firmware/plat/common/plat_spmd_manifest.c
5e22516412e81af7bbc52e0e460447cf2d1d63f3 - arm-trusted-firmware/plat/common/plat_log_common.c
8bf3a22931bb5a18034f1275429068834943cb9e - arm-trusted-firmware/plat/common/aarch64/plat_ehf.c
6ae1755d17b7040c038dd8b2e6c6880e2bb60394 - arm-trusted-firmware/plat/common/aarch64/plat_common.c
785a7be686f124f8b30c5f96bbdc9670988f49c2 - arm-trusted-firmware/plat/common/aarch64/platform_mp_stack.S
53568d8d4a43005d8a1be8a379cf0f4b7ddc5637 - arm-trusted-firmware/plat/common/aarch64/platform_helpers.S
8be9392135f6389b22910a9e22011c2e5abc6708 - arm-trusted-firmware/plat/common/aarch64/crash_console_helpers.S
1fe60996e262523b671b678aa41a510a2cfa2ce9 - arm-trusted-firmware/plat/common/aarch64/platform_up_stack.S
05ebeff6ee2416ab2697799fb338367a03b0ba75 - arm-trusted-firmware/plat/common/aarch32/plat_common.c
f742befce701fed79ec16b324c92409b36838226 - arm-trusted-firmware/plat/common/aarch32/plat_sp_min_common.c
578b46ce0ccf74ba18ce1747df871537294d4ddf - arm-trusted-firmware/plat/common/aarch32/platform_mp_stack.S
01fc909940aee253c9e140248811b8c4fc5d25b4 - arm-trusted-firmware/plat/common/aarch32/platform_helpers.S
c8eab49f9d5326ffc974d2ba7c05bd411df90eb1 - arm-trusted-firmware/plat/common/aarch32/crash_console_helpers.S
79f7a0e7df796600cfad4b11f4bf7dbafb65a4ea - arm-trusted-firmware/plat/common/aarch32/platform_up_stack.S
36144ebe1637da9185e2256593f8aa7307d0cccb - arm-trusted-firmware/plat/common/tbbr/plat_tbbr.c
2154f29a91decb99dc45f21e790dd6e0d1da88e1 - arm-trusted-firmware/plat/qemu/common/qemu_private.h
a58c658f18083c55761b946dd01b034df662dada - arm-trusted-firmware/plat/qemu/common/topology.c
16002a1a28f7ec581aae95aba10964655f89c5dc - arm-trusted-firmware/plat/qemu/common/qemu_pm.c
00fcc8b29bf97f9ede1c2dfbe40db7ef83c72695 - arm-trusted-firmware/plat/qemu/common/qemu_spmd_manifest.c
8ebb840a06cb6dddf6c0fd5fe4a612f832842576 - arm-trusted-firmware/plat/qemu/common/qemu_bl2_mem_params_desc.c
51d8305f79f4736a224811e549fd92ffee6e2134 - arm-trusted-firmware/plat/qemu/common/qemu_spm.c
21efcb8ca3eeadb04af0ad8b5dbff0a548221482 - arm-trusted-firmware/plat/qemu/common/qemu_bl2_setup.c
c154631e1880ac14882cbb7ec28846bcac331126 - arm-trusted-firmware/plat/qemu/common/qemu_bl31_setup.c
95a9e39672a85b16243df6db511e352e068b90ee - arm-trusted-firmware/plat/qemu/common/qemu_bl1_setup.c
854064daf74a72113baf3004985576f30ed85540 - arm-trusted-firmware/plat/qemu/common/qemu_image_load.c
3a64a36aaab153d084cd63cb8041cb8e4554c206 - arm-trusted-firmware/plat/qemu/common/qemu_common.c
3ca3d10548276087940fd7af8f274b1b68378322 - arm-trusted-firmware/plat/qemu/common/qemu_stack_protector.c
2085009221c46e8e62ac297e819084f4b6087615 - arm-trusted-firmware/plat/qemu/common/qemu_rotpk.S
b70358ad6ace724f6125a704a64bd882bb7e5e13 - arm-trusted-firmware/plat/qemu/common/qemu_trusted_boot.c
ec654aff1a7a4e282bbbe2dc13b2042b9534eb61 - arm-trusted-firmware/plat/qemu/common/qemu_gicv3.c
d78bd11a3e46b66140586c01d9f834a788316251 - arm-trusted-firmware/plat/qemu/common/qemu_gicv2.c
ce499ea5552f0a580d2d730cd86b20a544fb4759 - arm-trusted-firmware/plat/qemu/common/qemu_console.c
fcbaa96813c363c3db4933b80039d532e1252dc7 - arm-trusted-firmware/plat/qemu/common/qemu_io_storage.c
f58716f140fa8f450f8073fca6f98a8eda79bbc2 - arm-trusted-firmware/plat/qemu/common/include/plat_macros.S
553cd30299445b034280689989176963a39f2b4d - arm-trusted-firmware/plat/qemu/common/sp_min/sp_min_setup.c
fe635c884df368ae689c259f9ac0787b17064bb4 - arm-trusted-firmware/plat/qemu/common/aarch64/plat_helpers.S
674a4514924db14c06277e39651b46250347d7a4 - arm-trusted-firmware/plat/qemu/common/aarch32/plat_helpers.S
dc0cb18de3dee5963f78466b58e002bc816d526b - arm-trusted-firmware/plat/qemu/qemu/include/platform_def.h
a3366d3ea9b4a5a823b365b0a4fe16dd24af7388 - arm-trusted-firmware/plat/qemu/qemu_sbsa/sbsa_private.h
f2efe87ffe7cd41bf5ac442c75b40fb2593a8fbb - arm-trusted-firmware/plat/qemu/qemu_sbsa/sbsa_topology.c
151cea63605746875bff4fceaa296485033aa280 - arm-trusted-firmware/plat/qemu/qemu_sbsa/sbsa_pm.c
46b611bd4d5b4370f104fdcc62cf5da040ec7970 - arm-trusted-firmware/plat/qemu/qemu_sbsa/include/platform_def.h
fbecdf95d5fb90503336b712a6955a36a635aac0 - arm-trusted-firmware/plat/nvidia/tegra/lib/debug/profiler.c
c7104ef4a0ccb4a2ceb01951a0c8442349cf4ca7 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_delay_timer.c
9a23652352c01545d80c980df50b0d1965df8131 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_gicv3.c
348ad39495b7209e9858421f7bd1a02f9712a410 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_pauth.c
ab066b0f80239a20f5613a9c2bf4862d9c02e2c2 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_bl31_setup.c
c97649b9bd33d9e7f4268f6ddc79d603a3a317f2 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_fiq_glue.c
e531e11712693e6095f810484cb2f8332646c1dc - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_pm.c
bbb547cc93729fd63ae5da22480a94dc84ad6fbf - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_sip_calls.c
0c5a65d7362595eff6d472ba23ccde7af61d9ce8 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_io_storage.c
97542646c951833f68e49c013c2d309b885aab65 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_gicv2.c
6356a0b128a435ef5faa1bb6922a5fcc571926ea - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_platform.c
8617ceef396a9a7f9b5e9e1a4866cede187f6ba6 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_sdei.c
7832f9e627bdeb224b72a22840b7b4cd3354b962 - arm-trusted-firmware/plat/nvidia/tegra/common/tegra_stack_protector.c
e73b702494b764ebb0f546aae9de484a69c968f3 - arm-trusted-firmware/plat/nvidia/tegra/common/aarch64/tegra_helpers.S
61343b0647173b58eec236e5f6781f95ee64f5d2 - arm-trusted-firmware/plat/nvidia/tegra/include/tegra_platform.h
949736009adf4b730b592ef786e3d66eaf769d8c - arm-trusted-firmware/plat/nvidia/tegra/include/plat_macros.S
11b45c0f4e3d96795a403b588930c354305a52d1 - arm-trusted-firmware/plat/nvidia/tegra/include/platform_def.h
e8e7dbe2842bffabc62ef459d5f4b037b5fc122a - arm-trusted-firmware/plat/nvidia/tegra/include/tegra_private.h
2aec61855e1e16a88683b573ae88e337484a01cb - arm-trusted-firmware/plat/nvidia/tegra/include/t234/tegra234_ras_private.h
21b9ecfaf14f5a5aed16e18cf1643f78e890a096 - arm-trusted-firmware/plat/nvidia/tegra/include/t234/tegra234_private.h
636ab4e191d38378a5706fc275a02ff1ce01519c - arm-trusted-firmware/plat/nvidia/tegra/include/t234/tegra_def.h
b76d085fd8bf62b29b2651fb2baafb167bbb3f37 - arm-trusted-firmware/plat/nvidia/tegra/include/t234/tegra_mc_def.h
412a883e42794de7909b0a3076864c06874a0764 - arm-trusted-firmware/plat/nvidia/tegra/include/t210/tegra_def.h
fc8ce0bab3e269ab289babbc37c5ffea6c1105c1 - arm-trusted-firmware/plat/nvidia/tegra/include/lib/profiler.h
68ec103aabc7cf1ba96e9f802589f232bf63e8fb - arm-trusted-firmware/plat/nvidia/tegra/include/t186/tegra186_private.h
00ba4a09814b790749853248a68f57c1bf5d8a77 - arm-trusted-firmware/plat/nvidia/tegra/include/t186/tegra_def.h
80ba76cba14e63964ee35830536886c24581020c - arm-trusted-firmware/plat/nvidia/tegra/include/t186/tegra_mc_def.h
65dcb16996ba6f5480b25b088c00618a8401e2b0 - arm-trusted-firmware/plat/nvidia/tegra/include/t194/tegra194_ras_private.h
0770b19832587bf494cdf6a16cf0af55ef4e3eba - arm-trusted-firmware/plat/nvidia/tegra/include/t194/tegra194_private.h
249831518e8554837fb8750d200cb4b786c2d683 - arm-trusted-firmware/plat/nvidia/tegra/include/t194/tegra_def.h
b01b1d6699848ec430ef6c7ff1fa536c611ac8d8 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/bpmp.h
eccbd7dbdb2b149abd38a48ddd5f6b0f292373b7 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/memctrl_v2.h
fa073698981deb8685410d390184a2fea2477d8d - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/smmu.h
1ad3acb2c35dab529632e51cfd8a1977d0a3e495 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/pmc.h
7eee98bf96c4e615e71244fad2270fe3ac7bca96 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/spe.h
97366374236e04da0a203c6df1ed7e93325e40f5 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/memctrl.h
2693485a6a4c24984696bab65e09494c4af953a6 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/psc_mailbox.h
0005633528a5228ce544a5fe3fc8b984d26eff95 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/gpcdma.h
d6acbb5f1eb851fbab413c7209bfba21509b4d31 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/memctrl_v1.h
dd094069cb1a5bb53cf55c4e87b2364925c1e25c - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/mce.h
d99d1382679e0a53fedf1afb4781358524154b54 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/bpmp_ipc.h
4aa146b81da8a061bda6540907c37d5ec6569962 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/tegra_gic.h
ecb6bb2512f5f946927baadc3238cacaf9e9c42f - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/flowctrl.h
e4e77bfcd8d045ecce243b060298bf229cbf3941 - arm-trusted-firmware/plat/nvidia/tegra/include/drivers/security_engine.h
6f1dca2fba8be7758cfe4395226b2e4be820e3f1 - arm-trusted-firmware/plat/nvidia/tegra/drivers/pmc/pmc.c
fb218e655fd6a3d77f969fce9cd6cb5dd0a6c5b2 - arm-trusted-firmware/plat/nvidia/tegra/drivers/gpcdma/gpcdma.c
2a6016cc527d04ca332373c0d14542d5176aebf8 - arm-trusted-firmware/plat/nvidia/tegra/drivers/psc/psc_mailbox.c
8d9b8ebe2f8407dfc849bee6942b55d0a9c76d41 - arm-trusted-firmware/plat/nvidia/tegra/drivers/bpmp/bpmp.c
bbc86d9dee6c505651fa862133b686ea1e1af43e - arm-trusted-firmware/plat/nvidia/tegra/drivers/bpmp_ipc/intf.c
91900a1e10f18554bc4c6b9f13d0e247da31062d - arm-trusted-firmware/plat/nvidia/tegra/drivers/bpmp_ipc/intf.h
458bed9c52c48caaa9c30822f0d20359e56e044f - arm-trusted-firmware/plat/nvidia/tegra/drivers/bpmp_ipc/ivc.h
ecf2d932f335bc64d226c7d6502806590af552b6 - arm-trusted-firmware/plat/nvidia/tegra/drivers/bpmp_ipc/ivc.c
4d04fd613146842b18904061da84f5958c44b16b - arm-trusted-firmware/plat/nvidia/tegra/drivers/flowctrl/flowctrl.c
58fc3b165ee7a61397eef3e9f2065858876ce9de - arm-trusted-firmware/plat/nvidia/tegra/drivers/spe/shared_console.S
0f53c08fb6e10d933fd28d9f021ccfb0e48212fe - arm-trusted-firmware/plat/nvidia/tegra/drivers/memctrl/memctrl_v2.c
4dbec584881036aa37e59b66185d958a695a455d - arm-trusted-firmware/plat/nvidia/tegra/drivers/memctrl/memctrl_v1.c
d25c56f572cf7b3618f7567d502c1ee11dec2bae - arm-trusted-firmware/plat/nvidia/tegra/drivers/smmu/smmu.c
ce1df43aa2a9700b9c00f14be842646284b3ee3d - arm-trusted-firmware/plat/nvidia/tegra/scat/bl31.scat
3d01d365783ad5b2ce0f76df72a4a10db3d9a10d - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/plat_memctrl.c
ebc6300715a6b77d2d608328795265bf605b16ea - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/plat_ras.c
c2cd522ab9668274cd7bf26fde63e9dbc9a94f28 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/plat_secondary.c
b0c855a9e2b50bbe03f42d79ccd6a555853cfefa - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/plat_setup.c
e6ee29b4c786d6d279e82a4066d13703168bd28e - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/plat_sip_calls.c
4597342fc7f0ad8d99af644fbdc636abdee5edd3 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/plat_psci_handlers.c
cc8a8d368611f86cdf1901163b06c0975be5ad93 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/se/se.c
7641a42485d020517c692c523a29fe5be4136651 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/se/se_private.h
81037a214c1511f91f65b5793f9d5fc3668f3c79 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/mce/ari.c
ed3d0d97c20ace9c41ddac5ef51f81f75d2e7d59 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/mce/mce.c
46decb1b646ffba87d49eb22447f8e56ed5e0d44 - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/include/t234_ari.h
08aec0d0be276f69ddac5a77363f59f1ef42d88b - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/include/se.h
78e0e7699170ceb53b16257c0ef0c15fe08ba4ea - arm-trusted-firmware/plat/nvidia/tegra/soc/t234/drivers/include/mce_private.h
1ac68857bdb8a88c7770c006dfd2be48670a7011 - arm-trusted-firmware/plat/nvidia/tegra/soc/t210/plat_secondary.c
bee19a74bce67a4d58e2f4deecb801e1a65bf631 - arm-trusted-firmware/plat/nvidia/tegra/soc/t210/plat_setup.c
ec24a0077b010c615c5e3a083e901d444aae2f20 - arm-trusted-firmware/plat/nvidia/tegra/soc/t210/plat_sip_calls.c
89808197706a2d7c9eedc24ca7666ded83f0e84a - arm-trusted-firmware/plat/nvidia/tegra/soc/t210/plat_psci_handlers.c
17ad1d9d60e3f6debc0329a42e28178fdd497e1f - arm-trusted-firmware/plat/nvidia/tegra/soc/t210/drivers/se/se_private.h
3b606d0fba33a0ea6729510a467dcb03e9750140 - arm-trusted-firmware/plat/nvidia/tegra/soc/t210/drivers/se/security_engine.c
c7611d91a504dd3fe52ee769f9fa2d4f469010a8 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_memctrl.c
bf02f90c1795b9e26f314ab310c0ba4e389257e4 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_secondary.c
d4052416878640cdb19e93edd44e4a7413289b6c - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_setup.c
106e68f73e09c8f51c620c0dd840b42ea6dbd67f - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_sip_calls.c
5b9c61a07970be31ce559c1b2c78acc41d5223e3 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_smmu.c
0dd6e3b7ed73b5e77f6ebc89320058cde70900c2 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_trampoline.S
1cd4aab41ecfa796a41aecfc70e543cd82e2da72 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/plat_psci_handlers.c
326d37fa1c2f92a2e56baf3391479c3dd1365396 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/se/se.c
d96974438f18123824bf23413d2d0d75452fb4da - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/se/se_private.h
cde1d7e2f8c3e1513d4828b37df69223bfb780be - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/mce/ari.c
4588d011d8dbc1073379954dcdfb1c437cf9d4ce - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/mce/nvg.c
0a76eef9a0cb2d3c1fffc2a886eab6fdabb34997 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/mce/mce.c
015badf34dbdf2955bc1dc9f4b22627bde8f9f9c - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/mce/aarch64/nvg_helpers.S
34e8d1c4e060805a3f55969aabbd211dc6b08fbd - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/include/mce_private.h
34309aaec4559a7c2094873802490b96b9cf9dc1 - arm-trusted-firmware/plat/nvidia/tegra/soc/t186/drivers/include/t18x_ari.h
595bafd552b05d81a25e9916fe91779e18beddda - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_memctrl.c
c55c5c502ca4117b327d32cc3fef8203d3c64731 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_ras.c
6d0c46a965f769a08b399225be6c77aa18f3a773 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_secondary.c
84d20d5a07d53e649a1b8d130f5d4fdf6ba8f65a - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_setup.c
d5aef4c8d30794a496c1c3bd18d000991bbae988 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_sip_calls.c
ba0a312824b0782a438e265e86a6e9d7638032db - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_smmu.c
d893793283c93ce6c488a51940c01574780f7333 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_trampoline.S
d1917ee3fc59b85d699e80636d7ddd7d4c99320d - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/plat_psci_handlers.c
b3fb31a094585eeb27ecc82ba69416ca4d66b171 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/se/se.c
fa7909d4e0ccdeee6f0765cf68a95899ac8aec1f - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/se/se_private.h
0cdfadd153db5ee7d515adb01dd35d62e546226a - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/mce/nvg.c
ccebfe25a0f4bc54b5d08685ce74082118f713e4 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/mce/mce.c
99d5d980ae032fa2dfb6e9da5fe48dd600b2a896 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/mce/aarch64/nvg_helpers.S
ee3f4b7a69c6c3dd475a88c55076077415fc76b7 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/include/t194_nvg.h
298abb9097e851023b914f09fe36c8cdaf367e22 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/include/se.h
8cec2a63b748c24a5fab3c7c47f114b8147894c4 - arm-trusted-firmware/plat/nvidia/tegra/soc/t194/drivers/include/mce_private.h
170634ac25c995303394743ee26ab4f2265800ca - arm-trusted-firmware/plat/ti/k3/common/k3_topology.c
96d874b239805cfedc0fadfd9f07eed0e423a919 - arm-trusted-firmware/plat/ti/k3/common/k3_helpers.S
55b3083cc472c5a3e1808d642b6c6516d19c34be - arm-trusted-firmware/plat/ti/k3/common/k3_psci.c
a5a361643c76bc6ad4e5bf4bef498e6de89c4065 - arm-trusted-firmware/plat/ti/k3/common/k3_gicv3.c
4677f1e48833ef10dc9d9ed492dfe849c8466b05 - arm-trusted-firmware/plat/ti/k3/common/k3_console.c
fd1bbe596ff44d2104431c2924e172d0ef4c5b34 - arm-trusted-firmware/plat/ti/k3/common/k3_bl31_setup.c
55f8380907084a69006d5211123aef60fc51400d - arm-trusted-firmware/plat/ti/k3/common/drivers/ti_sci/ti_sci_protocol.h
3ebfed887a97b672cad608bc064e08075f4e2a29 - arm-trusted-firmware/plat/ti/k3/common/drivers/ti_sci/ti_sci.h
e81feb55a2328c2ec32fadd561eaf24eb58ae202 - arm-trusted-firmware/plat/ti/k3/common/drivers/ti_sci/ti_sci.c
27b2ba24623a62aa30daea138411571e17aeb579 - arm-trusted-firmware/plat/ti/k3/common/drivers/sec_proxy/sec_proxy.h
d3624f3dc097829d1b9f6b277bd1aebe77963d97 - arm-trusted-firmware/plat/ti/k3/common/drivers/sec_proxy/sec_proxy.c
da89ff4506058f3e90a127f4e7d79a7d86057bfd - arm-trusted-firmware/plat/ti/k3/include/plat_macros.S
015fe87701fa82cd48501c2915505c611e20e933 - arm-trusted-firmware/plat/ti/k3/include/k3_gicv3.h
33ec06e0674715932071745b37498c738414ee8f - arm-trusted-firmware/plat/ti/k3/include/platform_def.h
f2111ae0b834107dddf37cb4846a7065472db0fe - arm-trusted-firmware/plat/ti/k3/include/k3_console.h
85bfc710f2f6c79b7c0e025f6f6e653d16f39bb7 - arm-trusted-firmware/plat/ti/k3/board/generic/include/board_def.h
c82ee96d8fb1841fd3068f489a697625a217aebe - arm-trusted-firmware/plat/ti/k3/board/lite/include/board_def.h
a38730b258e2c37f114fdb3c923369bade8e7a1a - arm-trusted-firmware/plat/allwinner/sun50i_a64/sunxi_power.c
a462f612d127344fc711a68e3751b31b2b7ce938 - arm-trusted-firmware/plat/allwinner/sun50i_a64/include/sunxi_cpucfg.h
54ee3b911a552e2cd6e3802820f5cf3e09575a01 - arm-trusted-firmware/plat/allwinner/sun50i_a64/include/core_off_arisc.h
3f4f908a2f0a6a7660d40d79215077ee248f740e - arm-trusted-firmware/plat/allwinner/sun50i_a64/include/sunxi_mmap.h
2c5ad97e48086e62d1d58d1d8289ac4ab3153179 - arm-trusted-firmware/plat/allwinner/sun50i_a64/include/sunxi_spc.h
65eec287284371a887adc4c9aa1952c26be66df7 - arm-trusted-firmware/plat/allwinner/sun50i_a64/include/sunxi_ccu.h
c2785b4c0937862f1abb7251642a4028a913504d - arm-trusted-firmware/plat/allwinner/sun50i_h6/sunxi_power.c
0b8b7ce5f06e24ad7b853125e17507934dfc45e5 - arm-trusted-firmware/plat/allwinner/sun50i_h6/include/sunxi_cpucfg.h
2514153e63bbcc5513712db8766fd278fa3b0d44 - arm-trusted-firmware/plat/allwinner/sun50i_h6/include/sunxi_mmap.h
3dde76eb498c889851714b3d8e6749211c62bbec - arm-trusted-firmware/plat/allwinner/sun50i_h6/include/sunxi_spc.h
1590f260f1febbedf931a1596cea2d2e437ea92b - arm-trusted-firmware/plat/allwinner/sun50i_h6/include/sunxi_ccu.h
786942614a650ccd6930f2bd19bb42b2b539e1f9 - arm-trusted-firmware/plat/allwinner/sun50i_h616/sunxi_power.c
d9eff8a29c53d38215c1d261922df8494c88d5aa - arm-trusted-firmware/plat/allwinner/sun50i_h616/prepare_dtb.c
0ba24eb82465b3d3ad4e293692984b972663d57c - arm-trusted-firmware/plat/allwinner/sun50i_h616/include/sunxi_cpucfg.h
2b80f35aa1746d608c2eac4eec351c292e0298f0 - arm-trusted-firmware/plat/allwinner/sun50i_h616/include/sunxi_mmap.h
3dde76eb498c889851714b3d8e6749211c62bbec - arm-trusted-firmware/plat/allwinner/sun50i_h616/include/sunxi_spc.h
1590f260f1febbedf931a1596cea2d2e437ea92b - arm-trusted-firmware/plat/allwinner/sun50i_h616/include/sunxi_ccu.h
a9a0eca6a5cca079ee8007e0afa7f0ffd7a0cf1c - arm-trusted-firmware/plat/allwinner/common/sunxi_scpi_pm.c
a7dce777afe91e3a8d68aaa84d55530a9b3b66b4 - arm-trusted-firmware/plat/allwinner/common/sunxi_bl31_setup.c
385e3bbf7c85ef4e96b553e0f9760bfef1e94a3a - arm-trusted-firmware/plat/allwinner/common/sunxi_pm.c
a44feb979fffb71189cf9943a6d99946305122e2 - arm-trusted-firmware/plat/allwinner/common/sunxi_security.c
e602a60b0fabfe8e91ecf654c16701712b20c3f1 - arm-trusted-firmware/plat/allwinner/common/sunxi_native_pm.c
704da3ea1b61d5106a6172712ecf6a80b1528bf0 - arm-trusted-firmware/plat/allwinner/common/arisc_off.S
a5e148901e32cb7feaef9ffbd00f43a2a661ea0c - arm-trusted-firmware/plat/allwinner/common/sunxi_common.c
0ded87657ff47f0fe5896f1ab1d6d2f9b34f0429 - arm-trusted-firmware/plat/allwinner/common/plat_helpers.S
f2bc1957fa87b9880744d070c964b7803c7bf295 - arm-trusted-firmware/plat/allwinner/common/sunxi_topology.c
b832fd1c1d7bc307d2c3698bf00ee15b93de8cb8 - arm-trusted-firmware/plat/allwinner/common/sunxi_cpu_ops.c
cc00c1c7f46a2a8af976c1c0fb59681803b68d1c - arm-trusted-firmware/plat/allwinner/common/include/sunxi_private.h
7d746a44b6a3bbaa1c3e923de0abdfc40393712e - arm-trusted-firmware/plat/allwinner/common/include/plat_macros.S
711ef06aa592d857ab47ecd0a9b7870c6fa1a5da - arm-trusted-firmware/plat/allwinner/common/include/sunxi_def.h
4333584318d0a967851853f5fcd6c5287277246c - arm-trusted-firmware/plat/allwinner/common/include/platform_def.h
77455765d6d80bf4a48d7744bf6f4770b7369215 - arm-trusted-firmware/plat/allwinner/common/include/mentor_i2c_plat.h
3fa3a563994fcf2710324634950265fc8f9d7850 - arm-trusted-firmware/plat/allwinner/sun50i_r329/sunxi_power.c
f8fae43c9902bbf818480c6633e05fc6b751aabd - arm-trusted-firmware/plat/allwinner/sun50i_r329/include/sunxi_cpucfg.h
d430caf710295e9e77a240b785740fdde6705e26 - arm-trusted-firmware/plat/allwinner/sun50i_r329/include/sunxi_mmap.h
1acbdb220cff8edffa7cc7fd4808f71574b90966 - arm-trusted-firmware/plat/allwinner/sun50i_r329/include/sunxi_spc.h
2870bd5728ae0e5857fadde22b048a6fcf6ee2d3 - arm-trusted-firmware/plat/allwinner/sun50i_r329/include/sunxi_ccu.h
33f9c2d61b7aa3242f22100ba2694ba2709f7a1b - arm-trusted-firmware/plat/hisilicon/hikey/hikey_topology.c
bca37120bec0db88310c0e711220bd8301c8b932 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_pm.c
1b333e35df79afc9319c45ded87fe22b1e5547fc - arm-trusted-firmware/plat/hisilicon/hikey/hikey_security.c
8b11d0569d254ee10c03b8e7dfaebf823b7b1746 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_bl_common.c
1dc25162c504805b378176ceb2a1fac39b8fa3e2 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_ddr.c
e5479e33302a43e627013dbe10bbcca8ccdbf8b5 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_bl31_setup.c
1975a45f73616d0ceb03dab4a9397cbabc1e66ce - arm-trusted-firmware/plat/hisilicon/hikey/hisi_pwrc.c
132b89dc419b19bfabb3eb2450a5e74317faea11 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_io_storage.c
b8ddcea3e66690f3932ae009921566fe249feccd - arm-trusted-firmware/plat/hisilicon/hikey/hisi_pwrc_sram.S
126933334b9ebdde11859016f3bbcc6ac9bbef88 - arm-trusted-firmware/plat/hisilicon/hikey/hisi_mcu.c
0071214b6af7f5e24aa92d4e7849c79c3818ed05 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_bl2_setup.c
b0603f49d7b1252e6774be83ed95232695f1f263 - arm-trusted-firmware/plat/hisilicon/hikey/hisi_ipc.c
e90b7c0a59b785560e233605f2968b642d26fcdb - arm-trusted-firmware/plat/hisilicon/hikey/hisi_sip_svc.c
030496606ff67ba16f47be9282a04338261e38ea - arm-trusted-firmware/plat/hisilicon/hikey/hikey_bl2_mem_params_desc.c
0472150350a0f6a23e8750e0fe14991d176d1a04 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_bl1_setup.c
a68989337ee4c06cf76f89d69cfc5c3aca210b00 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_private.h
cfc7af573fbb40bb702a616d8f0bf02b017a3e0b - arm-trusted-firmware/plat/hisilicon/hikey/hisi_dvfs.c
5366b77beffc310cab412735a4e4f43185e171c6 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_image_load.c
0aace28e8f75168d13d7274d81f1f906cc1b2cae - arm-trusted-firmware/plat/hisilicon/hikey/hikey_rotpk.S
3f90b73f27ba47848db784621dd350e6a5ec54d9 - arm-trusted-firmware/plat/hisilicon/hikey/hikey_tbbr.c
e0f40190a4d2a13086e9b7c951d5301f744dd767 - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6220.h
31f012031e8dec3fe5dab7afc9ab89deffb7fe7c - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6220_regs_pmctrl.h
98509207554ab836b38f580d203793668061ce40 - arm-trusted-firmware/plat/hisilicon/hikey/include/hisi_sip_svc.h
ee2004c34a377b43d61f3fde4201ea86e1834fc7 - arm-trusted-firmware/plat/hisilicon/hikey/include/hisi_pwrc.h
4619ff482dfa91c976c3d58153ac694dd92a0abf - arm-trusted-firmware/plat/hisilicon/hikey/include/plat_macros.S
95b6af34fbda29b2cef5ecaa3ecf9deb1f7a48cb - arm-trusted-firmware/plat/hisilicon/hikey/include/hisi_mcu.h
42137e1b1e1f31a2b92b351765982cc8bcf28601 - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6220_regs_peri.h
5da379773f07f291d897ea36a13ac008c78bbbe4 - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6220_regs_pin.h
b9c87b1b0f989e816c65163d00ead7cd68b4b6bc - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6553.h
e2fd2bbe14a506ac8ab6eb8f4c65dd34827b33a8 - arm-trusted-firmware/plat/hisilicon/hikey/include/hikey_def.h
fff863e589a15845fe768ee9bd16a482d5946db7 - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6220_regs_ao.h
79f261b3e512eb92ef04e1b172276ba95108b6ac - arm-trusted-firmware/plat/hisilicon/hikey/include/hisi_ipc.h
eb1ee8f26e0a9e1d174893e2a80e0ea2be070df3 - arm-trusted-firmware/plat/hisilicon/hikey/include/platform_def.h
379cc0fd2c6486a2bfc850d19190835961783f16 - arm-trusted-firmware/plat/hisilicon/hikey/include/hisi_sram_map.h
c54b714045ab12cfcff4363f00ce94952a40e2d6 - arm-trusted-firmware/plat/hisilicon/hikey/include/hikey_layout.h
659dfae8f25d18bef4e2ac3c9b2cc07bbd255dd4 - arm-trusted-firmware/plat/hisilicon/hikey/include/hi6220_regs_acpu.h
f3431f5300aefc0065b1e6ad9f3e996878027bff - arm-trusted-firmware/plat/hisilicon/hikey/aarch64/hikey_common.c
f4fe9f99f519b213b8d23015c37b2e4013ebb066 - arm-trusted-firmware/plat/hisilicon/hikey/aarch64/hikey_helpers.S
077745456537a78c6a462ecaf23835c3ac381a92 - arm-trusted-firmware/plat/hisilicon/poplar/bl2_plat_mem_params_desc.c
166469bcfd5bac8ca50e33d23d40607d532f7a9f - arm-trusted-firmware/plat/hisilicon/poplar/bl1_plat_setup.c
942f440e430db3a0fb9bafcb2877fa0f2b2b2206 - arm-trusted-firmware/plat/hisilicon/poplar/plat_topology.c
575e7801ee2435ca3d3bc588117235189cba8fa2 - arm-trusted-firmware/plat/hisilicon/poplar/bl31_plat_setup.c
706af98521027fbfb3cb50742e9203904186ccfb - arm-trusted-firmware/plat/hisilicon/poplar/poplar_gicv2.c
43b6cb88b4528db3610c0591b417afee9f8e086f - arm-trusted-firmware/plat/hisilicon/poplar/plat_storage.c
5366b77beffc310cab412735a4e4f43185e171c6 - arm-trusted-firmware/plat/hisilicon/poplar/poplar_image_load.c
4df6d997a517a03b7120733e3ff6f1a2634caa47 - arm-trusted-firmware/plat/hisilicon/poplar/bl2_plat_setup.c
09dd0d32acc68693a9cc4e6edda975b30b997a7d - arm-trusted-firmware/plat/hisilicon/poplar/plat_pm.c
7309b02ef23609fb839b029b295bffaf714cdc1a - arm-trusted-firmware/plat/hisilicon/poplar/include/plat_macros.S
2bc481728aac66acbe669f76aa6dd84c3f4e88a7 - arm-trusted-firmware/plat/hisilicon/poplar/include/plat_private.h
e8d837174e3274ddbcd923af88d3e19e1af8c06a - arm-trusted-firmware/plat/hisilicon/poplar/include/platform_def.h
5333986fb9d6df5ca3e50aad616e8c1422eafdd2 - arm-trusted-firmware/plat/hisilicon/poplar/include/hi3798cv200.h
54bc2fcf8fb31777a2eee36c5b61246cc0fa0a17 - arm-trusted-firmware/plat/hisilicon/poplar/include/poplar_layout.h
5b726e62a784d7660009ac2235ebf2d76dc809ad - arm-trusted-firmware/plat/hisilicon/poplar/aarch64/poplar_helpers.S
ef034cd3245b78dec24c714d8ffbb7e9b490427c - arm-trusted-firmware/plat/hisilicon/poplar/aarch64/platform_common.c
1178b52937b1f59d49a4b24807fedf6800893f18 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_io_storage.c
39568f02d9e541a653aaa3d8503e9976203e27b5 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_bl2_setup.c
9921f6f68c3b333297fb84f0c74626e02e31182e - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_bl2_mem_params_desc.c
e521b7127c97a6dc50d62a6fb23613467dfa5c91 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_boardid.c
e7130fd49b764ab203b1f70d8c04929b17c338a1 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_tbbr.c
b4ec4794171dff334edac55b287dbba42365301a - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_bl_common.c
92c35daf2b450ff28a8d64da226b020489472149 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_def.h
0cd271eb1db1372ebacbc89a1ab7e6b858522177 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_topology.c
3b43870e172a97e6682dc9e7adeb7ee54b219ce1 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_mcu_load.c
a012da0cb3423fd96bd536ca33852c8fba58ac2d - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_private.h
755c811030252ea484722f83c6773b03bcd1aecf - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_image_load.c
6c598ab11230d9af7684a342f64de0ef3aafd2e7 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_bl31_setup.c
df960717d8f3e8b3111b85c464d02214767ffe67 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_rotpk.S
19471da73d6d6e0316b89091e8034b65252676ea - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_bl1_setup.c
e5d1ee45233d19ae915b7dcde9d177ac30ff3c59 - arm-trusted-firmware/plat/hisilicon/hikey960/hikey960_pm.c
930c77f84c5ef2c7971e52015e58fd9c314fbba5 - arm-trusted-firmware/plat/hisilicon/hikey960/include/plat_macros.S
b1be891afebf5d255da6f6dcb865725241f566b9 - arm-trusted-firmware/plat/hisilicon/hikey960/include/hi3660_crg.h
201bc8884be1cfb9b4f87f3fcc6ccf3aeec268d8 - arm-trusted-firmware/plat/hisilicon/hikey960/include/hi3660_hkadc.h
9b6172a308464c71e87f1f420cb1df10ceb7bfb4 - arm-trusted-firmware/plat/hisilicon/hikey960/include/hisi_ipc.h
ce594eaab37f132b152875858c98ea6a8cf2f005 - arm-trusted-firmware/plat/hisilicon/hikey960/include/platform_def.h
390e28e24c8915a9f956b1a1de0cafa7306bf9ed - arm-trusted-firmware/plat/hisilicon/hikey960/include/hi3660.h
d8da79f1ebd9b100b4d3dc915552f3d086d5eda9 - arm-trusted-firmware/plat/hisilicon/hikey960/include/hi3660_mem_map.h
4a0475ff7dac46ea547e623a9a83071f69b5a4b7 - arm-trusted-firmware/plat/hisilicon/hikey960/drivers/pwrc/hisi_pwrc.h
168bc920b2828c8478a977c1e6b9e597791c0e45 - arm-trusted-firmware/plat/hisilicon/hikey960/drivers/pwrc/hisi_pwrc.c
4abee183dc860ea0fe600bb9b19e3c4a0a3d6773 - arm-trusted-firmware/plat/hisilicon/hikey960/drivers/ipc/hisi_ipc.c
00786f6204973e7255b3183326d7e2fb8a54f0a2 - arm-trusted-firmware/plat/hisilicon/hikey960/aarch64/hikey960_common.c
33e4f92c8882961c556666d4e463a0cd932589bb - arm-trusted-firmware/plat/hisilicon/hikey960/aarch64/hikey960_helpers.S
9b1262ca8c6950227a294b789fb3e53dfa2086b1 - arm-trusted-firmware/plat/socionext/synquacer/sq_topology.c
3db81e971dc630ca534efcd02840b2ee0fc01794 - arm-trusted-firmware/plat/socionext/synquacer/sq_psci.c
b60ee8850906f76ada82b2db19c8656ed9c12d9a - arm-trusted-firmware/plat/socionext/synquacer/sq_gicv3.c
8286dff95425dddb9a5b25ffda50460831781793 - arm-trusted-firmware/plat/socionext/synquacer/sq_xlat_setup.c
72b5553a5bdc53509ecf17a4d93cbfa1e3d06c8c - arm-trusted-firmware/plat/socionext/synquacer/sq_helpers.S
f9ac11a5c154783dbbb6fbdf6485867b754f511e - arm-trusted-firmware/plat/socionext/synquacer/sq_bl31_setup.c
a32f17d7db01cfb7a14811a914ba2066581d29a1 - arm-trusted-firmware/plat/socionext/synquacer/sq_spm.c
f43a62ef3a99346a097b8813441539c5354436fc - arm-trusted-firmware/plat/socionext/synquacer/sq_ccn.c
09ba9cfb7c8be52484c3cff427668fc7d2524219 - arm-trusted-firmware/plat/socionext/synquacer/include/sq_common.h
9f24e8fcbc08c61f43c8041c0464cae65fe01ce8 - arm-trusted-firmware/plat/socionext/synquacer/include/plat_macros.S
ef74e9cda94f07bf3061b037195287d609c0c6b4 - arm-trusted-firmware/plat/socionext/synquacer/include/plat.ld.S
25666183a169e48e144659003b018f40881b4590 - arm-trusted-firmware/plat/socionext/synquacer/include/platform_def.h
f57f50699d6a8f3902d4673f01ec3ff0d6931d29 - arm-trusted-firmware/plat/socionext/synquacer/drivers/scp/sq_scp.c
e431465e90b8b68ce2922ff400c2e6953eaeea9d - arm-trusted-firmware/plat/socionext/synquacer/drivers/scp/sq_scmi.c
b6784404cec981a185e6f44ef689f28b7d9513e3 - arm-trusted-firmware/plat/socionext/synquacer/drivers/scpi/sq_scpi.c
f8fe95fbe1e35e8c328ec5a197b76c329feda4bd - arm-trusted-firmware/plat/socionext/synquacer/drivers/scpi/sq_scpi.h
ebfc7926ca7e342e5cec3fed564e68be76a80fdd - arm-trusted-firmware/plat/socionext/synquacer/drivers/mhu/sq_mhu.h
961c660b9e7a5641523d5d23b5396c2a2a67746e - arm-trusted-firmware/plat/socionext/synquacer/drivers/mhu/sq_mhu.c
05b8fac4f5d6b8cee9465b541e992f27f071fe8f - arm-trusted-firmware/plat/socionext/uniphier/uniphier_console.S
30d16489f342eed522b276128737ad41acb82ba9 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_helpers.S
456820f5853d3f1676ee19bf63b9c360ed9a80a8 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_io_storage.c
ab09cd5d8d3222857a607791bee8b31359314aa9 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_bl31_setup.c
98c1438c270db5db7bd6f971cb928420df53c1b7 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_image_desc.c
d94b79f813abf374eef409d04968fce943a3ef84 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_boot_device.c
8a0a08bd7b9292bd5b334bc91ad422838eb83118 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_cci.c
2b022afd58ed2221e8abc99099867eab0c42c326 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_emmc.c
26621302eaceca62d3b0e8224c6c14d5ea08df38 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_xlat_setup.c
516680ab29649a33ea07ffa922f3b18448e61e55 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_psci.c
5fa3e198d6ad7a764cb058e6e88fa12a0d8ffe85 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_nand.c
b445ddffd2167b6758d19874673ec99f3f2a1d30 - arm-trusted-firmware/plat/socionext/uniphier/uniphier.h
d342acec84b75ea4f64204404f0a54b4158920e1 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_usb.c
21ef9559c64415fef54f3373f28fde4fa86d92d3 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_topology.c
eca523ec19dc113ddd19b9427a6651cd6ebe6bb3 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_soc_info.c
ad344a675d5f4bf3287a6e32451b462c3ea7d29c - arm-trusted-firmware/plat/socionext/uniphier/uniphier_rotpk.S
91e3ef5fbfd42b725b57f2608d1934a5c717de3b - arm-trusted-firmware/plat/socionext/uniphier/uniphier_tbbr.c
e4e4584414cea9a632b613da62b76c3999974c0c - arm-trusted-firmware/plat/socionext/uniphier/uniphier_console.h
30db57b3d947cfae86d4cb1fbd7d79f7365fe01d - arm-trusted-firmware/plat/socionext/uniphier/uniphier_smp.S
7518b6009c736b543504a3f84be4cbd20e8d9f0c - arm-trusted-firmware/plat/socionext/uniphier/uniphier_scp.c
dd16d7be9af0988718096ec4af552732207ad390 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_console_setup.c
69a2371870f65a855d9ff7c728f2e9c32882aa2c - arm-trusted-firmware/plat/socionext/uniphier/uniphier_bl2_setup.c
7cb14fc4ccfe79fe8ffb080b91337e263775111d - arm-trusted-firmware/plat/socionext/uniphier/uniphier_syscnt.c
006db753e22b1119a67d4f76bd213bf3de08be09 - arm-trusted-firmware/plat/socionext/uniphier/uniphier_gicv3.c
d181839ef722d36e8a51c126deb67a2eae64c527 - arm-trusted-firmware/plat/socionext/uniphier/tsp/uniphier_tsp_setup.c
8bea3f2da202b83b97d9b86e32cb50d5c17cae7e - arm-trusted-firmware/plat/socionext/uniphier/include/plat_macros.S
e35ee40c042c15de97496be4f1d9c81b960cc3da - arm-trusted-firmware/plat/socionext/uniphier/include/platform_def.h
60baba93a9e38f989d8f3fdfb045849d1edc2d69 - arm-trusted-firmware/plat/marvell/octeontx/otx2/t91/t9130_cex7_eval/board/marvell_plat_config.c
65b77a7dbb8e28f892af2bf3b76eff17c87a9cbd - arm-trusted-firmware/plat/marvell/octeontx/otx2/t91/t9130/mvebu_def.h
2311f962795291fdd649a3acb3d3fcee85e19d11 - arm-trusted-firmware/plat/marvell/octeontx/otx2/t91/t9130/board/phy-porting-layer.h
a1f884a99e9e14ac83551e73429b0cf7a2c5aa0d - arm-trusted-firmware/plat/marvell/octeontx/otx2/t91/t9130/board/dram_port.c
147f2e7e737cb6a5eb1dd98a0deed8c0462d2041 - arm-trusted-firmware/plat/marvell/octeontx/otx2/t91/t9130/board/marvell_plat_config.c
2c689ed8bfb3abf1dc9ea37ffaa8aa9479649eac - arm-trusted-firmware/plat/marvell/armada/common/marvell_bl31_setup.c
1a879218f61e83b5068e40a2b093fdb4ab851a4d - arm-trusted-firmware/plat/marvell/armada/common/marvell_ddr_info.c
e8797c2639ec349e76fc1946c984275c010e4cc0 - arm-trusted-firmware/plat/marvell/armada/common/marvell_console.c
9fa0f4b8209945eb39ccee90bcc305efbe10f211 - arm-trusted-firmware/plat/marvell/armada/common/marvell_gicv2.c
c785e8c07a0fa5d01b9ecf8eee873f7a18697e3a - arm-trusted-firmware/plat/marvell/armada/common/mrvl_sip_svc.c
79f7407103c1059afb212382689fff9c6a4f4350 - arm-trusted-firmware/plat/marvell/armada/common/marvell_io_storage.c
5f97ccaef3ab26b2710ad26fb0fdbd9facfd0b7d - arm-trusted-firmware/plat/marvell/armada/common/marvell_gicv3.c
0ff28a152c1c0997120e1e3a5fe654f1ae19ac60 - arm-trusted-firmware/plat/marvell/armada/common/marvell_cci.c
6ea11f2ef3d7978e714cdf621aeb7c8719c7edf3 - arm-trusted-firmware/plat/marvell/armada/common/marvell_bl1_setup.c
db23baf6374a79472a4b930f1fd68144d4f314a1 - arm-trusted-firmware/plat/marvell/armada/common/marvell_bl2_setup.c
c6e2fab47d050265fe94d5ce57fd1a3a684da2c9 - arm-trusted-firmware/plat/marvell/armada/common/marvell_topology.c
ea896d0f1d011e14c4411020d73d083c22eac783 - arm-trusted-firmware/plat/marvell/armada/common/plat_delay_timer.c
59510c739cc2d9619a9a5c21e1cbf1bb05094867 - arm-trusted-firmware/plat/marvell/armada/common/marvell_pm.c
69ee13cde36accbde0f355f89f9cc2b5d1aa2cb9 - arm-trusted-firmware/plat/marvell/armada/common/marvell_image_load.c
44573513efade3da9aa2ca94c3d4069a8af646fd - arm-trusted-firmware/plat/marvell/armada/common/mss/mss_mem.h
872e517062b5b548f6de42424dfb8290309f6773 - arm-trusted-firmware/plat/marvell/armada/common/mss/mss_scp_bootloader.h
0bb02e303d4c696fe34379bc2d5dd9f2fe16229d - arm-trusted-firmware/plat/marvell/armada/common/mss/mss_scp_bootloader.c
42d2fb2461687118d1f9e79ed2ae2a274cc91c45 - arm-trusted-firmware/plat/marvell/armada/common/mss/mss_ipc_drv.h
5cecfb1042c66b79c4c4c9bc5961fd91b34c880f - arm-trusted-firmware/plat/marvell/armada/common/mss/mss_scp_bl2_format.h
56e5fda520a793a37c7e8daa1ecfe2354b26e99e - arm-trusted-firmware/plat/marvell/armada/common/mss/mss_ipc_drv.c
daa5b1a54bfa63c73acf8429940662cd450f1eb9 - arm-trusted-firmware/plat/marvell/armada/common/aarch64/marvell_bl2_mem_params_desc.c
0842c4cae12a7c22367b83357a2c824d060dee67 - arm-trusted-firmware/plat/marvell/armada/common/aarch64/marvell_common.c
a71cc21b90eb5b1d29b125e9c98c3e50f9a145bc - arm-trusted-firmware/plat/marvell/armada/common/aarch64/marvell_helpers.S
9a52294343831155772b4411f11af6c989dbd182 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_mcbin/mvebu_def.h
25524fffee705cfc27dd670e05523c5de9ef0ed6 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_mcbin/board/dram_port.c
586996360a2bcce38bf90fa0b1b7a20a45c6e26b - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_mcbin/board/marvell_plat_config.c
29e2e91f84a20d0c2f220e0eba6c447909e5aab4 - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_mochabin/mvebu_def.h
99aea1bcabb4f6d0d7452ad42116629d21bb2b61 - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_mochabin/board/phy-porting-layer.h
8211399dfbf7994faafa28d85d5d232265c000fe - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_mochabin/board/dram_port.c
e26cc9cf2cffd853101d24b0e6cade82ff5f5cbe - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_mochabin/board/marvell_plat_config.c
9a52294343831155772b4411f11af6c989dbd182 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_puzzle/mvebu_def.h
4d33d263a3f05c3d8f3400a45afc2dd7f1792669 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_puzzle/board/dram_port.c
7bdf0ea1da45eaab8f21dca700b29582ccc57d0a - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_puzzle/board/system_power.c
f1c6500edd19c1540f562c4ea2dba8443a7cd419 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0_puzzle/board/marvell_plat_config.c
9a52294343831155772b4411f11af6c989dbd182 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0/mvebu_def.h
80de920eee6f0214b1cfb2cf104cd6d295bb478b - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0/board/phy-porting-layer.h
c0c43ed673f4f38bd78a3d145c4ff0f553bf3032 - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0/board/dram_port.c
027eab15e763f75779fca4721b6612e1cef0f74a - arm-trusted-firmware/plat/marvell/armada/a8k/a80x0/board/marvell_plat_config.c
bc3edb20ef2a7baebacce2c631f800cb6d206bbc - arm-trusted-firmware/plat/marvell/armada/a8k/common/plat_bl1_setup.c
4f7afd096359c9aad1f7852029a643db033fe7c7 - arm-trusted-firmware/plat/marvell/armada/a8k/common/plat_ble_setup.c
c96d4c2fac061ca1e3be3600ee8748de11d20ed0 - arm-trusted-firmware/plat/marvell/armada/a8k/common/plat_pm_trace.c
f1e7a83b618d37eb2df8dcc4cff814b934a4ab74 - arm-trusted-firmware/plat/marvell/armada/a8k/common/plat_thermal.c
3f6403fd39850e34f4c3bd674ccf8170f74af43d - arm-trusted-firmware/plat/marvell/armada/a8k/common/plat_bl31_setup.c
266ed9c2a714504a190f6bdd10db0d40815a428a - arm-trusted-firmware/plat/marvell/armada/a8k/common/plat_pm.c
86c5d3b710ba9b63aaf82c0f9dc1606c22176f45 - arm-trusted-firmware/plat/marvell/armada/a8k/common/include/plat_macros.S
eb840b0d5bb6e8cbd42b1ab32b72baec165926e7 - arm-trusted-firmware/plat/marvell/armada/a8k/common/include/platform_def.h
9fe71c8db281a9fc253c959e2bf8d7ed5b59f658 - arm-trusted-firmware/plat/marvell/armada/a8k/common/include/ddr_info.h
0f1625972d53fdedca61514318bdfd1ca806ac51 - arm-trusted-firmware/plat/marvell/armada/a8k/common/include/a8k_plat_def.h
3145664e80460f27bc2fd8cda127e916e518678f - arm-trusted-firmware/plat/marvell/armada/a8k/common/include/mentor_i2c_plat.h
cc11d9f29f29d9c9366f3e6c66183d38e3031ab7 - arm-trusted-firmware/plat/marvell/armada/a8k/common/mss/mss_pm_ipc.c
392f1834ac5b4679e9ae724c7cf1f3a20c0e566a - arm-trusted-firmware/plat/marvell/armada/a8k/common/mss/mss_bl31_setup.c
97ae958df0c9d8f54ff36a7803fe0ba27434e45c - arm-trusted-firmware/plat/marvell/armada/a8k/common/mss/mss_pm_ipc.h
f83bec0cc962f915447a4582455414387713f7ac - arm-trusted-firmware/plat/marvell/armada/a8k/common/mss/mss_defs.h
9acdf9fa5a506b13c376584f49b42a4f437af6c5 - arm-trusted-firmware/plat/marvell/armada/a8k/common/mss/mss_bl2_setup.c
4b2131b48e6b858b49e7e4d819172c5bc729f213 - arm-trusted-firmware/plat/marvell/armada/a8k/common/aarch64/plat_arch_config.c
919f5232edc5f6c3ec1670dedf5bf25fbb59356f - arm-trusted-firmware/plat/marvell/armada/a8k/common/aarch64/plat_helpers.S
01f390bd22a88039e1fc5f2d062ca126dae34478 - arm-trusted-firmware/plat/marvell/armada/a8k/common/aarch64/a8k_common.c
04e2455b39d088cb56ccb73dac9c842fb6f6b7eb - arm-trusted-firmware/plat/marvell/armada/a8k/common/ble/ble.ld.S
8d8ccf9d72fb421744052b95f2dc698844542a67 - arm-trusted-firmware/plat/marvell/armada/a8k/common/ble/ble_mem.S
29b7013d6e080d93a60b3780f10310e29aaa6bbb - arm-trusted-firmware/plat/marvell/armada/a8k/common/ble/ble_main.c
b79710e67347483f51ba3aa8fcb25a7f7dbb5083 - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0/mvebu_def.h
e0382b98cbf2ae3613453ec924646d5af8b1f11e - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0/board/dram_port.c
a3184b54f314a3880b11bd80e9ace2a825e4e251 - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0/board/marvell_plat_config.c
c7d9738b5d030b72c12bb9649d2dfb58e180b5b8 - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_amc/mvebu_def.h
eecb4e28621a6ea2bbe58371406ef5f58590424c - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_amc/board/dram_port.c
8eca9aa01df9af91fe07386e941d7557eae7d0ce - arm-trusted-firmware/plat/marvell/armada/a8k/a70x0_amc/board/marvell_plat_config.c
1b64a7198143a5ec5cbe075762bfc0f47e7eded0 - arm-trusted-firmware/plat/marvell/armada/a3k/common/cm3_system_reset.c
4e66aa51fabafab21b8e01fa4f3d49fc8fe6a97e - arm-trusted-firmware/plat/marvell/armada/a3k/common/a3700_sip_svc.c
f0aaac82be8c1b465622b1b82d8514de62c2e937 - arm-trusted-firmware/plat/marvell/armada/a3k/common/dram_win.c
f1d76afaec515fb65236190a9aced6e0ae2b4d8b - arm-trusted-firmware/plat/marvell/armada/a3k/common/a3700_ea.c
40c2d9f804ed183a8befa38d61bdd2164d711b34 - arm-trusted-firmware/plat/marvell/armada/a3k/common/plat_pm.c
a8ca841fb42e9bb5a9c071732f25138003b82d96 - arm-trusted-firmware/plat/marvell/armada/a3k/common/plat_cci.c
344f94187e37e08b2f532eb66281e7e28e7702c5 - arm-trusted-firmware/plat/marvell/armada/a3k/common/io_addr_dec.c
d00c0cf869839d6cd370b5b6c58e8d066705e2e1 - arm-trusted-firmware/plat/marvell/armada/a3k/common/marvell_plat_config.c
71cc1316bcad08255d76ad0ad858f47d681be60d - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/a3700_plat_def.h
58c7ff47a2230af870313a655dcab4f22dd64957 - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/dram_win.h
12bd9050e1d74b888a3866cf8ff79d17103fd0f2 - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/plat_macros.S
6a269296c2d98fb8f6f4c1736696c4e6081cbc88 - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/a3700_pm.h
61ab3a7cf4de99459f74b40ee4aa7c4c063f92ab - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/platform_def.h
6c89be0e3e7e102687ce8d216227785edce4db33 - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/ddr_info.h
0e8b8f431e24f28a92fcd4fb9d46eb87a1113db4 - arm-trusted-firmware/plat/marvell/armada/a3k/common/include/io_addr_dec.h
6a97369a4a693cf002e5f5f6ece32516e5978068 - arm-trusted-firmware/plat/marvell/armada/a3k/common/aarch64/a3700_common.c
965bc32da1f0ff9aa830bcede48eaca19cbe3b29 - arm-trusted-firmware/plat/marvell/armada/a3k/common/aarch64/plat_helpers.S
80f0ae31f4c2b57b330b01be44b293f6aa2cef72 - arm-trusted-firmware/plat/marvell/armada/a3k/common/aarch64/a3700_clock.S
716620282caf3210c15f6795e996035311a8ddd8 - arm-trusted-firmware/plat/marvell/armada/a3k/a3700/plat_bl31_setup.c
2cecd73b6df5a49196420939a6810672640ce165 - arm-trusted-firmware/plat/marvell/armada/a3k/a3700/mvebu_def.h
8f4af50a0df849dd31970be55e943ee4302b0472 - arm-trusted-firmware/plat/marvell/armada/a3k/a3700/board/pm_src.c
dd2c481628c54d07d905a85f08e527943473d31b - arm-trusted-firmware/plat/arm/common/arm_nor_psci_mem_protect.c
d663fd87f45498acaee1a4325d0e44e561dd102a - arm-trusted-firmware/plat/arm/common/arm_image_load.c
e58481ddddf7e4632598a6ca543bfc9fcb6a7c48 - arm-trusted-firmware/plat/arm/common/arm_dyn_cfg.c
3b628c17fd98697338a0997a380df8a81c7d2e66 - arm-trusted-firmware/plat/arm/common/arm_bl2u_setup.c
f2f3b9e0893c37d6ecae1332b3df925e9ab4d30f - arm-trusted-firmware/plat/arm/common/arm_console.c
53d385569ada7ff06030853184930078d8a2e4d8 - arm-trusted-firmware/plat/arm/common/arm_cci.c
842368bd1a44c1ece633a1254dc3cdaa4983c6ae - arm-trusted-firmware/plat/arm/common/arm_topology.c
9ac215f26148ab94b630463319c086d3e8b88c31 - arm-trusted-firmware/plat/arm/common/arm_bl2_el3_setup.c
6e9da80beed8b267a6c15c88f8b25e81d8b7bda4 - arm-trusted-firmware/plat/arm/common/arm_bl1_setup.c
bb20b499eb4fed681f076d21eeabaaf686b1c7fe - arm-trusted-firmware/plat/arm/common/arm_bl2_setup.c
d2c7c17798553c8d4e29f9b1bcad9e2754c97e6d - arm-trusted-firmware/plat/arm/common/arm_err.c
667de698f76e8d0b6d6f1b85f8012f3bed27e925 - arm-trusted-firmware/plat/arm/common/arm_ccn.c
e460d7f371f1102e3c39114a43c606937f3c9f92 - arm-trusted-firmware/plat/arm/common/arm_common.c
9b812991736d46b06d462799a31eb49ffae96260 - arm-trusted-firmware/plat/arm/common/arm_gicv2.c
1f2643d0dcc34c7b46895a5dd300de2674cc1274 - arm-trusted-firmware/plat/arm/common/arm_dyn_cfg_helpers.c
61b4b6215ec4cf4e050d7a14359bfdc2b64e2d8e - arm-trusted-firmware/plat/arm/common/arm_sip_svc.c
5f8fb896e304dbb204531641566de21b2e53a426 - arm-trusted-firmware/plat/arm/common/arm_tzc400.c
420e2c07ae07c6152cc914a3b464ec17f2f92843 - arm-trusted-firmware/plat/arm/common/arm_bl31_setup.c
c3c969f538ef3f3853d867a2c9c020723e5adc66 - arm-trusted-firmware/plat/arm/common/arm_tzc_dmc500.c
845db666afafcf708e365edd5461d9071f72c738 - arm-trusted-firmware/plat/arm/common/arm_gicv3.c
abdb20c16e5bae6df0e447b4a356eb5b9ed3eda0 - arm-trusted-firmware/plat/arm/common/arm_bl1_fwu.c
70afb2dd0a66c2a2b6eb5bfaf16df448d90e029d - arm-trusted-firmware/plat/arm/common/arm_io_storage.c
8d5a41b0cad025e83538d4508b8de54c96dd6be8 - arm-trusted-firmware/plat/arm/common/arm_pm.c
a666a9d920e0637f17e51eff519cc94c115b1ef7 - arm-trusted-firmware/plat/arm/common/fconf/arm_fconf_io.c
361186531a919bdc7825945fec639bf0db44800f - arm-trusted-firmware/plat/arm/common/fconf/fconf_nv_cntr_getter.c
ac62b3ab6e132e1747dbd2ffd6f40a72b4270235 - arm-trusted-firmware/plat/arm/common/fconf/fconf_sec_intr_config.c
fc971d9e587662fd23f35aa2dfbf0abf23c9da74 - arm-trusted-firmware/plat/arm/common/fconf/fconf_ethosn_getter.c
3ddfbb8ae3448f315371d7a3a814bea1d055cd3a - arm-trusted-firmware/plat/arm/common/fconf/arm_fconf_sp.c
dce55e77a6a4b9da7a42be37f5bba717d0c353e0 - arm-trusted-firmware/plat/arm/common/fconf/fconf_sdei_getter.c
cacda44b3716b65a5c30eedd17ed5a1335b8597b - arm-trusted-firmware/plat/arm/common/tsp/arm_tsp_setup.c
3237cf84bb44f0cc5b45b74d69d2934525543135 - arm-trusted-firmware/plat/arm/common/sp_min/arm_sp_min_setup.c
cc6a2551546758984d250e491c5c077149044f98 - arm-trusted-firmware/plat/arm/common/aarch64/arm_helpers.S
425d4b8c29564ce790babb9ea3fcc7ad80224fc6 - arm-trusted-firmware/plat/arm/common/aarch64/arm_bl2_mem_params_desc.c
1177013eddcf476b6a6d1f3367ae319363663450 - arm-trusted-firmware/plat/arm/common/aarch64/arm_pauth.c
6ee204b0e2a5012ad4dcef1cfe9fe884590bfb8c - arm-trusted-firmware/plat/arm/common/aarch64/execution_state_switch.c
8543903cea745c6c6709fd524622d3d5d3fd8df2 - arm-trusted-firmware/plat/arm/common/aarch64/arm_sdei.c
8c6171b381cfc6eca906ce2f7e2e6658895380ca - arm-trusted-firmware/plat/arm/common/aarch32/arm_helpers.S
43a64183c368a80bc24e370c93889989a49bfca3 - arm-trusted-firmware/plat/arm/common/aarch32/arm_bl2_mem_params_desc.c
17e3af5dfebbe4a8933589c7b3c67e14faa7dc12 - arm-trusted-firmware/plat/arm/common/trp/arm_trp_setup.c
5562bd387d6506e0db4a62fe23b24cd1c5046754 - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_stack_protector.c
810d8a4c9a7dff63b504d43fa4691f19cdf86b3b - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_bl2_mem_params_desc.c
1e7fe4ccc25d366dfe5f6a14851dab68001bdb13 - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_topology.c
c10b97a1764fe4c02c0a7ae81b0a75313edeed05 - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_helpers.S
0e3644e6d15833cfd15ee928af181e156ec27e8a - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_trusted_boot.c
fbb932100f4228bb8fe153a58d84898837188f8b - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_err.c
dd206cc4d7ea74d0dcace11dc6c64faf0d687b8a - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_plat.c
7bc7cf637e9751cbed26e48c65722c070a0f9d36 - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_pm.c
b9f80852b169e9c137876fadebe0782792162fe4 - arm-trusted-firmware/plat/arm/board/corstone1000/common/corstone1000_security.c
16e3686521725b2e8cf355c2d990811fc260a02c - arm-trusted-firmware/plat/arm/board/corstone1000/common/fdts/corstone1000_spmc_manifest.dts
a5086b67555acbdb3f4c3b25f837cbb372b0102a - arm-trusted-firmware/plat/arm/board/corstone1000/common/include/platform_def.h
70913ecf05a6e846d99d63213b643de746a371e8 - arm-trusted-firmware/plat/arm/board/corstone1000/include/plat_macros.S
d115cd145587e366c9c6d02d47cc7ea610f7791f - arm-trusted-firmware/plat/arm/board/morello/morello_security.c
846d7f92ffe6c368d0d0b85ffa36409b0dd04caf - arm-trusted-firmware/plat/arm/board/morello/morello_trusted_boot.c
710e4ce5fe08ed123d1977361a4bbf49dff07ba9 - arm-trusted-firmware/plat/arm/board/morello/morello_def.h
eae232f83e8fef4997f24f4cce1d598178a8eab0 - arm-trusted-firmware/plat/arm/board/morello/morello_plat.c
c855687b5adb537f1a56e37496a708864bd72650 - arm-trusted-firmware/plat/arm/board/morello/morello_bl1_setup.c
021dca0ec2928f72c45e98a602338d8a2bb08cc2 - arm-trusted-firmware/plat/arm/board/morello/morello_err.c
9e616a8e89120ae9b614d9bae16f0de9aa886778 - arm-trusted-firmware/plat/arm/board/morello/morello_bl2_setup.c
275ff8fd1cb66a02cc8ca9b9494035d3aa7f8ebf - arm-trusted-firmware/plat/arm/board/morello/morello_image_load.c
0105670429d8a205bc698cf69de09044501a55a1 - arm-trusted-firmware/plat/arm/board/morello/morello_topology.c
ab6ec67031b519490edd2bdd7efb973f91af2453 - arm-trusted-firmware/plat/arm/board/morello/morello_bl31_setup.c
59b5177c9b302f117bea58642d758d747224eaed - arm-trusted-firmware/plat/arm/board/morello/morello_interconnect.c
9c4c899115425303ba08c836c2a6ca740418160b - arm-trusted-firmware/plat/arm/board/morello/fdts/morello_fw_config.dts
bf30791c97940cf78bee90bb458a53b2480a4154 - arm-trusted-firmware/plat/arm/board/morello/fdts/morello_nt_fw_config.dts
a95b1476c52a6213400f2402811d15e5d82d7d83 - arm-trusted-firmware/plat/arm/board/morello/fdts/morello_tb_fw_config.dts
5361abb465b0253014c38facafec374dd284699a - arm-trusted-firmware/plat/arm/board/morello/include/plat_macros.S
e1eb7e2194a62fcfa63e0d92da3567386d98a24d - arm-trusted-firmware/plat/arm/board/morello/include/platform_def.h
1c3ff5d4d35a2aa211380dea2b252236f3dae0b1 - arm-trusted-firmware/plat/arm/board/morello/aarch64/morello_helper.S
ae7769a5c9c26af057b45ea638e7d3e8f7905d63 - arm-trusted-firmware/plat/arm/board/sgm775/sgm775_err.c
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/sgm775/sgm775_trusted_boot.c
77c37592e064ebc47319196a2468d4a75a6ff7de - arm-trusted-firmware/plat/arm/board/sgm775/fdts/sgm775_tb_fw_config.dts
673d2aca63b2cddcb1fc087b3849b8459c60178a - arm-trusted-firmware/plat/arm/board/sgm775/fdts/sgm775_fw_config.dts
20df07965dd541c0c14b55f71c827c0b992b608c - arm-trusted-firmware/plat/arm/board/sgm775/include/platform_def.h
8908fa02b1140f0d45e9bdcc3d5552190eb3af41 - arm-trusted-firmware/plat/arm/board/corstone700/common/corstone700_security.c
ed51f976efc9644368dd64840ed3d158c086650e - arm-trusted-firmware/plat/arm/board/corstone700/common/corstone700_stack_protector.c
3d1a55d785180dd11beb8473207268d04543695a - arm-trusted-firmware/plat/arm/board/corstone700/common/corstone700_helpers.S
5f0ac09b373c85fd1d635fb4f06ea45011389b19 - arm-trusted-firmware/plat/arm/board/corstone700/common/corstone700_topology.c
df9742f665da99900fe4a3fdc0b6fbcc02209a0f - arm-trusted-firmware/plat/arm/board/corstone700/common/corstone700_pm.c
90dbd482aecd4e6be49f62fed93a4b38e4d79784 - arm-trusted-firmware/plat/arm/board/corstone700/common/corstone700_plat.c
3c1fd619c9a1da90f7af84b9c6e1b8eceb5e7a20 - arm-trusted-firmware/plat/arm/board/corstone700/common/include/platform_def.h
688520959b3077ac47e6c17fd87614f5400ec96f - arm-trusted-firmware/plat/arm/board/corstone700/common/drivers/mhu/mhu.c
9f9f59bab890a50e0444edf12481248060aa9c1b - arm-trusted-firmware/plat/arm/board/corstone700/common/drivers/mhu/mhu.h
d2cf1d7868d3a048734caa91b018fb43f56c36dd - arm-trusted-firmware/plat/arm/board/corstone700/sp_min/corstone700_sp_min_setup.c
1cc6a4959dd00202735100b426201a00f18764ec - arm-trusted-firmware/plat/arm/board/rdn2/rdn2_plat.c
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/rdn2/rdn2_trusted_boot.c
73d0e620495671f0ffa9cfdd536e8f3c97f6e384 - arm-trusted-firmware/plat/arm/board/rdn2/rdn2_err.c
3693a7e757b2541552b2c91c91a0dba2d6a0a8de - arm-trusted-firmware/plat/arm/board/rdn2/rdn2_security.c
795d97596b09631253539c8a66fa49d5d422d01d - arm-trusted-firmware/plat/arm/board/rdn2/rdn2_topology.c
ed25350e5c803bac231eea3f950d3e7e5aee01d2 - arm-trusted-firmware/plat/arm/board/rdn2/fdts/rdn2_nt_fw_config.dts
77c37592e064ebc47319196a2468d4a75a6ff7de - arm-trusted-firmware/plat/arm/board/rdn2/fdts/rdn2_tb_fw_config.dts
3fa6109549ac24e3e9727ec6cfc9c34111cf53c9 - arm-trusted-firmware/plat/arm/board/rdn2/fdts/rdn2_fw_config.dts
f8bee970c03b0a4da0d79dcc8895e970ff34ffa1 - arm-trusted-firmware/plat/arm/board/rdn2/include/platform_def.h
7d80d6700188f44364662e46113af9036afedcbc - arm-trusted-firmware/plat/arm/board/n1sdp/n1sdp_topology.c
e902fc33536870bb2460962782828919e301f53a - arm-trusted-firmware/plat/arm/board/n1sdp/n1sdp_plat.c
7104250da7bca258ddb0bf081570d32f8900092b - arm-trusted-firmware/plat/arm/board/n1sdp/n1sdp_interconnect.c
e3d086dd3e36ff5fd58f3282c011f6394739185c - arm-trusted-firmware/plat/arm/board/n1sdp/n1sdp_def.h
4497a7586471f072a94ff5a066931c86dcb6fd2d - arm-trusted-firmware/plat/arm/board/n1sdp/n1sdp_security.c
5a64604c368489c4585ba4e01e129b3687e5d8ff - arm-trusted-firmware/plat/arm/board/n1sdp/n1sdp_bl31_setup.c
b45c063aa1fdf9280c52020500ae6e83d71244c5 - arm-trusted-firmware/plat/arm/board/n1sdp/include/plat_macros.S
eaeab6f905d711a8fa04d0ce9d2c2ec485934eaf - arm-trusted-firmware/plat/arm/board/n1sdp/include/platform_def.h
4b16feb977654bc82a89a104dc5b31b167bf17d1 - arm-trusted-firmware/plat/arm/board/n1sdp/aarch64/n1sdp_helper.S
0b886935846ab1d278829932851b6cc492f106cc - arm-trusted-firmware/plat/arm/board/juno/juno_bl31_setup.c
0ff3d7a6c51d9752cc2a86bb19e800a94245eea2 - arm-trusted-firmware/plat/arm/board/juno/juno_stack_protector.c
49553a7fbab54730a1b3de994aa92810c35025da - arm-trusted-firmware/plat/arm/board/juno/jmptbl.i
07f098d234d16533d40b505e91dbb1aae1712650 - arm-trusted-firmware/plat/arm/board/juno/juno_security.c
6cea3743018f1d02cac51c8d78a92561ea46ce14 - arm-trusted-firmware/plat/arm/board/juno/juno_bl2_setup.c
50963e02933b9165b4b2c2a4b8ce7f8cc758df7d - arm-trusted-firmware/plat/arm/board/juno/juno_trusted_boot.c
8a5716ff7852804effaf5810a335e69d3a788a50 - arm-trusted-firmware/plat/arm/board/juno/juno_trng.c
ebbb9c3ccbc5ea001a213d0ba5a9b7744bd561dc - arm-trusted-firmware/plat/arm/board/juno/juno_tzmp1_def.h
d784833f267d4a24f2a529767e8892a4aa11df9d - arm-trusted-firmware/plat/arm/board/juno/juno_common.c
bef868e2dcb239da5ba7d1787c2f790e1f31d33a - arm-trusted-firmware/plat/arm/board/juno/juno_err.c
17d854b860806d6ad8af6ee63952524a3bcbd9e9 - arm-trusted-firmware/plat/arm/board/juno/juno_pm.c
419b6382a2607911be10024a6287e69289234326 - arm-trusted-firmware/plat/arm/board/juno/juno_topology.c
905aac590f6fdf10096fd3e0f4bb661a2953acfb - arm-trusted-firmware/plat/arm/board/juno/juno_bl1_setup.c
53c5a79a63bf1f5551016da97e29bf8702e32ad3 - arm-trusted-firmware/plat/arm/board/juno/juno_def.h
dfc9edcda0daf49b40451e94c30405aa901ef204 - arm-trusted-firmware/plat/arm/board/juno/fdts/juno_fw_config.dts
805360ecd38e071b1f2e9b60704130be813557e2 - arm-trusted-firmware/plat/arm/board/juno/fdts/juno_tb_fw_config.dts
53f8c45c8436fb9bb4378cd8782a0b7d8037e5d2 - arm-trusted-firmware/plat/arm/board/juno/include/plat_macros.S
821681f18e15e60a3d540f06924deb6c691c2d7b - arm-trusted-firmware/plat/arm/board/juno/include/platform_def.h
4780ddabb988fa673f07503011a00242d2ea9faa - arm-trusted-firmware/plat/arm/board/juno/aarch64/juno_helpers.S
319dfb0515299119770970eb5953825ab7abd95c - arm-trusted-firmware/plat/arm/board/juno/aarch32/juno_helpers.S
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/rdv1mc/rdv1mc_trusted_boot.c
584cb4b05aeec673c6c04da7c3885037b079afa4 - arm-trusted-firmware/plat/arm/board/rdv1mc/rdv1mc_err.c
3f70fab8ee8fcd7926df2c977d9380f53cbbb9f6 - arm-trusted-firmware/plat/arm/board/rdv1mc/rdv1mc_security.c
04538cf26382d09d8e2c07c0b46f13a5b099236a - arm-trusted-firmware/plat/arm/board/rdv1mc/rdv1mc_topology.c
d4a49ec110e03192903aeabeae1df36bca1cae8a - arm-trusted-firmware/plat/arm/board/rdv1mc/rdv1mc_plat.c
c139b0b044ff0f3122d7f6e5b65703bc3fbee8d2 - arm-trusted-firmware/plat/arm/board/rdv1mc/fdts/rdv1mc_nt_fw_config.dts
77c37592e064ebc47319196a2468d4a75a6ff7de - arm-trusted-firmware/plat/arm/board/rdv1mc/fdts/rdv1mc_tb_fw_config.dts
3fa6109549ac24e3e9727ec6cfc9c34111cf53c9 - arm-trusted-firmware/plat/arm/board/rdv1mc/fdts/rdv1mc_fw_config.dts
05ecf6ab819a6a6ca826e872d3c1fa6a21c7e7ef - arm-trusted-firmware/plat/arm/board/rdv1mc/include/platform_def.h
86c2465abfadc0a5dfe9b561b0f5675db8fee013 - arm-trusted-firmware/plat/arm/board/fvp/fvp_stack_protector.c
a1e4c883f6912bad1724268901a148f96250854a - arm-trusted-firmware/plat/arm/board/fvp/fvp_realm_attest_key.c
394a425b1d229fbbad1173c1371edc737857d5f2 - arm-trusted-firmware/plat/arm/board/fvp/jmptbl.i
19591a34444effbe25bc3245bb68e6462bda0024 - arm-trusted-firmware/plat/arm/board/fvp/fvp_pm.c
20e8179e5c61147fc2d627dbb503babac430603c - arm-trusted-firmware/plat/arm/board/fvp/fvp_def.h
0c3494f4c7e2590865b69abf91d4b49be1ea469d - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl31_setup.c
a6d08d07ea1ba1184a912ed5ef6a6287291ff743 - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl2_setup.c
10c7154aeb64129154f13657841ad8f9aee6af85 - arm-trusted-firmware/plat/arm/board/fvp/fvp_trusted_boot.c
aed35e7aa732be73eef26face244c3acdee67640 - arm-trusted-firmware/plat/arm/board/fvp/fvp_console.c
0a86ad28b6ae96f93bdbcc32be32335d3e8250e9 - arm-trusted-firmware/plat/arm/board/fvp/fvp_err.c
6f76c4d8ae1abb640a62785bfc535bcb485f9511 - arm-trusted-firmware/plat/arm/board/fvp/fvp_topology.c
b4b38f929ba25c093b95fc92938eb9b58213a4b8 - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl1_measured_boot.c
fa75b4ccee6e6d8604b819da30a1ed892db70b15 - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl1_setup.c
d25e9c719859733739581faecd38cfa80443aa83 - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl2_measured_boot.c
87220bf30d58a155c2f10f38418d094db212e5b6 - arm-trusted-firmware/plat/arm/board/fvp/fvp_private.h
223e1339e343160feab72cff7621103ada50dbc9 - arm-trusted-firmware/plat/arm/board/fvp/fvp_common_measured_boot.c
1570105ddfc280d36e64641b556bc2da9a0529dc - arm-trusted-firmware/plat/arm/board/fvp/fvp_security.c
d62b302ac0bf1976ed0084160aeba061e325a6c3 - arm-trusted-firmware/plat/arm/board/fvp/fvp_plat_attest_token.c
df0b10a5b65cf57a485f5eb846e0cfa7e64c429b - arm-trusted-firmware/plat/arm/board/fvp/fvp_io_storage.c
71418933f8bb76fa971723d4cb9bc6748a009f33 - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl2_el3_setup.c
39be04c7a0d7f7559902b8813b1ded035b592985 - arm-trusted-firmware/plat/arm/board/fvp/fvp_gicv3.c
a3147836e6e11bb9b651753fee98a99b2f81062b - arm-trusted-firmware/plat/arm/board/fvp/fvp_common.c
1924351967826f1ad9898254b30419ba2e7fb9cc - arm-trusted-firmware/plat/arm/board/fvp/fvp_bl2u_setup.c
83e404fdd5bc4dda0b68b92d365d6e9b047f13d3 - arm-trusted-firmware/plat/arm/board/fvp/fconf/fconf_nt_config_getter.c
10fc5531e7b7d5ac9ffba191f525b64179843eae - arm-trusted-firmware/plat/arm/board/fvp/fconf/fconf_hw_config_getter.c
5601a00daf6c8ba481f1addc03652d97efe84a3c - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_soc_fw_config.dts
43a2362473fca426e3a62517552c20c2a629a563 - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_tb_fw_config.dts
b1406e98f75e782442a0fdfe50c8aad26cf5aeb5 - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_spmc_manifest.dts
33a1a8c0c5e1f8f806d0dbe69adab509f55301be - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_nt_fw_config.dts
aba68daa32f394274fa0c7b3ebb2d77514e105da - arm-trusted-firmware/plat/arm/board/fvp/fdts/event_log.dtsi
7dd67253d1f53292fbdd750b1360cace93220e02 - arm-trusted-firmware/plat/arm/board/fvp/fdts/optee_sp_manifest.dts
b8ba7eb0ce440dedebafa08a9e3ffde066832d0a - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_fw_config.dts
26761d08528feec31bb15a854b65dd46629135fe - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_tsp_fw_config.dts
df9f20c998402fb612824aeec7d618e97e023cb8 - arm-trusted-firmware/plat/arm/board/fvp/fdts/fvp_spmc_optee_sp_manifest.dts
b59b8589b390aaea5c26a9621713fe3d78e47e8b - arm-trusted-firmware/plat/arm/board/fvp/tsp/fvp_tsp_setup.c
aed581dcf8acf86f277ecf028cc1eec4f0c081fc - arm-trusted-firmware/plat/arm/board/fvp/include/plat_macros.S
aaff5cd1241ce58ab9627da89fb4860390a0864b - arm-trusted-firmware/plat/arm/board/fvp/include/fconf_nt_config_getter.h
1f6772f1b9358e6acc890bc4475a57f68cebc72d - arm-trusted-firmware/plat/arm/board/fvp/include/plat.ld.S
84180022623ad574044b9436e62202ee5635c6ae - arm-trusted-firmware/plat/arm/board/fvp/include/fconf_hw_config_getter.h
12b7439bee5ead5da71eb5a42a9c5cc493f9c7fc - arm-trusted-firmware/plat/arm/board/fvp/include/fvp_critical_data.h
c7af81d092cd74c1eba0402a02368b53f801c235 - arm-trusted-firmware/plat/arm/board/fvp/include/platform_def.h
6adce62f756dc0792fb3a4d6aa6cec60e0b54117 - arm-trusted-firmware/plat/arm/board/fvp/sp_min/fvp_sp_min_setup.c
3f4bcd29ccbf7cd09dfe8275846469b38db62e2f - arm-trusted-firmware/plat/arm/board/fvp/aarch64/fvp_ras.c
d5a6187ffa8ab68518e9d896c2d50bbf600d68cd - arm-trusted-firmware/plat/arm/board/fvp/aarch64/fvp_helpers.S
2c7ccf1e47b4fdac9dc7745e506f4194cce2e498 - arm-trusted-firmware/plat/arm/board/fvp/aarch32/fvp_helpers.S
851570d1add4283d5a01ff4893f1558decb2d6e9 - arm-trusted-firmware/plat/arm/board/rdn1edge/rdn1edge_topology.c
7d37a6f29bbe666c9db7538d4d7a123d1ab40b17 - arm-trusted-firmware/plat/arm/board/rdn1edge/rdn1edge_err.c
ba9b8a6b4b36804eb8c8aee5b17845c85db8a845 - arm-trusted-firmware/plat/arm/board/rdn1edge/rdn1edge_plat.c
561594e99d3e16d7826006d518e141e9a58eadec - arm-trusted-firmware/plat/arm/board/rdn1edge/rdn1edge_security.c
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/rdn1edge/rdn1edge_trusted_boot.c
5d0744ed59fc75ba7204d9d0083fbc0cd64e74d6 - arm-trusted-firmware/plat/arm/board/rdn1edge/fdts/rdn1edge_fw_config.dts
869fa43b401d5d394651f9d1bd9eb784b7ebb14d - arm-trusted-firmware/plat/arm/board/rdn1edge/fdts/rdn1edge_tb_fw_config.dts
a87583e95c695a2bf6af550cd6fbbffb3eae3961 - arm-trusted-firmware/plat/arm/board/rdn1edge/fdts/rdn1edge_nt_fw_config.dts
97f84a745ae8fccb804dc7e0ba50b85d46ed4198 - arm-trusted-firmware/plat/arm/board/rdn1edge/include/platform_def.h
0edacdd0dc4a2af6f50c21ccdf98244fe72c6730 - arm-trusted-firmware/plat/arm/board/common/board_arm_trusted_boot.c
aa5febfe9cf8a923785e2509c54c7e03032167e7 - arm-trusted-firmware/plat/arm/board/common/protpk/README
cdb90754cb9118d6571aad9c3846b2c410f708d1 - arm-trusted-firmware/plat/arm/board/common/protpk/arm_protpk_rsa_sha256.bin
a819075a49fd85dede74b56ddededf2f4c046f07 - arm-trusted-firmware/plat/arm/board/common/protpk/arm_protprivk_rsa.pem
ce90ae54534188e8ed455e84da4ee7656807dc45 - arm-trusted-firmware/plat/arm/board/common/protpk/arm_dev_protpk.S
885dbc360b97a82697b2978ae8f5665ba4878080 - arm-trusted-firmware/plat/arm/board/common/aarch64/board_arm_helpers.S
d7941a7e9ec8fa11c4dd7580b57e1543e335d61b - arm-trusted-firmware/plat/arm/board/common/aarch32/board_arm_helpers.S
c4cd605f9796351468c8e3427ec60a3ab5966a93 - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_dev_rotpk.S
f63762c7a16038a4bc3a046a89d815cf9ae9089b - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem
99b2edcf01ed68e8e25f2687d31ef61f0531f26f - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_rotpk_rsa.der
b48500f3591ea941f29e3cb482855cd947d886c3 - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_rotpk_ecdsa_sha256.bin
64194de14ee2424df1ca72d388c407f3d0c16184 - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_rotprivk_ecdsa.pem
2b0cf90adf32af769b93e85764f195737286be65 - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_rotpk_rsa_sha256.bin
b22a3e04b7c492d96f48978250bd02b1de04304b - arm-trusted-firmware/plat/arm/board/common/rotpk/arm_rotpk_ecdsa.der
bdf16498e248d1d87d012aca5001940fb8328395 - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_private.h
89a8aeb02e2a9467d783383e96d830647443b99d - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_bl31_setup.c
86553039cac69d2003776608e4a3172af5f6263d - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_console.c
1cfbd3237d5138875eda5a3f57ebd08f452c4992 - arm-trusted-firmware/plat/arm/board/arm_fpga/kernel_trampoline.S
78391ad4c170cb70d2db6ad5639108f4f6020dc6 - arm-trusted-firmware/plat/arm/board/arm_fpga/rom_trampoline.S
0ca4a4d2749cd227831e57d361b8c16ee0f3cf03 - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_gicv3.c
fe445cbd11196fc3c69cdcbc6be5cdbc4354026b - arm-trusted-firmware/plat/arm/board/arm_fpga/build_axf.ld.S
ef779e5f985f2ebef6d66a83442695603c463465 - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_def.h
70fd1afdd7b31d55ddd95d7018ba66095315083e - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_topology.c
15269f87cab6dfa65ce9cbaacbb13ee9cf2af583 - arm-trusted-firmware/plat/arm/board/arm_fpga/fpga_pm.c
87820ef2083d1576c3d29546b46fb922eafa3737 - arm-trusted-firmware/plat/arm/board/arm_fpga/include/plat_macros.S
6631f2221faec011381242d2e2011d9eda3e9780 - arm-trusted-firmware/plat/arm/board/arm_fpga/include/platform_def.h
205b5febc22c83179a2fc6c9005499ef61e8f347 - arm-trusted-firmware/plat/arm/board/arm_fpga/aarch64/fpga_helpers.S
3aff6d693c63d2b2dc58205e075552c4f14e24c2 - arm-trusted-firmware/plat/arm/board/sgi575/sgi575_security.c
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/sgi575/sgi575_trusted_boot.c
95aa905a5aa0734b8993eaf65aa91924c6ba1ccd - arm-trusted-firmware/plat/arm/board/sgi575/sgi575_topology.c
4bcbaa1f0a092433b2d017ed4941be94943fa552 - arm-trusted-firmware/plat/arm/board/sgi575/sgi575_err.c
e717578fd539b138146efa385134192a8aa4055c - arm-trusted-firmware/plat/arm/board/sgi575/sgi575_plat.c
a19b040188761f8bccb0937f9f397e3b191c143e - arm-trusted-firmware/plat/arm/board/sgi575/fdts/sgi575_nt_fw_config.dts
77c37592e064ebc47319196a2468d4a75a6ff7de - arm-trusted-firmware/plat/arm/board/sgi575/fdts/sgi575_tb_fw_config.dts
9f8fd7d90d63ffe6d71473664ec09b7aa4cdf607 - arm-trusted-firmware/plat/arm/board/sgi575/fdts/sgi575_fw_config.dts
127adaf6d9d5f7353a1893a6f2904417a96def85 - arm-trusted-firmware/plat/arm/board/sgi575/include/platform_def.h
db240cab0da9aaf6298ede4c8418abd28744a258 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_err.c
deb3a6a31fba479e597c0ae722532692996e2372 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_common.c
1f85fcf3a3d2c0bd5a8c5e848a4841400b54f9fe - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_private.h
2ce9cd0a5ef399a537316089ff1451da165bdd42 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_bl1_entrypoint.S
b5fe2445bbd4cfd3d360d2d930d9358c4eed5555 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_trusted_boot.c
486d3021b7aeeb557efb82cafa7337d3d3041fb7 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_bl1_main.c
efd5139ee502cdc5570d9ec338ee84b3410067fd - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_misc_helpers.S
8e7bab3de835fbccc87f8d20b8acecc011d4fcaa - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_debug.S
e985480b9d1aa1426a500f3c4869a1f32bb8b422 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_io_storage.c
181e66fa9c41732917a323ee0fe465da3b5ce36d - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_stack_protector.c
61fa6bbfd2f41f1cc6fe1c4caacb1fa09461692c - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_helpers.S
5f78d5ae0c4547371279bfc19196f01fb454e3b6 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_bl1_arch_setup.c
93cd93fd9277603c0a72cf1c730d6486a6247262 - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_bl1_setup.c
b1777d180724d85711393cf136ad5b34e80ce86a - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_def.h
b20640f66687a9edf5c361b2cf32bf1244777ecd - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_context_mgmt.c
860f2b3b1633322a3865add4e226f457c1a7237d - arm-trusted-firmware/plat/arm/board/fvp_r/fvp_r_bl1_exceptions.S
5356ccdf1172f23b213522e8c204e511fd9b8841 - arm-trusted-firmware/plat/arm/board/fvp_r/include/platform_def.h
e9c7e8c62f6a1ac8f4b8f79ebb080765f9244fbe - arm-trusted-firmware/plat/arm/board/fvp_r/include/fvp_r_arch_helpers.h
daecdf40f28b13596b217b424164a59b35baa192 - arm-trusted-firmware/plat/arm/board/rdv1/rdv1_plat.c
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/rdv1/rdv1_trusted_boot.c
39dd88b06678aa7f03906487a206a758c69bb621 - arm-trusted-firmware/plat/arm/board/rdv1/rdv1_security.c
1c209493074be7ae85b1aafe237784f10e2b7093 - arm-trusted-firmware/plat/arm/board/rdv1/rdv1_topology.c
07a42e98f0211f264decd0d40369a5a22999a7a4 - arm-trusted-firmware/plat/arm/board/rdv1/rdv1_err.c
4eee465e298e33cc2776504ed671b987022fb333 - arm-trusted-firmware/plat/arm/board/rdv1/fdts/rdv1_nt_fw_config.dts
77c37592e064ebc47319196a2468d4a75a6ff7de - arm-trusted-firmware/plat/arm/board/rdv1/fdts/rdv1_tb_fw_config.dts
3fa6109549ac24e3e9727ec6cfc9c34111cf53c9 - arm-trusted-firmware/plat/arm/board/rdv1/fdts/rdv1_fw_config.dts
5a4591bc131dd662dddfaa201c233dc2e6f0a9a0 - arm-trusted-firmware/plat/arm/board/rdv1/include/platform_def.h
af1f8d5af2ee91ba0dd180c42a7b8f73b7543474 - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_security.c
4a175994a02eeb79a8ccc76f0b3be5ac2d45771d - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_private.h
103c2c1d17da9dfaab63bca2f61e6bd21aa82c19 - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_bl2_setup.c
b370460e14d8e464d9f852b0e3f18cf2dca4950b - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_pm.c
87d9fc22d1228a7faf0c17443f9d5afd194e4334 - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_err.c
6733f3383940d86208b8239c1d08d9221c2c2929 - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_common.c
a924444b8053fdd6d907961d26d25ef0d3a207f7 - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_topology.c
300e69aa5df2f362bc3ddf1c430fe3fab03f11da - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_def.h
b0261bd454617bc33a79aa98dcfa987149992300 - arm-trusted-firmware/plat/arm/board/fvp_ve/fvp_ve_bl1_setup.c
996afef966d673534a7502180616ba362cdb0d9c - arm-trusted-firmware/plat/arm/board/fvp_ve/fdts/fvp_ve_tb_fw_config.dts
a857b4f74c6a05502271795dcd7a71f24a024b41 - arm-trusted-firmware/plat/arm/board/fvp_ve/fdts/fvp_ve_fw_config.dts
19f1b6fffc9b7e4d8a55730d5dc6740b06415c71 - arm-trusted-firmware/plat/arm/board/fvp_ve/include/platform_def.h
d56cac77b62eee0ed50166d2264e0a00c8fe4ffa - arm-trusted-firmware/plat/arm/board/fvp_ve/sp_min/fvp_ve_sp_min_setup.c
2ff5ebca71b32318bae21e3dbb7699236b9cbe61 - arm-trusted-firmware/plat/arm/board/fvp_ve/aarch32/fvp_ve_helpers.S
1f68f4b41cf660f6aecbd9c91cffd25b5da791a9 - arm-trusted-firmware/plat/arm/board/tc/tc_err.c
ded1714043a17b1985c18754683ddcc8a2954d2a - arm-trusted-firmware/plat/arm/board/tc/tc_bl2_setup.c
e359fea3cdefe52d1384eaf4e3657d1a8639ce5c - arm-trusted-firmware/plat/arm/board/tc/tc_trusted_boot.c
4335b9a6f68fb49824b223397621a29f3d1030c9 - arm-trusted-firmware/plat/arm/board/tc/tc_interconnect.c
868cf0c3ac2a02db664b5bb1dc788646d79823a0 - arm-trusted-firmware/plat/arm/board/tc/tc_plat.c
e12be214b71705c426b59f867e2c1e12d74eb660 - arm-trusted-firmware/plat/arm/board/tc/tc_topology.c
ae19b2b5534ecfc11125374e36d9e8f859a89eda - arm-trusted-firmware/plat/arm/board/tc/tc_security.c
28488a6123a3f6e963e45167297c24b033c4ea20 - arm-trusted-firmware/plat/arm/board/tc/tc_bl31_setup.c
b6a0718fcdad5e07263ed41c89641a47d843eb14 - arm-trusted-firmware/plat/arm/board/tc/fdts/tc_tb_fw_config.dts
dd7dfe59caab52d2698deda4e52c6508f481ea7a - arm-trusted-firmware/plat/arm/board/tc/fdts/tc_spmc_manifest.dts
6d8e682b0e92f3c4b0317af9db0cf378942f0637 - arm-trusted-firmware/plat/arm/board/tc/fdts/tc_spmc_optee_sp_manifest.dts
46c4eb5b1105e6fcf9a5ebc8bb219b4f6250ef79 - arm-trusted-firmware/plat/arm/board/tc/fdts/tc_fw_config.dts
12e15891d91866e073604872dd843da7a55ab1ca - arm-trusted-firmware/plat/arm/board/tc/include/plat_macros.S
9660ea0d565256c4b8a124a3b15c393be1d5f9b0 - arm-trusted-firmware/plat/arm/board/tc/include/tc_plat.h
8ad72d03b3ba43d1683a1303fee28ea1c7be281d - arm-trusted-firmware/plat/arm/board/tc/include/tc_helpers.S
fbb9a21e701abf6a427a0a7a4f52bdfac2d65ae5 - arm-trusted-firmware/plat/arm/board/tc/include/platform_def.h
4e3d6ef9cbb8925d20f8946cbf6f998ea3c4eb8f - arm-trusted-firmware/plat/arm/board/rde1edge/rde1edge_err.c
bb5bde77d451942a4effe8cd36463c1dfc1df462 - arm-trusted-firmware/plat/arm/board/rde1edge/rde1edge_plat.c
79e40d92dcde7f9d17195a4a63d0608730af9c4b - arm-trusted-firmware/plat/arm/board/rde1edge/rde1edge_topology.c
866a21334d0661b2dde96c9ea5c2e2c99e649ab3 - arm-trusted-firmware/plat/arm/board/rde1edge/rde1edge_trusted_boot.c
aa3d4b5a511124fc6ae5cd9244633af5ae0ab4a9 - arm-trusted-firmware/plat/arm/board/rde1edge/rde1edge_security.c
e5b638c1ab3d0ee37ca9b8702ee4262358c3559b - arm-trusted-firmware/plat/arm/board/rde1edge/fdts/rde1edge_fw_config.dts
0397a242841f6193faacaba41c8326032a1e7729 - arm-trusted-firmware/plat/arm/board/rde1edge/fdts/rde1edge_tb_fw_config.dts
1477905828689906107808c1098cccb0a22dc73b - arm-trusted-firmware/plat/arm/board/rde1edge/fdts/rde1edge_nt_fw_config.dts
7be90ba89049185165cc3d60d523a66fd7a1a0bf - arm-trusted-firmware/plat/arm/board/rde1edge/include/platform_def.h
cdf2af8fe7e5ba8b9ff36e04a33ebff2cf20f79b - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_bl2_setup.c
007839db0f0e5c02b3362ce770b02771a47faa27 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_topology.c
f2a71185ac9189cbe4310e27a7ead8d40c23c377 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_pm.c
fabc6650d0d7860d4d615e5e997c72bed71aecb3 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_bl1_setup.c
c6fdde231ff1fe0ddb8f585bd3fead2a7f2f0f46 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_security.c
c8bea252a67bd4f3ad0910e3dadd0b76dc62c7f3 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_private.h
be0cd4f5f48b5eb3a64885536643645036173809 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_common.c
7d714f8f2b3f7274c9d2e73eaa5d46215c7d3911 - arm-trusted-firmware/plat/arm/board/a5ds/a5ds_err.c
996afef966d673534a7502180616ba362cdb0d9c - arm-trusted-firmware/plat/arm/board/a5ds/fdts/a5ds_tb_fw_config.dts
adc821bdac8aebcefb26e3f8cd54497b3b8dfab4 - arm-trusted-firmware/plat/arm/board/a5ds/fdts/a5ds_fw_config.dts
189ef1e9d436f631711b2a4bd2e75efb635a322a - arm-trusted-firmware/plat/arm/board/a5ds/include/platform_def.h
a8eb0724c2056ed80453ea31aa3ebc822e93ffa2 - arm-trusted-firmware/plat/arm/board/a5ds/sp_min/a5ds_sp_min_setup.c
142d4bce7860550461e2498ba8c9f4ebb17d902d - arm-trusted-firmware/plat/arm/board/a5ds/aarch32/a5ds_helpers.S
c788e65cad1a1e84654d127315052a3bcbd35225 - arm-trusted-firmware/plat/arm/css/common/css_pm.c
75cc05419580aa9e613157ed0cacf5e0447c7d7b - arm-trusted-firmware/plat/arm/css/common/css_bl2u_setup.c
3bc7caa521ce87bd672c20940f330d81613afdc1 - arm-trusted-firmware/plat/arm/css/common/css_topology.c
e35946648a3f4e38af67096b19e7cbe49324a3e2 - arm-trusted-firmware/plat/arm/css/common/css_bl2_setup.c
f00b456e46701cc6a1e2b31fdd93091805ab0809 - arm-trusted-firmware/plat/arm/css/common/css_bl1_setup.c
3ddcf64aa2f7a53edf4016ea4d4c636a371f4516 - arm-trusted-firmware/plat/arm/css/common/aarch64/css_helpers.S
29476751ce928c5170b93c840f4fd925619fb9f9 - arm-trusted-firmware/plat/arm/css/common/aarch32/css_helpers.S
fb1634b97815fe2a2d9fcc807b394bdf1a034423 - arm-trusted-firmware/plat/arm/css/sgm/sgm_bl31_setup.c
6a32e8055bf1477d80b315a472542bc3c28106d5 - arm-trusted-firmware/plat/arm/css/sgm/sgm_plat_config.c
5072fa161b5fff3742a05eb8b9def551087be013 - arm-trusted-firmware/plat/arm/css/sgm/sgm_interconnect.c
6986ea7e2525388afa6171359d9f0c71de119e6e - arm-trusted-firmware/plat/arm/css/sgm/sgm_bl1_setup.c
fc6ffe0f853fbf9871294d23c034cf4eb00a0b99 - arm-trusted-firmware/plat/arm/css/sgm/sgm_mmap_config.c
bf1abf676327ef4b5c2fbe971bf5c59f9eea2511 - arm-trusted-firmware/plat/arm/css/sgm/sgm_security.c
408a01ed446d78cc578fa633ca47d7068ede3735 - arm-trusted-firmware/plat/arm/css/sgm/sgm_topology.c
00d4810ce12b4356434c80bbf98203811ee07a32 - arm-trusted-firmware/plat/arm/css/sgm/fdts/sgm_tb_fw_config.dts
5e82b47a941edb5ba37196b7aefe2a54e3bd2f81 - arm-trusted-firmware/plat/arm/css/sgm/tsp/sgm_tsp_setup.c
21772c91952bd2813284b444505fc85183bed867 - arm-trusted-firmware/plat/arm/css/sgm/include/plat_macros.S
c9020cce76399dabf8d4bf04257761ee38ea4d60 - arm-trusted-firmware/plat/arm/css/sgm/include/sgm_variant.h
6c95a3344c3a15036b1db884d62a972e802699ed - arm-trusted-firmware/plat/arm/css/sgm/include/sgm_base_platform_def.h
883fce52c6e023b9718833ef01eff53d740f4b22 - arm-trusted-firmware/plat/arm/css/sgm/include/sgm_plat_config.h
d55a2717a5f47927531e46527bd40fb912dd16f2 - arm-trusted-firmware/plat/arm/css/sgm/aarch64/css_sgm_helpers.S
5c168081100ace91d38be064d9d21551630d21c0 - arm-trusted-firmware/plat/arm/css/sgi/sgi_image_load.c
b33a69c22fcc5e0d8abd886b78b557633834d721 - arm-trusted-firmware/plat/arm/css/sgi/sgi_plat.c
da446db6b40b974a31d66ba55f23047f28d3f748 - arm-trusted-firmware/plat/arm/css/sgi/sgi_interconnect.c
c6341f0f666b8a901520e32310b18a323af9f925 - arm-trusted-firmware/plat/arm/css/sgi/sgi_topology.c
31824343e1235090b12b73c827b8cbf02ba4d0e4 - arm-trusted-firmware/plat/arm/css/sgi/sgi_plat_v2.c
a12ad9fe2e578f1c9186976a41033a398307aba6 - arm-trusted-firmware/plat/arm/css/sgi/sgi_ras.c
7a79c4c409726322831974860de49b71547d6feb - arm-trusted-firmware/plat/arm/css/sgi/sgi_bl31_setup.c
5972e7acb9e93b201406ff9cf0cbab522f942eb3 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_ras.h
468e61508695c6dc9df856865e295b59c32a54e3 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_soc_platform_def.h
b30c67527c7802085733426c8c113a7ab2492ce8 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_plat.h
b45c063aa1fdf9280c52020500ae6e83d71244c5 - arm-trusted-firmware/plat/arm/css/sgi/include/plat_macros.S
138c1bc36bb3c91d2b2d9f5ac1702aa0975c850c - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_soc_platform_def_v2.h
f340bb1f1f4dcfde1ab65f3d67e26a33025f37a6 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_sdei.h
3bb8192919eea022c0cfa99a7d87f8ecd4588256 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_base_platform_def.h
4e4ddcdd110f807b8dcbd6b440a4b4f5c2f9e83b - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_variant.h
7617a0e9164a7f90465861eedd913dabf15379f8 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_soc_css_def_v2.h
c388d0822e5ef0bf97db4c66ab46d4088421f0e6 - arm-trusted-firmware/plat/arm/css/sgi/include/sgi_dmc620_tzc_regions.h
aeb8a1b51452a7c1b9088cd2cc5f0c6ab2590b45 - arm-trusted-firmware/plat/arm/css/sgi/aarch64/sgi_helper.S
08fffa1ca580eaca04a26cfc974edd901c2997b1 - arm-trusted-firmware/plat/arm/soc/common/soc_css_security.c
399d2117be7573ef7ddc5afb0364b90fc66d9bb6 - arm-trusted-firmware/plat/imx/imx8qx/imx8qx_bl31_setup.c
b9316c7a608b29b530aaf325e401e06f62647525 - arm-trusted-firmware/plat/imx/imx8qx/imx8qx_psci.c
5f45eb6e98ea9c90548afd5ee153f8d14c105e48 - arm-trusted-firmware/plat/imx/imx8qx/include/platform_def.h
06458d5a3b748df586e9ba2064614354842c162f - arm-trusted-firmware/plat/imx/imx8qx/include/sec_rsrc.h
08a0687e7c3b77de90198dc7e5d8ca2ec448ae90 - arm-trusted-firmware/plat/imx/imx8qm/imx8qm_psci.c
9561f3046a19b5489e0aa9025135c8bb6a7d2582 - arm-trusted-firmware/plat/imx/imx8qm/imx8qm_bl31_setup.c
1fdf9dd0a1e00cee360596ce35842f77598cbf1e - arm-trusted-firmware/plat/imx/imx8qm/include/platform_def.h
6beb54a392291f2d54d207842b2620c7c344af8e - arm-trusted-firmware/plat/imx/imx8qm/include/sec_rsrc.h
1b219401b9b5eb5bd8c83fa92fc68c591d48a3da - arm-trusted-firmware/plat/imx/common/imx_io_mux.c
1901b0c4a5e19926a9e1b5ae437ebbeb0dc0d181 - arm-trusted-firmware/plat/imx/common/imx7_clock.c
829a4463f8628c61fcb335a0dbd747a6050c8192 - arm-trusted-firmware/plat/imx/common/imx_sip_svc.c
c014188b6f4a48f9dc6d6fed678081f02f8d8e86 - arm-trusted-firmware/plat/imx/common/plat_imx8_gic.c
97029bcef11b7a8598834c9717cec7a5655b895a - arm-trusted-firmware/plat/imx/common/imx8_helpers.S
561b0822ac98206dceac588b536d745fc70829d9 - arm-trusted-firmware/plat/imx/common/imx_ehf.c
5225b741c941cba9f489d347aae2707d99896d7d - arm-trusted-firmware/plat/imx/common/imx_csu.c
83187f1c90615deae51e2febc0506394e8d4d444 - arm-trusted-firmware/plat/imx/common/imx_sip_handler.c
b26cdffd75a0ba04b4a312520443d0c77b388242 - arm-trusted-firmware/plat/imx/common/imx8_topology.c
e03b60801f58711597b0bb457ecf6e3e84c9f44e - arm-trusted-firmware/plat/imx/common/imx8_psci.c
ac923dd7af0d3485eceae86115ea73150575ac4f - arm-trusted-firmware/plat/imx/common/imx_wdog.c
9026b30dd1244e0fa2416dac0e9f2b92c11bc83e - arm-trusted-firmware/plat/imx/common/lpuart_console.S
ad339798ed1c81b2dfda72cc1cefaae7acb622d9 - arm-trusted-firmware/plat/imx/common/imx_io_storage.c
03ff82e03dc9eb60e02c6e23f0c199fdd1753c9c - arm-trusted-firmware/plat/imx/common/imx_aips.c
e7ef15bdf83a7d4e3ca78dd0d0e9daf56414e55e - arm-trusted-firmware/plat/imx/common/imx_caam.c
6ac985911e7e26d13c75d48a04457fbcb209b62f - arm-trusted-firmware/plat/imx/common/imx_sdei.c
f30799014ffd50a32b0d021473b50cf5c4a28634 - arm-trusted-firmware/plat/imx/common/imx_clock.c
d93d2cf3c9aafc65833374f51376f03bc2387ecd - arm-trusted-firmware/plat/imx/common/imx_uart_console.S
da4b81f475ec53f2578ba031cd1f30f759bc5dde - arm-trusted-firmware/plat/imx/common/imx_snvs.c
8ae002187ace1e1358c7af1e06ef7957179939f5 - arm-trusted-firmware/plat/imx/common/include/plat_macros.S
0b633d6b19c3fd7cb43c433d74b84ede423bab4f - arm-trusted-firmware/plat/imx/common/include/imx_hab.h
8830c18819f942388c5badcb2c19eaea2ae058dd - arm-trusted-firmware/plat/imx/common/include/imx_caam.h
36d5f07566aad340b6ec06b01cfbe631023ca7f5 - arm-trusted-firmware/plat/imx/common/include/imx_wdog.h
bddfe7c6dc079e9f45c4a41601888d27f5d29c48 - arm-trusted-firmware/plat/imx/common/include/imx_csu.h
6f89a14dc12ddacabad367a7e69d8bf469274ec4 - arm-trusted-firmware/plat/imx/common/include/imx_uart.h
a3a14f38cbc846da3bc2498cf8e07b62479aa62a - arm-trusted-firmware/plat/imx/common/include/imx_snvs.h
24f8d34fd7865c2235d12e87791c7ae77d55d281 - arm-trusted-firmware/plat/imx/common/include/imx_io_mux.h
2e84528c7d6b12beb2c64505a14d73bcfb03ef87 - arm-trusted-firmware/plat/imx/common/include/imx_aips.h
b9d688fac07189d434ac636324a632e9bf78825c - arm-trusted-firmware/plat/imx/common/include/imx_clock.h
a5fcaffa0e69f234b0620f32d3556bf79ace50f1 - arm-trusted-firmware/plat/imx/common/include/imx8_iomux.h
efda9e3617b99df89057880a566725ab2a7be20d - arm-trusted-firmware/plat/imx/common/include/imx_sip_svc.h
28b31b74552131c2ba5875fb7db44b22ca16b722 - arm-trusted-firmware/plat/imx/common/include/imx8qx_pads.h
816bfc02478ff083b5f3557753a4d0d4f2f32c9e - arm-trusted-firmware/plat/imx/common/include/imx8_lpuart.h
1d847530cd83143e4a50b94c5499ee8c11f9d3e1 - arm-trusted-firmware/plat/imx/common/include/imx8qm_pads.h
f5724b26de0d68b4b37e1d580c6e30842eacd6c0 - arm-trusted-firmware/plat/imx/common/include/plat_imx8.h
daeb14deb7c4f498330bb44186346cd1ac4eef92 - arm-trusted-firmware/plat/imx/common/include/sci/sci_types.h
8a65436d5e0b335e9003a30f2da5f7892d23dc05 - arm-trusted-firmware/plat/imx/common/include/sci/sci_scfw.h
19674e70669fa3f7fb7e509377e445f7fd4c7be4 - arm-trusted-firmware/plat/imx/common/include/sci/sci.h
cc9366b07e946d7946bdfeae628f8a6c7ac3bed3 - arm-trusted-firmware/plat/imx/common/include/sci/sci_ipc.h
f6e6cd4d5b145f5abd0aa4d840fd7757d4b02c04 - arm-trusted-firmware/plat/imx/common/include/sci/sci_rpc.h
d3b138328cc81b7fe0a830b3cec8bd87f7d62835 - arm-trusted-firmware/plat/imx/common/include/sci/svc/pm/sci_pm_api.h
70210ef96ff1f0ccd4e790bb79a148f1bf02efcc - arm-trusted-firmware/plat/imx/common/include/sci/svc/rm/sci_rm_api.h
2507eeb7a0cd662322ea96553146f0f0dc8c6e45 - arm-trusted-firmware/plat/imx/common/include/sci/svc/timer/sci_timer_api.h
4be7f4400810802474258ed3e4b8f7a73170db33 - arm-trusted-firmware/plat/imx/common/include/sci/svc/pad/sci_pad_api.h
cf9e73e1a62f99ecb17abeeda5efbdad0f7b1c21 - arm-trusted-firmware/plat/imx/common/include/sci/svc/misc/sci_misc_api.h
8c98c79db7801610b0bf01e1ea680ec8347be4f2 - arm-trusted-firmware/plat/imx/common/sci/ipc.c
f2ab11050d68bdc711e7c18f9437fba728ab77bb - arm-trusted-firmware/plat/imx/common/sci/imx8_mu.h
985fca791927ad8088399ab8840bcbcfb8277a6e - arm-trusted-firmware/plat/imx/common/sci/imx8_mu.c
ada89ab08a1bfb90ad5b0e5ffb325268ddbc837e - arm-trusted-firmware/plat/imx/common/sci/svc/pm/pm_rpc_clnt.c
99d10095088dddbbe81826dbf7827bdc9c6bffb8 - arm-trusted-firmware/plat/imx/common/sci/svc/pm/sci_pm_rpc.h
fdc0fc24ee38df2fd92f2f039664af39724513e7 - arm-trusted-firmware/plat/imx/common/sci/svc/rm/rm_rpc_clnt.c
9162637c3ad8ef97f19a264c504c58d5886f9d7c - arm-trusted-firmware/plat/imx/common/sci/svc/rm/sci_rm_rpc.h
3f381087336a847b53323f6828aa61478b46a2cc - arm-trusted-firmware/plat/imx/common/sci/svc/timer/sci_timer_rpc.h
30cf1dfdd48ef57921bbd93789aaedbebd754c55 - arm-trusted-firmware/plat/imx/common/sci/svc/timer/timer_rpc_clnt.c
53b961e268ec00956cf3635d8561601e5c5bf70b - arm-trusted-firmware/plat/imx/common/sci/svc/pad/sci_pad_rpc.h
a593348ba8dcf5a3577bb48cd9d9ab7fe88c6df7 - arm-trusted-firmware/plat/imx/common/sci/svc/pad/pad_rpc_clnt.c
65f1e12aab1c7815ccb98973525d32d30e635a1d - arm-trusted-firmware/plat/imx/common/sci/svc/misc/misc_rpc_clnt.c
1dc0e610322825b6f58ac08670b99a4598bc01f1 - arm-trusted-firmware/plat/imx/common/sci/svc/misc/sci_misc_rpc.h
8169135849017c45a81b2c0447e940e3e5396145 - arm-trusted-firmware/plat/imx/common/aarch32/imx_uart_console.S
1e1f92bc6f801c91fde3bbe4ce99b62beb0eb7d2 - arm-trusted-firmware/plat/imx/imx7/warp7/warp7_bl2_el3_setup.c
42143dbacac34a118b7b86673774e843e7e84fd8 - arm-trusted-firmware/plat/imx/imx7/warp7/include/platform_def.h
1e876f487cd25f4a6cd08d0a21926f5405676a07 - arm-trusted-firmware/plat/imx/imx7/picopi/picopi_bl2_el3_setup.c
1b13f9e313e75353b45d6528629485488b180345 - arm-trusted-firmware/plat/imx/imx7/picopi/include/platform_def.h
bffe5bd7851f8d028c92d9d68dba7806be5bd662 - arm-trusted-firmware/plat/imx/imx7/common/imx7_image_load.c
7b5d73ec9d9c7e14fd48653c6e018d432654101d - arm-trusted-firmware/plat/imx/imx7/common/imx7_bl2_mem_params_desc.c
3bba3282b340c9896990c2ffcbf10d5bfb0070b2 - arm-trusted-firmware/plat/imx/imx7/common/imx7_rotpk.S
8403135be33e11a4b696e90b5b253465b6838682 - arm-trusted-firmware/plat/imx/imx7/common/imx7_helpers.S
4d406209e8b278e9730968baee57f5106d424aef - arm-trusted-firmware/plat/imx/imx7/common/imx7_trusted_boot.c
81ea2015e04bbc53b7d42589a21821a183fc1c8a - arm-trusted-firmware/plat/imx/imx7/common/imx7_bl2_el3_common.c
10003f2e608d5073c076ab1a446f4ba07c06086d - arm-trusted-firmware/plat/imx/imx7/include/imx7_def.h
d4e968db5e699bc36032dfe35d7fada27142c699 - arm-trusted-firmware/plat/imx/imx7/include/imx_hab_arch.h
1027e5173d316fd6d9dd6588b9666b53ed9d1116 - arm-trusted-firmware/plat/imx/imx7/include/imx_regs.h
10fb6753c1ece21522f45f372d0cbf3b416b5190 - arm-trusted-firmware/plat/imx/imx8m/imx_aipstz.c
996e00079997c54373e5acb4a6f39bfe8cbe346e - arm-trusted-firmware/plat/imx/imx8m/imx8m_image_load.c
ceb0518eca09618b3b642b96d4fb43d950bdfabb - arm-trusted-firmware/plat/imx/imx8m/imx8m_psci_common.c
7bd8d4e39f1f3905630b08a16be851097fa5ab67 - arm-trusted-firmware/plat/imx/imx8m/imx_rdc.c
6253f7542bd4e5a6244779068845d717f8eca3f6 - arm-trusted-firmware/plat/imx/imx8m/imx8m_measured_boot.c
3065b6071ec153725ca0d9782a393ffd3f24745d - arm-trusted-firmware/plat/imx/imx8m/imx8m_caam.c
ee448951c5f07c67e8c374cb6a4077c505070081 - arm-trusted-firmware/plat/imx/imx8m/imx8m_dyn_cfg_helpers.c
51949e20cb7aee1a68f0cc5eaa46f0eb3012c2dc - arm-trusted-firmware/plat/imx/imx8m/gpc_common.c
461d439b6ee554e1dce2786de8e131e60083bca6 - arm-trusted-firmware/plat/imx/imx8m/imx8mq/imx8mq_bl31_setup.c
a2af87335b959f57d6de74f40740b48de27a802e - arm-trusted-firmware/plat/imx/imx8m/imx8mq/imx8mq_psci.c
ff7748fc70a67a41bd452b895f531d103d0b3cfa - arm-trusted-firmware/plat/imx/imx8m/imx8mq/gpc.c
d1fa70b45e2971a3e4103d0b2ff864ec706c5af5 - arm-trusted-firmware/plat/imx/imx8m/imx8mq/include/gpc_reg.h
2db42326b731e92225ca5c389557d0b944e8d3a7 - arm-trusted-firmware/plat/imx/imx8m/imx8mq/include/platform_def.h
a70728dd56a39269eebea0b5d96e9e82765e1e7a - arm-trusted-firmware/plat/imx/imx8m/include/gpc.h
4bc0eb69bf40f2ac07200a788f79ad6e9ec8b3f2 - arm-trusted-firmware/plat/imx/imx8m/include/imx8m_psci.h
3bc736f072705dfa2d00383fe60d8497b3676fcc - arm-trusted-firmware/plat/imx/imx8m/include/imx8m_caam.h
47de7cdf356158f2b651bafb8659187db3a13e65 - arm-trusted-firmware/plat/imx/imx8m/include/imx8m_measured_boot.h
dbc9dbdd5e6269f4f08553a771a33f13a1fa884a - arm-trusted-firmware/plat/imx/imx8m/include/imx_rdc.h
5ec5413514abe79264b0bed81c75f811d2621d46 - arm-trusted-firmware/plat/imx/imx8m/include/imx_aipstz.h
0efee336c964d1973fec201980455aee08396081 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/imx8mp_trusted_boot.c
169ab98f3d4cd7620ffef0d78f7c2329be9c1586 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/imx8mp_psci.c
97a556f1fc780240a2ad81127c295bd39a0c6512 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/imx8mp_rotpk.S
f822b4b589b5d418d0ea960b764bd311a32466ea - arm-trusted-firmware/plat/imx/imx8m/imx8mp/imx8mp_bl31_setup.c
be1935709a939c0480bc4cc27058482508f2596b - arm-trusted-firmware/plat/imx/imx8m/imx8mp/imx8mp_bl2_mem_params_desc.c
49f3d2caa5e653fc6cdd99c140ff61ad9d83c9c0 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/gpc.c
3d38c99169530f67aeba8526bd7cd4559981a349 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/imx8mp_bl2_el3_setup.c
df0e3b50430ac47d2263ca8e0a4b83d46c8c0193 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/include/gpc_reg.h
c65d55a5e1a73f615b9fe213427e4605f4b3806c - arm-trusted-firmware/plat/imx/imx8m/imx8mp/include/imx8mp_private.h
f7d6a1f75a510179a6e4a7084b3d70dd9bba5734 - arm-trusted-firmware/plat/imx/imx8m/imx8mp/include/platform_def.h
3fcc366713e1667476479363fd2d0fb74144e491 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/imx8mm_bl2_mem_params_desc.c
0e0933de6793e323f4c77e12a89455776a0dfe57 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/imx8mm_psci.c
060756d07ff95fa2e15ef2cab742c6f6fdfdc5e3 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/imx8mm_rotpk.S
5e7971c14f77e2f2450badad4a156ca33a9eb89f - arm-trusted-firmware/plat/imx/imx8m/imx8mm/imx8mm_bl2_el3_setup.c
1bb0ea0358213dbd45eb953fdbb45234606078d0 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/gpc.c
a3afe5951fdd7ba0d6e5b64214a2183800a80132 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c
f9007785b7de40f327bd11a83c710c297b45e4ab - arm-trusted-firmware/plat/imx/imx8m/imx8mm/imx8mm_trusted_boot.c
4a704d5f5cc4958ad509fe9771d30d6632cb1a0a - arm-trusted-firmware/plat/imx/imx8m/imx8mm/include/gpc_reg.h
0f9e1a9d6497a3ad4e415d483905f2ef16aaa423 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/include/imx8mm_private.h
c81f2809571226d121ea1917bdbfe06afcd9b523 - arm-trusted-firmware/plat/imx/imx8m/imx8mm/include/platform_def.h
629b2fa411eef0f016ff98ec22caee2012cdf650 - arm-trusted-firmware/plat/imx/imx8m/imx8mn/imx8mn_bl31_setup.c
e7ded5d1571dcf2246b5480dea7517bbc0e45a87 - arm-trusted-firmware/plat/imx/imx8m/imx8mn/imx8mn_psci.c
d50646f42ed68bca258b692593812b18c635dbb0 - arm-trusted-firmware/plat/imx/imx8m/imx8mn/gpc.c
82259d3c2b7d974ad94a42c37f37e0a8f0ce576f - arm-trusted-firmware/plat/imx/imx8m/imx8mn/include/gpc_reg.h
a6e3b2e69300fabcd3a505525cc5d48d88345f7a - arm-trusted-firmware/plat/imx/imx8m/imx8mn/include/platform_def.h
2f1976dda894f28a35f0cc50623e070a354d044c - arm-trusted-firmware/plat/mediatek/mt8183/scu.c
03b9e95dd87fe5cdd436743fb8f5f59d4b2f2de3 - arm-trusted-firmware/plat/mediatek/mt8183/plat_topology.c
e9bb8f5dfe42b8cfdd770db2301155ad00d93617 - arm-trusted-firmware/plat/mediatek/mt8183/plat_mt_gic.c
9065f62c97422538ddfd15c89806f2869ffb98c5 - arm-trusted-firmware/plat/mediatek/mt8183/bl31_plat_setup.c
7a7fbf6ac91e6e9ff86ac7350e8de64f834b5997 - arm-trusted-firmware/plat/mediatek/mt8183/plat_dcm.c
3cb5ee19a3d0915879c602a240e4affb4a0d7c94 - arm-trusted-firmware/plat/mediatek/mt8183/plat_debug.c
8274c219bcba2090fe7e6e628abe65c7c3780d33 - arm-trusted-firmware/plat/mediatek/mt8183/plat_pm.c
f7b9354cce893182c4203079dc774a9b048d05d7 - arm-trusted-firmware/plat/mediatek/mt8183/include/plat_macros.S
a52a6337e1e29bc64b0d301f31d88c42981a1105 - arm-trusted-firmware/plat/mediatek/mt8183/include/sspm_reg.h
a4d241e1fe6a38acfd38a895dc29d0d3762c185f - arm-trusted-firmware/plat/mediatek/mt8183/include/plat_private.h
447f690a22efc00539cd931fc1d9aba592997a19 - arm-trusted-firmware/plat/mediatek/mt8183/include/plat_dcm.h
387e06d0f2e4f36818ebd660cd1c4d429222a6fa - arm-trusted-firmware/plat/mediatek/mt8183/include/platform_def.h
58b0e33d4a7460c72049a50f5cb8e8af5a5260d9 - arm-trusted-firmware/plat/mediatek/mt8183/include/plat_debug.h
01e8de6953d79923463ea639e7d8e218ecdbc8e6 - arm-trusted-firmware/plat/mediatek/mt8183/include/power_tracer.h
9ff5bdd1f6610dc5e442304399c97ab95361e3a3 - arm-trusted-firmware/plat/mediatek/mt8183/include/scu.h
97a99a4b4542d549efbe9122362e0ee8fcac89fa - arm-trusted-firmware/plat/mediatek/mt8183/include/mt_gic_v3.h
16b7a7f8d62f9bc9d06c01d5e72b2ef5653e7455 - arm-trusted-firmware/plat/mediatek/mt8183/include/mcucfg.h
23040542c3bf819fe42a45ea51427b1a39edfab5 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/timer/mt_timer.c
1f21078b5dce77d5939c39ae046fcf15cf1bcc4d - arm-trusted-firmware/plat/mediatek/mt8183/drivers/timer/mt_timer.h
e92a0c648e09b96cd906a5e008c418d7d61fd577 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spm/spm.h
fe16bd5deb42a8c0e902c3a7547e11d7d5afa0bd - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spm/spm_suspend.c
fdbc0bcded1a96ceeb994c74a3a48eec3af06df3 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spm/spm.c
b26d910796c32c24b2519666922a9991a16d3562 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spm/spm_pmic_wrap.c
f1a812bc872a1ac1c695c5485fba1a135307986c - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spm/spm_suspend.h
8156e8c4b7f219c9590cfcb2338d845c2b0c71b6 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spm/spm_pmic_wrap.h
7ac4fd4d1072962002d4b4a7439a7fc6fea85b48 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/mcdi/mtk_mcdi.c
0bae9ef296eeb3bf9ed2342aa58b2d505dc8f04f - arm-trusted-firmware/plat/mediatek/mt8183/drivers/mcdi/mtk_mcdi.h
4ab8cc9c4d3ff197639f9b78f7b860ebb8879967 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/mcsi/mcsi.c
51b89484342a85c2ee1e944fbbfc08a8bc663f63 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/mcsi/mcsi.h
fb3c91bb75b7fe6fff5323ead8dc73efc07f1289 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/sspm/sspm.c
645f76b92e2714b452ae24edcd6a40cfa879ea61 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/sspm/sspm.h
62325eff3c956aa9ca90b298e958e8ed5941a8a4 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/emi_mpu/emi_mpu.c
88c148094b3fac4149258b8fe4786fe4ac3f8f3a - arm-trusted-firmware/plat/mediatek/mt8183/drivers/emi_mpu/emi_mpu.h
96ac9c853839aff7b9c19b8ce2bdd09ffee2c87d - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spmc/mtspmc_private.h
316277d91acd7098ec6ac153e95c932aca46d3c5 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spmc/mtspmc.h
2e1849b9de23cbd064f9e90e4c83cd761e284e18 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/spmc/mtspmc.c
94b038f0c7b76069f4f85185a375d4d2aa61a74f - arm-trusted-firmware/plat/mediatek/mt8183/drivers/gpio/mtgpio_cfg.h
3a86fc89605145b3faa5aa385e8f7a11851b424a - arm-trusted-firmware/plat/mediatek/mt8183/drivers/gpio/mtgpio.h
346960934a0779649e0412ae87abde963086ff8a - arm-trusted-firmware/plat/mediatek/mt8183/drivers/gpio/mtgpio.c
888e5c6480da8cc9f0dd6d5febc12f7d0a8a16fd - arm-trusted-firmware/plat/mediatek/mt8183/drivers/rtc/rtc.c
edd71b3e0aaea146cfadebca131cd7e6ee13d303 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/rtc/rtc.h
1d535ab7f8d2fb5131a0ce0e6a7b11c4a188a009 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/pmic/pmic.c
214f922545d6899c3e5621df156f1712ebb3c009 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/pmic/pmic_wrap_init.h
ddd6d454dc5e0a1dead801b5cb856c7f27a8065e - arm-trusted-firmware/plat/mediatek/mt8183/drivers/pmic/pmic.h
264db153102d726c6a9455244b40d552d0960af2 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/devapc/devapc.h
ed39e8ba2090c26070e12def3287c0ff46721987 - arm-trusted-firmware/plat/mediatek/mt8183/drivers/devapc/devapc.c
c5295d987eeadbc7fa82ddedb5266f20e7dd3cec - arm-trusted-firmware/plat/mediatek/mt8183/aarch64/plat_helpers.S
c7ae3ce6e37f4d27b8733d9c3b1bafa8add40a8b - arm-trusted-firmware/plat/mediatek/mt8183/aarch64/platform_common.c
7858c40d5378047a8869189376fb70d934ed6f9b - arm-trusted-firmware/plat/mediatek/common/plat_params.h
9d567134def757007ff0196e1a84e96ff6772d7b - arm-trusted-firmware/plat/mediatek/common/mtk_sip_svc.h
ffdbbcc522937a13b7f658754005673d0257f6dc - arm-trusted-firmware/plat/mediatek/common/mtk_sip_svc.c
561bde7d3dcce4eb570c0798866c49ac31db4cec - arm-trusted-firmware/plat/mediatek/common/mtk_plat_common.c
4f1e69980b6fa0691ac24f320f777fa5f690c987 - arm-trusted-firmware/plat/mediatek/common/params_setup.c
91005aeae3d9de06561b65ab2fcbec18472bcdd3 - arm-trusted-firmware/plat/mediatek/common/mtk_plat_common.h
4fc10ec9bb95247b13ba3d9b9edeafbb42ba4037 - arm-trusted-firmware/plat/mediatek/common/mtk_cirq.c
311eaf7d7a3b040aee08231328317674a1db9975 - arm-trusted-firmware/plat/mediatek/common/mtk_cirq.h
32e5d4c9af02cbaf4603a45ee6ecc742ae4e1a0c - arm-trusted-firmware/plat/mediatek/common/lpm/mt_lp_rm.h
c272dea0838b85718c51563a46b3274a684e1b83 - arm-trusted-firmware/plat/mediatek/common/lpm/mt_lp_rm.c
a183db6162649664bca3e1e3a7650f0c641ce3d0 - arm-trusted-firmware/plat/mediatek/common/drivers/pmic_wrap/pmic_wrap_init_v2.c
a439bfc1e0a18de64b665a1f9f1612c6c723b298 - arm-trusted-firmware/plat/mediatek/common/drivers/pmic_wrap/pmic_wrap_init.c
bcc701f742bbbd6ccfbbc58e60fc17bd7ea2743d - arm-trusted-firmware/plat/mediatek/common/drivers/uart/uart.h
db4a5136746026996b722adcae43bef2530ca8bf - arm-trusted-firmware/plat/mediatek/common/drivers/uart/8250_console.S
72586b214f5212b1d0cb120063c07e8eca22b38a - arm-trusted-firmware/plat/mediatek/common/drivers/uart/uart.c
13f55b9e347d50eacc00a183d743c28419be6dea - arm-trusted-firmware/plat/mediatek/common/drivers/uart/uart8250.h
8cd2ff88ff29bd0f9f3b205a057f4c9bd9601adf - arm-trusted-firmware/plat/mediatek/common/drivers/timer/mt_timer.c
7370797acadbb4e47f7b8f407834dbb4c932cc16 - arm-trusted-firmware/plat/mediatek/common/drivers/timer/mt_timer.h
ea57c5163cb9ad847760738ed46363d3b3e03dd0 - arm-trusted-firmware/plat/mediatek/common/drivers/gic600/mt_gic_v3.c
c78b2291f89f3cb41916e636890a3b8263cb6250 - arm-trusted-firmware/plat/mediatek/common/drivers/gic600/mt_gic_v3.h
7203181ede278ce1fd73cf8b9f9204b6cd508282 - arm-trusted-firmware/plat/mediatek/common/drivers/gpio/mtgpio_common.h
990b19477486a12883414d383890f2bebcebbd2a - arm-trusted-firmware/plat/mediatek/common/drivers/gpio/mtgpio_common.c
47b4f5bd98692841b45386f4ac1971904a86e5ef - arm-trusted-firmware/plat/mediatek/common/drivers/rtc/rtc_mt6359p.h
126307a49e31392042c3224d14fd15ba85a79b43 - arm-trusted-firmware/plat/mediatek/common/drivers/rtc/rtc_common.c
eca4fbb32aaba0013f15b702c44892eef43998c1 - arm-trusted-firmware/plat/mediatek/common/drivers/rtc/rtc_mt6359p.c
37f3112de6efd829353735288a329458891db6f4 - arm-trusted-firmware/plat/mediatek/common/custom/oem_svc.h
dbff628762b596a369e7a96908226677ec6143ce - arm-trusted-firmware/plat/mediatek/common/custom/oem_svc.c
02f0daaeeb8c59d391a631dd2f7624e598748e99 - arm-trusted-firmware/plat/mediatek/mt8195/plat_topology.c
f6cbc785839b2fde5bb8c3d87190641b45997d2b - arm-trusted-firmware/plat/mediatek/mt8195/bl31_plat_setup.c
94708cfb8fd54fdc9e58c01699e1e9e8c26341e5 - arm-trusted-firmware/plat/mediatek/mt8195/plat_sip_calls.c
6bf419a65264c179e6faecb78b2c7f31faccfa6d - arm-trusted-firmware/plat/mediatek/mt8195/plat_pm.c
1244ea062e485744ad8d59bf66ba3a455bec7f13 - arm-trusted-firmware/plat/mediatek/mt8195/include/plat_mtk_lpm.h
4b7558ac17d450a33285d28478f8d8596edbb1b5 - arm-trusted-firmware/plat/mediatek/mt8195/include/plat_macros.S
97ba7557af145fe931feafea204357431b957299 - arm-trusted-firmware/plat/mediatek/mt8195/include/plat_sip_calls.h
5fdb5614708d12a66d8b58741f2e38c49b7690aa - arm-trusted-firmware/plat/mediatek/mt8195/include/rtc.h
9ba9b4651c7e04ead5846597f6564fab10d8de4a - arm-trusted-firmware/plat/mediatek/mt8195/include/plat_helpers.h
d923270912bbaad8959a73f39f933db6c98a49ce - arm-trusted-firmware/plat/mediatek/mt8195/include/plat_private.h
cfc60d518acd24b2043bf29a48105110ad3068aa - arm-trusted-firmware/plat/mediatek/mt8195/include/plat_pm.h
de6346b18cb5bf3c6727a99f6cc0d9a62be9f071 - arm-trusted-firmware/plat/mediatek/mt8195/include/platform_def.h
af49cf4a43c7cf77fcfa20fe09d7197390bf3969 - arm-trusted-firmware/plat/mediatek/mt8195/include/mcucfg.h
b1174b8477d0e126d9a35147161079391bf09ab0 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dcm/mtk_dcm.h
b6ba63645f7269f8d27b087a36b742340630864b - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dcm/mtk_dcm.c
d83f926ab5ef0f16323281a34f12b358f3af50be - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dcm/mtk_dcm_utils.h
79890abe09ae9210d94ce3c0f27c8e1d61ed6fae - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dcm/mtk_dcm_utils.c
4168e0d14bbe98c0b575d2e572fdb4b73586f8c7 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dfd/plat_dfd.h
17199f9bb411ca8735cf2bc4b22e8baa7bc2d152 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dfd/plat_dfd.c
c925ae2549008a58fda62b34de221dd620c70d96 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/apusys/mtk_apusys.c
e37292ff38e07fc925308e8d725c49e48fa0a085 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/apusys/apupwr_clkctl_def.h
5785dfb24000631b8d3ec2c8363f0de46908d763 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/apusys/apupll.c
98090ad034ce904969ba1583467f8e5ef565d2d8 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/apusys/apupwr_clkctl.c
fb86370251784e4a48a2bfe74baf2d7c56f3701b - arm-trusted-firmware/plat/mediatek/mt8195/drivers/apusys/apupwr_clkctl.h
dace58b25824fbc880b58670389d47358981547f - arm-trusted-firmware/plat/mediatek/mt8195/drivers/apusys/mtk_apusys.h
79676f45e5439628bef50912dcfdb60c2ab34e8a - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dp/mt_dp.c
9aafb1c8544431a32f3d664beca24b47d9489f1f - arm-trusted-firmware/plat/mediatek/mt8195/drivers/dp/mt_dp.h
1209a457ffc9d4ceeebf3f3e24300146fecbd276 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_constraint.h
0a4ed6a9c901c1bc5b75371aa26917fe6d9b243e - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_vcorefs.h
f438fe8befd240fc23c7cc48c7e77e1e1a3cc0c8 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm.c
6ef0f4493d19b357c77df1b5cd49696a5263d102 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_vcorefs.c
1c5969bf63da110696877497bf7bb035238af2c3 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_resource_req.h
28a7ecc5d35653b1b3e42ad19c1d1526f8b4ba13 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_cond.c
d655b93e0b18efc8d5ac80ceae4a282c70d79c8a - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_cond.h
709be723f3bb2b8be34dabc19ffec007a928b060 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/sleep_def.h
c5542e49f5d3326418606d161d9490c9dc3c7bcf - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_reg.h
33b92edafecacba8aed5f6b12c0b051740d4aa8e - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_pmic_wrap.c
2516c5016c27a7706bfb86cea698a6741d845eef - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_suspend.c
d21496a22308580c07df11ebe7adf41f274bfd59 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_idle.h
c13822b4c2268325ef4398fbd0d28eacdfb59602 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_idle.c
c997c26d9a441b3b550fa191f122a33d669d38b4 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_internal.c
445db7752ab6359cd4ddfebded67f1dc59603220 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/pcm_def.h
3e3b62df98d3d83eb2016c9d8dd1f67a641e95e4 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_conservation.h
416b58dbb44fb50ec9cbdda2b4af6cc04bd48d20 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm.h
618680bf1155ee1bdf7f67df15cfeefeded70e66 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_pmic_wrap.h
1e9fb5aa9c1bd6bfedf0be53b9f529290a141a9e - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_internal.h
a2ab35d6915d2ac73d85c1068d973a0d3514da41 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_suspend.h
b24e7e4ca2cd9b25fdbad93fed94631f347b78f8 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/mt_spm_conservation.c
872b3910dfca5bff8749f70e72fba760cf6289c7 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/constraints/mt_spm_rc_cpu_buck_ldo.c
6b5af500b6156d7283e6f315ae2fd1c33e95eeab - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/constraints/mt_spm_rc_bus26m.c
c24f82eb4ee80d7945922eac27dac514db2a49ac - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/constraints/mt_spm_rc_dram.c
a3456911635f8af4f989688a8a1ae80de5256fb3 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/constraints/mt_spm_rc_syspll.c
98f55522313c18575ac3b999f71ef98dd128d004 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/constraints/mt_spm_rc_internal.h
e3e6596065738a8b19bfde088f92c7a4bf51b851 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/notifier/mt_spm_notifier.h
73de5db2e94313670371f83a648fe95de097e7f7 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/notifier/mt_spm_sspm_intc.h
85497a05edddd868fbe7322a3621d2b7c88c9814 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spm/notifier/mt_spm_sspm_notifier.c
31705f56afab7b0bfb866eaec7cd621c05f6004e - arm-trusted-firmware/plat/mediatek/mt8195/drivers/ptp3/mtk_ptp3_common.h
1616d5f796bb92042ec501e01ff39403df39936e - arm-trusted-firmware/plat/mediatek/mt8195/drivers/ptp3/mtk_ptp3_main.c
f8540b0d0f9d75dd733f6683d68945b2408cb0be - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_cpu_pm_cpc.h
77b795f3ba595013340ed1473935df13b18992f0 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_mcdi.c
670e89ed3e54a8fcab5f9bdc69b0710229d556a7 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_lp_irqremain.h
c4e2a5509c4bbef64807d58ddfea984f66031f26 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_cpu_pm.c
368d6d264c555843d3708e20700f8851e215df63 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_cpu_pm_cpc.c
73a75da66496e41636460ff121095c03a41ba9a7 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_mcdi.h
3940dbadf2f6737dbe71207e2be2245fc24a2cf8 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/mcdi/mt_lp_irqremain.c
1a8e74d1db7ceb847a8217c94620d6a73c28e8ba - arm-trusted-firmware/plat/mediatek/mt8195/drivers/emi_mpu/emi_mpu.c
35dc8ecb34f8b16c7fc40797709568394bfa2700 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/emi_mpu/emi_mpu.h
f70563982bec81cd15b17e693da41e7d1f469c6d - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spmc/mtspmc_private.h
e1b4cce4c465228019f6128073e4634dce0d2986 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spmc/mtspmc.h
cb6cde28e9dcb269b456216c0e1b8d55c8ea996f - arm-trusted-firmware/plat/mediatek/mt8195/drivers/spmc/mtspmc.c
cd5607156fa9256dbf860561db48d3e74c800295 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/gpio/mtgpio.h
49758ae69918fd8c1b52c54bc298f1f3e80fe1b9 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/gpio/mtgpio.c
b4f867a53f8b97e3d04d472c2edbbcadc2c85240 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/pmic/pmic.c
79002203788efcbfc1db666914278df3cae585a4 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/pmic/pmic_wrap_init.h
71ca46ab2b7ecd281fc67a339d97f4e58be53669 - arm-trusted-firmware/plat/mediatek/mt8195/drivers/pmic/pmic.h
1e5bead24560b23256aa9e306e5a4ece724bd6af - arm-trusted-firmware/plat/mediatek/mt8195/aarch64/plat_helpers.S
343bb93fce6c58d4c3497e7f662303320ea1ac83 - arm-trusted-firmware/plat/mediatek/mt8195/aarch64/platform_common.c
02f0daaeeb8c59d391a631dd2f7624e598748e99 - arm-trusted-firmware/plat/mediatek/mt8186/plat_topology.c
e30b233c6a0d10cb0d058f63a7d68bced2033d08 - arm-trusted-firmware/plat/mediatek/mt8186/bl31_plat_setup.c
5317d798df3fa15f8fa7b2c33ba670b0a1ecfe42 - arm-trusted-firmware/plat/mediatek/mt8186/plat_sip_calls.c
98b250fb48fc293e489948124f342093ba6dd423 - arm-trusted-firmware/plat/mediatek/mt8186/plat_pm.c
80a7b771023f421a796b8da96a4d42a7672cb817 - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_mtk_lpm.h
9d9e1a21208cd3b5491a40bacb421776e8c1b680 - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_uart.h
4b7558ac17d450a33285d28478f8d8596edbb1b5 - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_macros.S
85515b62d8aa7cf44ac7f0b5a705f9507bc7da21 - arm-trusted-firmware/plat/mediatek/mt8186/include/mt_spm_resource_req.h
567114b72dbc9398566aaf0389041fb7e12ecb12 - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_sip_calls.h
9ba9b4651c7e04ead5846597f6564fab10d8de4a - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_helpers.h
b7a9f887a8578d015d21dcfd1b009adab66f1f2b - arm-trusted-firmware/plat/mediatek/mt8186/include/sspm_reg.h
d923270912bbaad8959a73f39f933db6c98a49ce - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_private.h
c02f1fbfaf33a5bbf3351dff53710e6e70a59e74 - arm-trusted-firmware/plat/mediatek/mt8186/include/plat_pm.h
e4b12c87945362986c13896e2349ab872d556c61 - arm-trusted-firmware/plat/mediatek/mt8186/include/platform_def.h
f3091cf7bfc468b69812a8ad31b9b5d768775e88 - arm-trusted-firmware/plat/mediatek/mt8186/include/mcucfg.h
8836e6535eaf80d79c28bc7e61f796c61f019c9a - arm-trusted-firmware/plat/mediatek/mt8186/drivers/dcm/mtk_dcm.h
3880fbedb01ad739666ead858ff32c11692d7ab0 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/dcm/mtk_dcm.c
982ba0c3e5b8772dbcb65fe9ec04f07cd66c03e3 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/dcm/mtk_dcm_utils.h
26687de903046dca0b5e9750e8a59b9355a29ec0 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/dcm/mtk_dcm_utils.c
f0e1185e7fac539c5d2edbf5893678d2ca131f70 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/dfd/plat_dfd.h
d2b7ae5854f6cb1abfe5c55f52385c86fe6752f0 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/dfd/plat_dfd.c
8d4291524d054f1b355580fb4254843ee94015f3 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_extern.h
d252e68c77c34429d934422da1ce46e64553c23d - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_constraint.h
6fad70943b4e7bc9042ec608eca4905531b622d8 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_vcorefs.h
c6cd4eccdc73fc94fe1d36f9c0d24adf82f6b762 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm.c
8e4cded7b48b70c4d63171d01619ea77582a15d8 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_vcorefs.c
c493de6825dedbe205476271578675f186aad0a2 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_resource_req.h
6afbc58701e19d1e4b949615eca0a6fee5c0eec7 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_cond.c
23822f16c7741b8a82e6c1b2bf37723c9b661d23 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_cond.h
302fea6e0fc2351dbc6ccda1ed9190941f2c0250 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/sleep_def.h
85a883d9102bcbda2f8b172b3428fa270a259858 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_reg.h
5ff4457e67f619c9e7562f12b5fd4772a6d34ada - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_pmic_wrap.c
b196a520bf04181913710fa0ad6c7e98df814be6 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_suspend.c
0c0e64bb4e502f8b06cddf4f5701a2004dae88bb - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_idle.h
ed2f1e43ce8ff9065b95a274256a78d34d08b184 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_idle.c
be59b0efd4cc9ca4eb6570a3a2fe1d3f0f812fc6 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_internal.c
2f14e2189e22b58a7f814523923a82b761565793 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_extern.c
1b4a0d65fcaaccb28afc897aef9a76972b99b9f2 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/pcm_def.h
ff8ca308a59e802f869d16233f792ae0e6d19a52 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_conservation.h
9842a9ba9c2a948191518a1dcac7efa316141dd3 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm.h
c3913ece4d63b48d8aaa43aaaa4f7c5927073b30 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_pmic_wrap.h
2915d56fef4019217f23aeab0ebcf0ff98b2818d - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_internal.h
714e06306174609b86f6dfecb362e5d307815984 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_suspend.h
a6cfe8969863b9001520ec912315467a2b1213e8 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/mt_spm_conservation.c
97b36bd56cf9603b43fd2acace9ae94457d14776 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/constraints/mt_spm_rc_cpu_buck_ldo.c
3035aa1efec0b288548d3a91426946653dc24b80 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/constraints/mt_spm_rc_bus26m.c
d7be908565309c39ef0e37d464011c7340c16d6d - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/constraints/mt_spm_rc_dram.c
6dd95a8f29a4eb734a92736d768d92a35ce910f8 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/constraints/mt_spm_rc_syspll.c
6dea64a1dcb62407a4021b892e2da1cdc50af221 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/constraints/mt_spm_rc_internal.h
3b25bdf185a1377c793c31e212d50a0027fda91d - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/notifier/mt_spm_notifier.h
ec1e10ba1585046d426fcca0c8d6a0452015786a - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/notifier/mt_spm_sspm_intc.h
27ef52baeedbc36413879fd421b276824b21ad58 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spm/notifier/mt_spm_sspm_notifier.c
68d0d1df925010bde7b53a36dd82ab05a0cc23dc - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_cpu_pm_cpc.h
0950b022f226cf400c633b938956424ef62156a9 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_mcdi.c
680305a5142d3cda1b9ccc1bba0d1ca8dbf42b0e - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_lp_irqremain.h
63bd27946e361d2e05b681e47abfc894e0b23e88 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_cpu_pm.c
3de0a5c82b6c6679381b6c8887a23b11e1ee49e5 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_cpu_pm_cpc.c
63d1221a97ab18b30010ef6dd666592c84488052 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_cpu_pm.h
391c8bd0413603fab7961273368ae142ef2e605d - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_mcdi.h
b5dccfb4fbab4600a1576c8b74b6e2062cd13c6c - arm-trusted-firmware/plat/mediatek/mt8186/drivers/mcdi/mt_lp_irqremain.c
a0e2a71a095891a57e56e7e285c8f94dc9d312be - arm-trusted-firmware/plat/mediatek/mt8186/drivers/emi_mpu/emi_mpu.c
35dc8ecb34f8b16c7fc40797709568394bfa2700 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/emi_mpu/emi_mpu.h
acd408521525ea61a78ab71ab790b33f6c8835a5 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spmc/mtspmc_private.h
514a984bcec8f805fbc3fc8b0213b8603009b717 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spmc/mtspmc.h
97a67051462aa2dc020abb4c615ec1b8d55798dc - arm-trusted-firmware/plat/mediatek/mt8186/drivers/spmc/mtspmc.c
175403c002e2bae8b4b5f15356300cbbf3a37aac - arm-trusted-firmware/plat/mediatek/mt8186/drivers/gpio/mtgpio.h
1cd2b844b96d5646b2f021f2b7a50358af7908a1 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/gpio/mtgpio.c
0bf3be2cc82c84d28437a838ec18ee32b52448a2 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/rtc/rtc.c
9114133093483da052525a109b5ca5242a14cdc7 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/rtc/rtc.h
8fdeee52467e248a082f45d92512e951f2611360 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/pmic/pmic.c
1e1932554b5dee8b5c9f6e42584b440f694fe206 - arm-trusted-firmware/plat/mediatek/mt8186/drivers/pmic/pmic_wrap_init.h
60b16e786121e9076be12c5a78ec91c7e33801be - arm-trusted-firmware/plat/mediatek/mt8186/drivers/pmic/pmic.h
2c9ea17eea925548d393c14f7f51d8bc2fbccdcf - arm-trusted-firmware/plat/mediatek/mt8186/aarch64/plat_helpers.S
e55a87f7c47f362fafe9a61204603c0aacd71ab9 - arm-trusted-firmware/plat/mediatek/mt8186/aarch64/platform_common.c
975fa62263fb56cfc6d4832599aa8a421fbef3ea - arm-trusted-firmware/plat/mediatek/mt6795/scu.c
2e61bf89860dc6368d6608e4d8447e685d7d88ce - arm-trusted-firmware/plat/mediatek/mt6795/plat_topology.c
9a2cc2f4d94dcff8028cd56e4bcd01da0dbd4a6e - arm-trusted-firmware/plat/mediatek/mt6795/plat_mt_gic.c
f42fa6a617844b8c56879c8b1f3c34ae4b77aa8d - arm-trusted-firmware/plat/mediatek/mt6795/bl31_plat_setup.c
c9da62c4ac9c51366c26ca27dccdc85fb8840e6e - arm-trusted-firmware/plat/mediatek/mt6795/power_tracer.c
e957b0cc082fc56d3b25fafcedf71e23b8fffcdb - arm-trusted-firmware/plat/mediatek/mt6795/plat_delay_timer.c
cdd4db5d5ea83958ff89700a430e1c54729bbe76 - arm-trusted-firmware/plat/mediatek/mt6795/plat_pm.c
41b33f806ea4e94c4dc6f91cf13b8fe2dd08272b - arm-trusted-firmware/plat/mediatek/mt6795/bl31.ld.S
c585fe19743e984a106c899e16d61ef97416376c - arm-trusted-firmware/plat/mediatek/mt6795/include/spm.h
46009c0467b0d5f5a2b78837653ac6c1d8154100 - arm-trusted-firmware/plat/mediatek/mt6795/include/plat_macros.S
f2440de976c6c344fcd2cb08353d0bbcf16d8e98 - arm-trusted-firmware/plat/mediatek/mt6795/include/plat_sip_calls.h
817e6a410e02d0889f5f69f3da13113cfb9648b7 - arm-trusted-firmware/plat/mediatek/mt6795/include/plat_private.h
948df1ebf0176a6b28197dd1f5a96ef7b3407200 - arm-trusted-firmware/plat/mediatek/mt6795/include/platform_def.h
524f765609b42d6239efa9fbe9d123e031c011b2 - arm-trusted-firmware/plat/mediatek/mt6795/include/power_tracer.h
dd9bcb0a34eb0f2806dd3d2764341217a12fca53 - arm-trusted-firmware/plat/mediatek/mt6795/include/scu.h
9f36f3e719ea61b6f45d4f3e36e813e42cdac8e6 - arm-trusted-firmware/plat/mediatek/mt6795/include/mcucfg.h
b9ba707119860e36bdab2e1517f34832022480ec - arm-trusted-firmware/plat/mediatek/mt6795/drivers/timer/mt_cpuxgpt.c
affbb4d9599159566bd93871905eb54cfd7075d7 - arm-trusted-firmware/plat/mediatek/mt6795/drivers/timer/mt_cpuxgpt.h
5c5ff1370ff35d42d3c4d77b913247276a4bde02 - arm-trusted-firmware/plat/mediatek/mt6795/aarch64/plat_helpers.S
653b82370d0b1ad6cebef8b6d7072051e934caa0 - arm-trusted-firmware/plat/mediatek/mt8192/plat_topology.c
5d84153e66efa37728948b5b1fe281913f5ea657 - arm-trusted-firmware/plat/mediatek/mt8192/bl31_plat_setup.c
0aaf3b723ed86200d3e2c0e83641074ae213c44c - arm-trusted-firmware/plat/mediatek/mt8192/plat_sip_calls.c
e1863524c093ea2e6d043b9f6c7dc1e219f08467 - arm-trusted-firmware/plat/mediatek/mt8192/plat_pm.c
c080e0d9285c2d3fd252d1b5d80f857f7b5f7ca5 - arm-trusted-firmware/plat/mediatek/mt8192/include/plat_mtk_lpm.h
166890efce4ba83ab0783f4b56821c8576731a31 - arm-trusted-firmware/plat/mediatek/mt8192/include/plat_macros.S
5a59b5db38b291cdbebf71aa758859f99c35a751 - arm-trusted-firmware/plat/mediatek/mt8192/include/plat_sip_calls.h
5fdb5614708d12a66d8b58741f2e38c49b7690aa - arm-trusted-firmware/plat/mediatek/mt8192/include/rtc.h
d3155938568a3ee3a31e1df08de79e5bf68dc877 - arm-trusted-firmware/plat/mediatek/mt8192/include/plat_helpers.h
a6ce0baf4ebd3c81556e0945c2649f2efae6c879 - arm-trusted-firmware/plat/mediatek/mt8192/include/plat_private.h
cfc60d518acd24b2043bf29a48105110ad3068aa - arm-trusted-firmware/plat/mediatek/mt8192/include/plat_pm.h
555f92b188335e740adcafa8f411f751f8aa9102 - arm-trusted-firmware/plat/mediatek/mt8192/include/platform_def.h
af49cf4a43c7cf77fcfa20fe09d7197390bf3969 - arm-trusted-firmware/plat/mediatek/mt8192/include/mcucfg.h
a84fa1ee247e2005166d9018df2bcc75e63deaab - arm-trusted-firmware/plat/mediatek/mt8192/drivers/dcm/mtk_dcm.h
0652a5c416f4dd969f772d9774e55501993af032 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/dcm/mtk_dcm.c
6710f6e1dfa15b331f9d813a5003b5198af81c04 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/dcm/mtk_dcm_utils.h
51222b809151abb01db2556abfba262c93f7f0e1 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/dcm/mtk_dcm_utils.c
89fce0253e363a84cec3e3957ac8d951a80ebe74 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/dfd/plat_dfd.h
9b42c233c5ba1e6b8a384b28424da455c27a53a6 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/dfd/plat_dfd.c
1b68266c3c155960dc03cba027a4d430c74473bf - arm-trusted-firmware/plat/mediatek/mt8192/drivers/apusys/mtk_apusys.c
cb930a7db51e4c8871ab7fcfa242466c2a8b36df - arm-trusted-firmware/plat/mediatek/mt8192/drivers/apusys/mtk_apusys_apc.h
45377afc42584fa85f873fca2cd0e157c1a16b37 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/apusys/mtk_apusys.h
f5cfe3883759a648f72458b1bd84bf01d3bb1657 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/apusys/mtk_apusys_apc.c
f7c1784f7532b244fe2bbca846d710d03061bed6 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/apusys/mtk_apusys_apc_def.h
a65ccd601ba3861f13ec19d1ec6cc79d4295961d - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_constraint.h
e5e46ff7c9820b84c61e6bf2afdad854e42c6985 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_vcorefs.h
4b3e251e2f0c0e4796105e6d25927067e14a2a6f - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm.c
9858935fcdc71e5145d69b0d6b65410dfc4c6dd0 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_vcorefs.c
6c9c6446695fbbb9ef086f4f783aae57f24ff6af - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_resource_req.h
bb750dd896f8785a87ba62867b0e862dbb4199c2 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_cond.c
e3a261adfa46ae2657a455b7d25b7af56bb62a37 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_cond.h
9479c40f7955d1b8da21fece7877b3f970886a62 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/sleep_def.h
aa2819aa55d76d63f05809805f6ebf6f84fb8f71 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_reg.h
b2f984f7c8707ce9470fc25ae8af0f7a041f1602 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_pmic_wrap.c
ab677ba0b11817e784f6008456b3501b7438cfbf - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_suspend.c
ec2b85d104ef0ad52faf88881e864e93c37e0ffa - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_idle.h
9bd59c04a5dabacf5a9ce010eefebd393e814115 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_idle.c
1637cf9d86b35aef31283240a30095022c0476cf - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_internal.c
26edcaa081665198f705a5d6e4a606c0b4e00689 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/pcm_def.h
1f598d0b85f3b211c05adb41726664e4a2bbddc5 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_conservation.h
dd32e9eb6d0e8f5083df2bf5abfe28fcaf6f2c5c - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm.h
c7e5e4cde0a05fa756e3fc6cd32654be3343cecb - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_pmic_wrap.h
905a72478cd919c732be2d3f3c066d27f34b489e - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_internal.h
0f8fcf83ec923d192f61376370dd90635259a378 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_suspend.h
9fc0480b22dccdbb2dad940666ba124a785ed285 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/mt_spm_conservation.c
eefb0e4293a309d3eae668a9f4fff6b9d45d3597 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/constraints/mt_spm_rc_cpu_buck_ldo.c
8a1fe395632b1a162c7b9e75d46be042d64f5230 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/constraints/mt_spm_rc_bus26m.c
345b11fdc0c85e312ed8e6a8643339d691fadf6f - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/constraints/mt_spm_rc_dram.c
1e038ef0b716c1ba013366f2d656026ff4bacd71 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/constraints/mt_spm_rc_syspll.c
b656247e4733dfab4d7db4f7361cd1b15a0c14bf - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/constraints/mt_spm_rc_internal.h
067d8c516f8ce37edb7c8228d9d7fc4ba15ad7ed - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/notifier/mt_spm_notifier.h
d2d41012d692a8857c6f842bcf2eb065142a90c2 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/notifier/mt_spm_sspm_intc.h
ca56b6a499c7e44f09c1f020859f9e7d51b014a3 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spm/notifier/mt_spm_sspm_notifier.c
2dd99ac3ceb6063e89c9c016bf2e965abd2636c0 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/ptp3/mtk_ptp3_common.h
30341bebf59f92502ed0e0f772ffd6ff3f4691aa - arm-trusted-firmware/plat/mediatek/mt8192/drivers/ptp3/mtk_ptp3_main.c
f8540b0d0f9d75dd733f6683d68945b2408cb0be - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_cpu_pm_cpc.h
965dec0900511bac7618f812c33f95620e3b1068 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_mcdi.c
6158a4631af76550355215276ddfb61772f11c91 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_lp_irqremain.h
c42e69a4b160aed3d646987f867de63fd6542f09 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_cpu_pm.c
368d6d264c555843d3708e20700f8851e215df63 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_cpu_pm_cpc.c
73a75da66496e41636460ff121095c03a41ba9a7 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_mcdi.h
0d3626281b65260b4b2e49cac33cf6bece32999f - arm-trusted-firmware/plat/mediatek/mt8192/drivers/mcdi/mt_lp_irqremain.c
7494ace1b19166bbf26931bbcce0c574629ee2ab - arm-trusted-firmware/plat/mediatek/mt8192/drivers/emi_mpu/emi_mpu.c
a0c85124251b9cdae75734966ce95891397ca477 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/emi_mpu/emi_mpu.h
d42c9ba8c699033bed7f64376149e25aaf0ba27b - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spmc/mtspmc_private.h
b434a3c4454f2c705b0f3b7c565d85e147e7a7dc - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spmc/mtspmc.h
cc63207972ae473d6a68bc41f3aa23093730183f - arm-trusted-firmware/plat/mediatek/mt8192/drivers/spmc/mtspmc.c
319ec69ebc8189c0b9500805069cb9eab1288242 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/gpio/mtgpio.h
fa7a5c1599cac3c19ca4cd64215b1938313806c5 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/gpio/mtgpio.c
b4f867a53f8b97e3d04d472c2edbbcadc2c85240 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/pmic/pmic.c
9d5ed44c58a8c942270d1e8cd54ff65f463b2336 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/pmic/pmic_wrap_init.h
71ca46ab2b7ecd281fc67a339d97f4e58be53669 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/pmic/pmic.h
31d2ee83370c6c53704ab1a6ef9b905297491333 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/devapc/devapc.h
f1eb5fa4f4de22b769d0667ea9bea00613216cf9 - arm-trusted-firmware/plat/mediatek/mt8192/drivers/devapc/devapc.c
4a2ec93e8013a56c39ca18d0e283fc9cccb43b1c - arm-trusted-firmware/plat/mediatek/mt8192/aarch64/plat_helpers.S
5c6677206ac7ea4573dbb96868e106a55445d4f9 - arm-trusted-firmware/plat/mediatek/mt8192/aarch64/platform_common.c
9b148285683f9f62babcdd92b4cbb3edf8d47275 - arm-trusted-firmware/plat/mediatek/mt8173/scu.c
322049a08a3981e4c34fb6991314537e02662946 - arm-trusted-firmware/plat/mediatek/mt8173/plat_topology.c
6a2d3a421c077dcc608a94317ecf55a80c640d76 - arm-trusted-firmware/plat/mediatek/mt8173/plat_mt_gic.c
b49fda8c23d477e92d842bb950e93962c77a82cd - arm-trusted-firmware/plat/mediatek/mt8173/bl31_plat_setup.c
abe0c66165b32a2f3dee830062f153c3c29738ce - arm-trusted-firmware/plat/mediatek/mt8173/plat_sip_calls.c
5b0d461df0d4936d87d5a3b87846da17b5bffdcd - arm-trusted-firmware/plat/mediatek/mt8173/power_tracer.c
e90649554240f75d20e82bcaf1d5fc7f72308d84 - arm-trusted-firmware/plat/mediatek/mt8173/plat_pm.c
95875d234df9d7f7a86bfda389367f298611eb38 - arm-trusted-firmware/plat/mediatek/mt8173/include/plat_macros.S
12c0bb5878f5671aeb4bc9ea733ddd80cdb960da - arm-trusted-firmware/plat/mediatek/mt8173/include/plat_sip_calls.h
755906af584459bc7964059a3022e624d4743b62 - arm-trusted-firmware/plat/mediatek/mt8173/include/mt8173_def.h
3d43facf8bc958241dcaddfa4cd6f9e61362c87e - arm-trusted-firmware/plat/mediatek/mt8173/include/plat_private.h
2bd6a37616bcda8ee48aa9917c65801ceeea804e - arm-trusted-firmware/plat/mediatek/mt8173/include/platform_def.h
fb0128ee719cdbc40fa546319e2635e3e19f1e11 - arm-trusted-firmware/plat/mediatek/mt8173/include/power_tracer.h
89bb4015a4309bd60ed5dc2f32033dd0a4f603cc - arm-trusted-firmware/plat/mediatek/mt8173/include/scu.h
7848197b715dc7fd355b6bc2d2232123facb9994 - arm-trusted-firmware/plat/mediatek/mt8173/include/mcucfg.h
3160163c493937b3bb0298d50d918627d0d0e4e4 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/wdt/wdt.h
27287e7e69b6a6be66a87cf9e294f25a682e92fe - arm-trusted-firmware/plat/mediatek/mt8173/drivers/wdt/wdt.c
0f16bd582feb0391ddd3b4685fab51a7e11667ca - arm-trusted-firmware/plat/mediatek/mt8173/drivers/crypt/crypt.c
4535129d635202f3bf1b447e411bd1c7eda5f7db - arm-trusted-firmware/plat/mediatek/mt8173/drivers/crypt/crypt.h
d86950fce5e4e2f48f1efc48472289033367e47e - arm-trusted-firmware/plat/mediatek/mt8173/drivers/timer/mt_cpuxgpt.c
bb6c45f6edb308171b205123bd682e3db84ec58f - arm-trusted-firmware/plat/mediatek/mt8173/drivers/timer/mt_cpuxgpt.h
f6fe2ef42009b0fa69b3957d63488b6192072275 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm_hotplug.h
0f38df7cc1b225ffb568e7df5c4981b0d29ee7ae - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm.h
4398c8e27acb0bc2b28771ed5c1a0689971fac4f - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm_suspend.c
f3ba2dabf2cabb2644ae09476c62fee2023d6abc - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm.c
d73f4f2080ec7098103c5209a4c302f80535dc77 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm_hotplug.c
8ffb063b98ca22c66f9f96260216a31b1de20519 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm_mcdi.h
9623b67d4f2dfac8dcc78ed711172fcb5f85511d - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm_suspend.h
b18c4af2e0471a0d5de267ac5c1e4a52b1c94ea6 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/spm/spm_mcdi.c
b7e2ebfeb39fa655c846358a6439c708fba4b6d5 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/rtc/rtc.c
42adaa32fd22643561c090086db64c635fd6d686 - arm-trusted-firmware/plat/mediatek/mt8173/drivers/rtc/rtc.h
27cbf1f064da3e18b5cd7c0e83fb1c9da349e00e - arm-trusted-firmware/plat/mediatek/mt8173/drivers/pmic/pmic_wrap_init.h
9e687cd54be9aa08265355e1079ba5f6cd2a93cc - arm-trusted-firmware/plat/mediatek/mt8173/drivers/mtcmos/mtcmos.h
4af6a675f41b6d5566fcc13863c1507f5fe28f7f - arm-trusted-firmware/plat/mediatek/mt8173/drivers/mtcmos/mtcmos.c
fefea9a047dc27fa97fc660c62bc2a4b68539b35 - arm-trusted-firmware/plat/mediatek/mt8173/aarch64/plat_helpers.S
314689d0bbe7b2567ccd667c6f70815679729e1f - arm-trusted-firmware/plat/mediatek/mt8173/aarch64/platform_common.c
455f78881f3e452bc906dd8e2dd74d7e668f33dd - arm-trusted-firmware/plat/qti/msm8916/msm8916_gicv2.c
2cfbd336aca6ffd917aac7811b326bc53c734d1c - arm-trusted-firmware/plat/qti/msm8916/msm8916_bl31_setup.c
e08f230adb59004c64e07444599554c275f1643a - arm-trusted-firmware/plat/qti/msm8916/msm8916_pm.h
3b21be43300990b373aae5fc9fe86650293e6465 - arm-trusted-firmware/plat/qti/msm8916/msm8916_gicv2.h
180bf4b2deb975b6753f7b845e0055ea91a2aa13 - arm-trusted-firmware/plat/qti/msm8916/msm8916_topology.c
6e7e984a8e5dfab7008759c759d8244470f3dae2 - arm-trusted-firmware/plat/qti/msm8916/msm8916_cpu_boot.c
ec2741df6c60880f2d8d7c157dcda59d0c50eacd - arm-trusted-firmware/plat/qti/msm8916/msm8916_pm.c
8150ca146a9314d5192e1e394975bb932029bd0b - arm-trusted-firmware/plat/qti/msm8916/include/uartdm_console.h
e1247a97415e84032dab91e8daa6df51645413ac - arm-trusted-firmware/plat/qti/msm8916/include/plat_macros.S
07c3221b9d62d08349ed7bc9f4f1e779f524ec32 - arm-trusted-firmware/plat/qti/msm8916/include/msm8916_mmap.h
d2d25cc01ae69fbf7368f681a6be32083570007e - arm-trusted-firmware/plat/qti/msm8916/include/platform_def.h
91be000247752e30dfd222eef60029b13936f320 - arm-trusted-firmware/plat/qti/msm8916/aarch64/msm8916_helpers.S
fd14d1c817b69bd4a42046e3a208b999bffc7e36 - arm-trusted-firmware/plat/qti/msm8916/aarch64/uartdm_console.S
3030765ef51687943e02ca761d6d518826a6c438 - arm-trusted-firmware/plat/qti/common/inc/qti_plat.h
1d172cb4df58b173035b99b5855545b25fd764be - arm-trusted-firmware/plat/qti/common/inc/qti_uart_console.h
f00660ee7d40d5826515fe5266e50d2172c12bc1 - arm-trusted-firmware/plat/qti/common/inc/spmi_arb.h
a492ca7a1a6a0dc9b988c09a6838be72f3a00cc3 - arm-trusted-firmware/plat/qti/common/inc/qti_board_def.h
2c7d5721030a2353cd649ad2cf4da49242ed3195 - arm-trusted-firmware/plat/qti/common/inc/qti_cpu.h
af87d6c46e8e3304b92c90ed0111bb3066bac8e1 - arm-trusted-firmware/plat/qti/common/inc/qti_interrupt_svc.h
0b01452153b97f032c89b81698730bd0211ee4cf - arm-trusted-firmware/plat/qti/common/inc/qti_rng.h
5901fe33e7d63a4a03e1b95469b48c8299d178f6 - arm-trusted-firmware/plat/qti/common/inc/aarch64/plat_macros.S
bea1c249fdc7e365ba7e5d773a7e312de9345fb8 - arm-trusted-firmware/plat/qti/common/src/spmi_arb.c
f3b7fa7c62db7248cf8b50316244b8239596f267 - arm-trusted-firmware/plat/qti/common/src/qti_rng.c
a78d1e23bb28b3815e1e4ed90be36d9a18730edc - arm-trusted-firmware/plat/qti/common/src/qti_bl31_setup.c
7fc1d5b81ce41fbda7e5fda0ba2e22acdf4d5934 - arm-trusted-firmware/plat/qti/common/src/qti_pm.c
f12c8a79f6141094db1aac3d48ac6ea34800ff6d - arm-trusted-firmware/plat/qti/common/src/qti_stack_protector.c
26a9cbddd8b9a236e5d0f3550807554e23563f18 - arm-trusted-firmware/plat/qti/common/src/qti_gic_v3.c
aeecda36338ac151632b50ce13795833a9f6ce3b - arm-trusted-firmware/plat/qti/common/src/pm_ps_hold.c
ac89500a8d77a91b9b24a426b3394744bf74efb5 - arm-trusted-firmware/plat/qti/common/src/qti_topology.c
d3fde1360e9da45d7d4f06fa00208544d41ad202 - arm-trusted-firmware/plat/qti/common/src/qti_common.c
e6926afd75dc641585601bff95a258034095c6e1 - arm-trusted-firmware/plat/qti/common/src/qti_interrupt_svc.c
825f74a7f38dc32847afc499110e74db3937935f - arm-trusted-firmware/plat/qti/common/src/qti_syscall.c
35b43eea9fc4e1679a0349180b49fa1bb96e59b7 - arm-trusted-firmware/plat/qti/common/src/aarch64/qti_kryo4_gold.S
7547a5ef92ec4ac40eed5a73041ef25902042bf2 - arm-trusted-firmware/plat/qti/common/src/aarch64/qti_uart_console.S
a32c3f1d46d7c6cdcb2fa977d2899c8ff2bebb7a - arm-trusted-firmware/plat/qti/common/src/aarch64/qti_kryo6_gold.S
3d127b0f585eb4f2bfaaccd2f04f814fca7770c4 - arm-trusted-firmware/plat/qti/common/src/aarch64/qti_kryo6_silver.S
b6f69f64118c04b6b54e760cf7005ec1594689fc - arm-trusted-firmware/plat/qti/common/src/aarch64/qti_kryo4_silver.S
b6ee5b136c1d386d21bdb0c3944363930ea1c5d2 - arm-trusted-firmware/plat/qti/common/src/aarch64/qti_helpers.S
5db76531814dda261416dc016b511d807c3a4ba5 - arm-trusted-firmware/plat/qti/qtiseclib/inc/qtiseclib_defs.h
a28527a439c34c2ff37a3bd1ace46fb9ddb4f357 - arm-trusted-firmware/plat/qti/qtiseclib/inc/qtiseclib_cb_interface.h
186065ea9c6a4a2d16c200d4d07466514f5a1c29 - arm-trusted-firmware/plat/qti/qtiseclib/inc/qtiseclib_interface.h
885aa0bbda57cb30366ac8f9ea09f3f8e7ad31da - arm-trusted-firmware/plat/qti/qtiseclib/inc/sc7180/qtiseclib_defs_plat.h
3e4d34962a59227a5d8d494f35e80b77fdf8d61e - arm-trusted-firmware/plat/qti/qtiseclib/inc/sc7280/qtiseclib_defs_plat.h
0c6b7067545771534db6e2eae7bdf7694a939d12 - arm-trusted-firmware/plat/qti/qtiseclib/src/qtiseclib_interface_stub.c
4e66aa575523181fefb5720d798a257e98a26003 - arm-trusted-firmware/plat/qti/qtiseclib/src/qtiseclib_cb_interface.c
ce8e6c97e3af86cafccb6b9ffe857b9c1ec62598 - arm-trusted-firmware/plat/qti/sc7180/inc/qti_secure_io_cfg.h
576c57f662c322a2eac3565e848ea0179d7290a1 - arm-trusted-firmware/plat/qti/sc7180/inc/qti_rng_io.h
3591e68af17680a9c8b78bffb866c93838cc5b18 - arm-trusted-firmware/plat/qti/sc7180/inc/platform_def.h
d99874d76998c7025371fc6e19def1521bfacc2d - arm-trusted-firmware/plat/qti/sc7280/inc/qti_secure_io_cfg.h
8b0399819af138f97f2f4270408c66b5d23b6052 - arm-trusted-firmware/plat/qti/sc7280/inc/qti_rng_io.h
a0b63dda5b240d0c16799712543a79c70bd462d0 - arm-trusted-firmware/plat/qti/sc7280/inc/platform_def.h
ea086669ab75f559b2e65b291fea3af158c18bd2 - arm-trusted-firmware/plat/renesas/common/bl2_plat_mem_params_desc.c
ffd1e457886f1089d9c344f701ec17dc97f8f074 - arm-trusted-firmware/plat/renesas/common/rcar_common.c
a977937122b0a3096d2974c21e1d01713d54ef5b - arm-trusted-firmware/plat/renesas/common/plat_topology.c
5f9406be82d4cf619e442556228de3e2d1283e39 - arm-trusted-firmware/plat/renesas/common/plat_image_load.c
d414d4d769295e5a493cf3e77c9c51626ee0e6fb - arm-trusted-firmware/plat/renesas/common/bl2_interrupt_error.c
9e2b414041c35052396135ebdc28539af32c2593 - arm-trusted-firmware/plat/renesas/common/bl31_plat_setup.c
ae71ad3a55f0e9c013697f9775e6c12c0ff7bd74 - arm-trusted-firmware/plat/renesas/common/bl2_cpg_init.c
12b42e58567a9ecd3d1d63318cb5ec7011a41573 - arm-trusted-firmware/plat/renesas/common/plat_storage.c
514484b073de3f03a0c25885d1947529d0863273 - arm-trusted-firmware/plat/renesas/common/bl2_secure_setting.c
716e1c7c79baa403b9c5d0ef120f23d8cac8e802 - arm-trusted-firmware/plat/renesas/common/plat_pm.c
72226e12e556432cb547181aa73e0d55c5c8777f - arm-trusted-firmware/plat/renesas/common/include/plat_macros.S
aa601d2e26e65cab57efac1579ef07d5a4966f23 - arm-trusted-firmware/plat/renesas/common/include/rcar_version.h
2f021b7dce5115d413267052dd5b471ceff900cf - arm-trusted-firmware/plat/renesas/common/include/rcar_private.h
f4aa97332efbbc8e20e48e338443fd3b9c208830 - arm-trusted-firmware/plat/renesas/common/include/plat.ld.S
f99514b828a7a7fe6f0063a291c023d74a2c9bd2 - arm-trusted-firmware/plat/renesas/common/include/rcar_def.h
939b904cc911a51e5bfd33fc817d5c5b22e55400 - arm-trusted-firmware/plat/renesas/common/include/platform_def.h
f5943232ea7fe8a4717cdaa5d1f371ec634c8074 - arm-trusted-firmware/plat/renesas/common/include/registers/cpg_registers.h
64ef91e2bf3528ac94c8eb79c5c3f80113257721 - arm-trusted-firmware/plat/renesas/common/include/registers/lifec_registers.h
f773e9cbe28c8c27bd7013b66cd612cd63f790fc - arm-trusted-firmware/plat/renesas/common/include/registers/axi_registers.h
2b4770445484da2ea7c1061c5e772905f5f9eda9 - arm-trusted-firmware/plat/renesas/common/aarch64/plat_helpers.S
3c4b66c3e0e2ea740399f2ac87b9c61af5c45031 - arm-trusted-firmware/plat/renesas/common/aarch64/platform_common.c
d9c373f0351531965e8097178bbc13ede3af7485 - arm-trusted-firmware/plat/renesas/rzg/bl2_plat_setup.c
954d720bbb952517040ea8c1648e94dcd01de552 - arm-trusted-firmware/plat/renesas/rcar/bl2_plat_setup.c
8539e94b825c242859fa5c4a3c03901703c386f0 - arm-trusted-firmware/plat/nxp/soc-ls1046a/soc.c
1e814209bd02d7457755dcf4493b05a3794c811c - arm-trusted-firmware/plat/nxp/soc-ls1046a/soc.def
bfdacfdea0aa10e1ece5ae2925625ce34328672a - arm-trusted-firmware/plat/nxp/soc-ls1046a/include/ns_access.h
9ed3d544ff5ab2cfa0ea13d1fb3b59534eb90e14 - arm-trusted-firmware/plat/nxp/soc-ls1046a/include/soc.h
8cc150d9e1c9199572b24d0af559c82e4db71320 - arm-trusted-firmware/plat/nxp/soc-ls1046a/aarch64/ls1046a.S
06d4dda248389e306ea0cf1688bc9944d1511d03 - arm-trusted-firmware/plat/nxp/soc-ls1046a/aarch64/ls1046a_helpers.S
5da46b775851344c65928890c699d7ff047606b2 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046afrwy/platform.c
0f38703d163bd042c7827eaddb04ea092b30a478 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046afrwy/platform_def.h
945ec23ee2ba0c79a5e6140d043290e9afde9b2c - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046afrwy/ddr_init.c
dc407d2ead98e6d20e59ac0b6c5e75116a82ddd3 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046afrwy/plat_def.h
0fb5432862f668e38f9bbce3af181371cdecf0cd - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046afrwy/policy.h
5da46b775851344c65928890c699d7ff047606b2 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046ardb/platform.c
0f38703d163bd042c7827eaddb04ea092b30a478 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046ardb/platform_def.h
2ea7db20f6633e1dbecd9a70ed4cac89d97c2a76 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046ardb/ddr_init.c
686ad098c68cbf424bb3e89e451ab64b8183a91c - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046ardb/plat_def.h
0fb5432862f668e38f9bbce3af181371cdecf0cd - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046ardb/policy.h
5da46b775851344c65928890c699d7ff047606b2 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046aqds/platform.c
0f38703d163bd042c7827eaddb04ea092b30a478 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046aqds/platform_def.h
60e78557693ed12515227f051b8f55baf47ce8ae - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046aqds/ddr_init.c
39ce8f1f0afc76a2d1a98e86df076ef84d185da3 - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046aqds/plat_def.h
0fb5432862f668e38f9bbce3af181371cdecf0cd - arm-trusted-firmware/plat/nxp/soc-ls1046a/ls1046aqds/policy.h
07fb6c57566e19aa44ef34559874dfd995b582b6 - arm-trusted-firmware/plat/nxp/soc-ls1043a/soc.c
059b1c4ea6e6b540b7b01bdeb7153b4dfcacdb1b - arm-trusted-firmware/plat/nxp/soc-ls1043a/soc.def
859878633110369cd34a10f6683227f6b49d0006 - arm-trusted-firmware/plat/nxp/soc-ls1043a/ls1043ardb/platform.c
802c1d23237eb5cc83388950a75fa13d076b0dbf - arm-trusted-firmware/plat/nxp/soc-ls1043a/ls1043ardb/platform_def.h
2d532dcfca962bd50e2721dc90a3c5e8f3ef4c00 - arm-trusted-firmware/plat/nxp/soc-ls1043a/ls1043ardb/ddr_init.c
60033abedd63947cfda10bf00d77951046e244c2 - arm-trusted-firmware/plat/nxp/soc-ls1043a/ls1043ardb/plat_def.h
2e5c9db35f0a8446aa2a2a08f75f1488255df745 - arm-trusted-firmware/plat/nxp/soc-ls1043a/ls1043ardb/policy.h
69427e6f64ce96dfa6842364a758359b8fa821c6 - arm-trusted-firmware/plat/nxp/soc-ls1043a/include/ns_access.h
9b815992ca7df805a51a7cdece2e7c074a0958fb - arm-trusted-firmware/plat/nxp/soc-ls1043a/include/soc.h
b132e33ac02b41bfdd0b2ba27b1e5432e0f7ef08 - arm-trusted-firmware/plat/nxp/soc-ls1043a/aarch64/ls1043a_helpers.S
18db50ef3d11821179318d84b45c532d3b107226 - arm-trusted-firmware/plat/nxp/soc-ls1043a/aarch64/ls1043a.S
7101b940d392636f546086caa2626d9a940d9eac - arm-trusted-firmware/plat/nxp/soc-ls1028a/soc.c
490b7dbb3b819d5251283d9069f177092c665489 - arm-trusted-firmware/plat/nxp/soc-ls1028a/soc.def
d78024dda44030bb2c60a6c6f0f31b0cdf79c510 - arm-trusted-firmware/plat/nxp/soc-ls1028a/include/soc.h
859878633110369cd34a10f6683227f6b49d0006 - arm-trusted-firmware/plat/nxp/soc-ls1028a/ls1028ardb/platform.c
daffee032773c1420ec3c8da52a5bc9db4610aaa - arm-trusted-firmware/plat/nxp/soc-ls1028a/ls1028ardb/platform_def.h
3268f346c7eb1578007b13a160c4c3d08efe2c0b - arm-trusted-firmware/plat/nxp/soc-ls1028a/ls1028ardb/ddr_init.c
264c5f8c566b8945850048aceba967dd8fd1e72b - arm-trusted-firmware/plat/nxp/soc-ls1028a/ls1028ardb/plat_def.h
b435bed7113e72930be88bfe8f61e7da61994418 - arm-trusted-firmware/plat/nxp/soc-ls1028a/ls1028ardb/policy.h
033fd89d203e44c446aba6134e51e46a7d9cf324 - arm-trusted-firmware/plat/nxp/soc-ls1028a/aarch64/ls1028a_helpers.S
e436d0bfcc7b7c83db0242b6ffefad0a2985a81e - arm-trusted-firmware/plat/nxp/soc-ls1028a/aarch64/ls1028a.S
6edca4ab32d5c19db4706b176997f9bc4f085702 - arm-trusted-firmware/plat/nxp/common/img_loadr/load_img.h
ac50f0a2929a3c77c87203013245a30bab6a20b2 - arm-trusted-firmware/plat/nxp/common/img_loadr/load_img.c
e41af019a383e1c29f6cfe79b98e6812ee9e71e8 - arm-trusted-firmware/plat/nxp/common/fip_handler/fuse_fip/fuse_io_storage.c
0f0ae89b60dfac27f5f00ac6c76a3c1fbbf30e8c - arm-trusted-firmware/plat/nxp/common/fip_handler/fuse_fip/fuse_io.h
5898658243b0a5f981f4c051061be8d7f7ff3a7f - arm-trusted-firmware/plat/nxp/common/fip_handler/common/plat_def_fip_uuid.h
fc286a6d896799156121d56095076ee1765cdd18 - arm-trusted-firmware/plat/nxp/common/fip_handler/common/plat_tbbr_img_def.h
9670a30b894318a795c85e5ee63edbe979b023b6 - arm-trusted-firmware/plat/nxp/common/fip_handler/common/platform_oid.h
97667263a954ff77c695a93ec98b767bccf035cd - arm-trusted-firmware/plat/nxp/common/fip_handler/ddr_fip/ddr_io_storage.c
96bd522ef14fb5ff8a4247a028501ef7c4367f3a - arm-trusted-firmware/plat/nxp/common/fip_handler/ddr_fip/ddr_io_storage.h
9c72b3ecd5d5982e63db876f7dfefb7cbac10bea - arm-trusted-firmware/plat/nxp/common/sip_svc/sip_svc.c
27f86d14fd5ce72d0aaa417b4c893049acc97e1c - arm-trusted-firmware/plat/nxp/common/sip_svc/include/sipsvc.h
be62a5510efe4bb10130935015fc6c12d3b02ed4 - arm-trusted-firmware/plat/nxp/common/sip_svc/aarch64/sipsvc.S
dcfd794664af1da07e241e7f44705b02a86955bb - arm-trusted-firmware/plat/nxp/common/include/default/plat_default_def.h
2941f6674d8de1d2b22c22b91db3b63996c45d80 - arm-trusted-firmware/plat/nxp/common/include/default/ch_2/soc_default_base_addr.h
764ceec06291ed492b81348c85ad37e77f32eb3a - arm-trusted-firmware/plat/nxp/common/include/default/ch_2/soc_default_helper_macros.h
3b4e4e380dbab1bf4ad037c20f705b6e42b5d992 - arm-trusted-firmware/plat/nxp/common/include/default/ch_3/soc_default_base_addr.h
9fecb13f267ce5c792719b3969ef19e96064d75a - arm-trusted-firmware/plat/nxp/common/include/default/ch_3/soc_default_helper_macros.h
1c0daba5be7bb7055a56df067ffc86d62af94382 - arm-trusted-firmware/plat/nxp/common/include/default/ch_3_2/soc_default_base_addr.h
962eb919fbdac8edf23f3cca5303772adc4690b0 - arm-trusted-firmware/plat/nxp/common/include/default/ch_3_2/soc_default_helper_macros.h
f71b1c56189f5904469d9e69c7b5206a4bd12454 - arm-trusted-firmware/plat/nxp/common/warm_reset/plat_warm_reset.c
48b1c6e031a18037fbc338e8d3f6d0efbe6c0eca - arm-trusted-firmware/plat/nxp/common/warm_reset/plat_warm_rst.h
08360ed6a8b3d051a5cad1cb6e001cf1600b7ac8 - arm-trusted-firmware/plat/nxp/common/ocram/ocram.h
5e45989256d4cb803eb129882666969d3d952ac6 - arm-trusted-firmware/plat/nxp/common/ocram/aarch64/ocram.S
fdb986fc3069c5b8c185c58c199bc5e56a6d1655 - arm-trusted-firmware/plat/nxp/common/aarch64/bl31_data.S
2c5220969ad934f5e3904f8b72774332826fb89d - arm-trusted-firmware/plat/nxp/common/aarch64/ls_helpers.S
5f62419793539e6fbda55df6e2b3fa9e0b21b776 - arm-trusted-firmware/plat/nxp/common/soc_errata/errata.h
2e0e20e6baddb412ce97b52be66cd32d6f8f367f - arm-trusted-firmware/plat/nxp/common/soc_errata/errata_a010539.c
f925bc09cf5f24b92110d8e7eb81b6948bc855b7 - arm-trusted-firmware/plat/nxp/common/soc_errata/errata.c
254c94ec21e9680a13a88c1c24d884bfb8b9479c - arm-trusted-firmware/plat/nxp/common/soc_errata/errata_a008850.c
492965693fd60a384d16d12de2ecd89c7f522702 - arm-trusted-firmware/plat/nxp/common/soc_errata/errata_list.h
0b417a1d9881a05757a25db89aa6739867cc6cff - arm-trusted-firmware/plat/nxp/common/soc_errata/errata_a009660.c
c693c689d519e4697e033a4df6e7da75ecaca5b7 - arm-trusted-firmware/plat/nxp/common/soc_errata/errata_a050426.c
98e57da5931c557522da93cce9fe3bfb911d2cb0 - arm-trusted-firmware/plat/nxp/common/setup/ls_err.c
7159132c839b1d3568d7b7b03da30f6d03e5336e - arm-trusted-firmware/plat/nxp/common/setup/ls_interrupt_mgmt.c
cb4accb6830f44fe050021fd6e32cca1a8acf7ee - arm-trusted-firmware/plat/nxp/common/setup/ls_bl31_setup.c
e0dfec4c8847e15aeb7a774844188ab382bdd027 - arm-trusted-firmware/plat/nxp/common/setup/ls_stack_protector.c
91c2c52722651995a236e3f10e11504b1d87e098 - arm-trusted-firmware/plat/nxp/common/setup/ls_common.c
6694d9cc9520a800f00a344d9cc1c534b6e88d91 - arm-trusted-firmware/plat/nxp/common/setup/ls_bl2_el3_setup.c
d736c2075e7e15a400e61a1db310a4d1b43bffd2 - arm-trusted-firmware/plat/nxp/common/setup/ls_image_load.c
475644583f7d46ef814913dcdcfddfa706f9f9bb - arm-trusted-firmware/plat/nxp/common/setup/ls_io_storage.c
9e4c6090807eed8550b5e6acaf048f870d04011b - arm-trusted-firmware/plat/nxp/common/setup/include/bl31_data.h
c8d60b0a7cea607dac9dc88673f41a4be9285d2e - arm-trusted-firmware/plat/nxp/common/setup/include/plat_macros.S
4f9b26944e2ce37da586a62bdec3d03549edca60 - arm-trusted-firmware/plat/nxp/common/setup/include/mmu_def.h
7deb5f8e4cedbb8f2f2faed66426dac4607d7f04 - arm-trusted-firmware/plat/nxp/common/setup/include/ls_interrupt_mgmt.h
52c5991d0ead354cd375910f00aefc81953d5681 - arm-trusted-firmware/plat/nxp/common/setup/include/plat_common.h
8094976b2b7aa5bbc113bbc852215f8e0513c202 - arm-trusted-firmware/plat/nxp/common/setup/aarch64/ls_bl2_mem_params_desc.c
99de11a8e1d6aa0d67bff400dc27222a3f67bda3 - arm-trusted-firmware/plat/nxp/common/tbbr/x509_tbbr.c
9b61ef7f7b42a7a2448ff56ef3a4dde77d0a3c6a - arm-trusted-firmware/plat/nxp/common/tbbr/csf_tbbr.c
003b4e0c6ab04fb9bd51037a2c976e8e9a1e90dc - arm-trusted-firmware/plat/nxp/common/tbbr/nxp_rotpk.S
193a96b82a70ef052d501107a7358ccca4890c12 - arm-trusted-firmware/plat/nxp/common/nv_storage/plat_nv_storage.c
3a09baff31a554c63552bd51f6adea91aa05d3c1 - arm-trusted-firmware/plat/nxp/common/nv_storage/plat_nv_storage.h
3b5918338beab36f0f06c2b7e82c7f49a7b351bf - arm-trusted-firmware/plat/nxp/common/psci/plat_psci.c
187a0bff6625818b129b5ab42039158f8126ddb3 - arm-trusted-firmware/plat/nxp/common/psci/include/plat_psci.h
11b25502ea937dd88b3986d358aad3eff9f39c71 - arm-trusted-firmware/plat/nxp/common/psci/aarch64/psci_utils.S
b971fa529d2080fd471b3ef7ec4466a972529aee - arm-trusted-firmware/plat/nxp/soc-lx2160a/soc.c
189fa51ba04371ccab55ac105b7dfe77c07f3552 - arm-trusted-firmware/plat/nxp/soc-lx2160a/soc.def
b52ff38c67c39f3dc4731b38d094152cb31b4ccd - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160aqds/platform.c
c515220a4c8200d4212a8d951e49a9022e7bef2f - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160aqds/platform_def.h
d07e54f7cdb54922dac5c758dd79b5adb4d9e93f - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160aqds/ddr_init.c
2881529cc073176412af0c380690bab77add20c5 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160aqds/plat_def.h
353f72fa699efe7dc63602a04a220dd43adb85ba - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160aqds/policy.h
f856b32032e096e20ae0a454ad54d4fd64dfca0c - arm-trusted-firmware/plat/nxp/soc-lx2160a/include/soc.h
63c93614b627d3a013d8176aa4248010115eecf0 - arm-trusted-firmware/plat/nxp/soc-lx2160a/aarch64/lx2160a_warm_rst.S
ed1f52b1a3d4ce48135556f32d8667c7367494d8 - arm-trusted-firmware/plat/nxp/soc-lx2160a/aarch64/lx2160a_helpers.S
3e9660b08500144943aee803a37816f45307d66b - arm-trusted-firmware/plat/nxp/soc-lx2160a/aarch64/lx2160a.S
b52ff38c67c39f3dc4731b38d094152cb31b4ccd - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160ardb/platform.c
0fe0002fb83ef9fcbbed68caa9cea3b775bfc529 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160ardb/platform_def.h
764850c7f4814c83fc8b48d4a353c5ae2836edf6 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160ardb/ddr_init.c
f53ad9b2677286b07fdbc25c8c257e4891f15607 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160ardb/plat_def.h
e7b379eaa610c82050a0e57c194b10a794f23d91 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2160ardb/policy.h
85eb1ecc310643c5e3edb3761897745f5f4eaa6a - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2162aqds/platform.c
c515220a4c8200d4212a8d951e49a9022e7bef2f - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2162aqds/platform_def.h
e8ecd59dc257f4918515a132b0c4787bc1890021 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2162aqds/ddr_init.c
6701efe4878d9b4a7d1035d7d747426951d04e8b - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2162aqds/plat_def.h
ab191a3fce41d791a52ed732c81fa4c127537b13 - arm-trusted-firmware/plat/nxp/soc-lx2160a/lx2162aqds/policy.h
1fc45a1f2166ae38c534bcf389857b89c441c5af - arm-trusted-firmware/plat/nxp/soc-ls1088a/soc.c
0f6a22f1e28fcb385608a72a297b0cbd67935113 - arm-trusted-firmware/plat/nxp/soc-ls1088a/soc.def
d1bd24409a0956382d617f97af627e582ec04d5c - arm-trusted-firmware/plat/nxp/soc-ls1088a/include/soc.h
764c8c04a6189e6992612672f9e41abde5000248 - arm-trusted-firmware/plat/nxp/soc-ls1088a/aarch64/ls1088a_helpers.S
492d3f0900343c093e718ba1816eb94bfc3931e9 - arm-trusted-firmware/plat/nxp/soc-ls1088a/aarch64/ls1088a.S
344959df5ba88c1bf9ce847e6735395045c1253c - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088aqds/platform.c
11e2d32b094714041c63cf972054b12b7c0db04e - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088aqds/platform_def.h
e9f8a604d5a2d30bd7a467c0b5624df132c867ee - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088aqds/ddr_init.c
3328578a5401038f068eded4991d6a403c5276b7 - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088aqds/plat_def.h
a7f75b9047c373fb59a317bd6d2995d70aa0aefa - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088aqds/policy.h
344959df5ba88c1bf9ce847e6735395045c1253c - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088ardb/platform.c
11e2d32b094714041c63cf972054b12b7c0db04e - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088ardb/platform_def.h
30d19335e7872d98487de84b2cc1cfad32bc26ad - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088ardb/ddr_init.c
9c8add03dd402a33b546ebe338030483a6e30892 - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088ardb/plat_def.h
992637daa6e8a443c6f0a176079ce731d593f699 - arm-trusted-firmware/plat/nxp/soc-ls1088a/ls1088ardb/policy.h
66cbb2ab82f32d934dc4d303b958c70750303ca6 - arm-trusted-firmware/plat/intel/soc/stratix10/bl31_plat_setup.c
2f22a31fb6bf835c01bd19bb362bba1c8a3e4918 - arm-trusted-firmware/plat/intel/soc/stratix10/bl2_plat_setup.c
fbf4ab727479f904a0ae30ca600e339277fc9c11 - arm-trusted-firmware/plat/intel/soc/stratix10/include/s10_pinmux.h
db28b2738f48c2d2751af6dee5456298ec578706 - arm-trusted-firmware/plat/intel/soc/stratix10/include/s10_memory_controller.h
05acb6f9fd3967467369875212f706741e9434c3 - arm-trusted-firmware/plat/intel/soc/stratix10/include/socfpga_plat_def.h
327e01f2a345b7d3b00f949c0785a60e4c03889f - arm-trusted-firmware/plat/intel/soc/stratix10/include/s10_noc.h
2a726cacb7d9a01adbb5c593a0bf7a6f0e9d2c18 - arm-trusted-firmware/plat/intel/soc/stratix10/include/s10_clock_manager.h
70667783807950b851233233349f9cadef62b70d - arm-trusted-firmware/plat/intel/soc/stratix10/soc/s10_memory_controller.c
4f2d7ac1b88723a36765c17fe3b6b524622ee49d - arm-trusted-firmware/plat/intel/soc/stratix10/soc/s10_clock_manager.c
5a527e1803e29b659091fe8cf586adaf527a55dd - arm-trusted-firmware/plat/intel/soc/stratix10/soc/s10_pinmux.c
23e53289a40f4fdd5705ffc560d18e9e3086e32e - arm-trusted-firmware/plat/intel/soc/common/socfpga_sip_svc.c
b1605e3612529c3ef25860a30a92276b1762eff8 - arm-trusted-firmware/plat/intel/soc/common/socfpga_delay_timer.c
a73994ba0863a0c9119b3e80c2f95fd3a67881de - arm-trusted-firmware/plat/intel/soc/common/bl2_plat_mem_params_desc.c
cc4b0a911ae0f00cfc94310c6a9d60716e9a1064 - arm-trusted-firmware/plat/intel/soc/common/socfpga_topology.c
98e7e0c1e8b661cfd05aacfbfc969aea710cf145 - arm-trusted-firmware/plat/intel/soc/common/socfpga_psci.c
659bce34ee85d1001adb313d9a639d66d3a89deb - arm-trusted-firmware/plat/intel/soc/common/socfpga_image_load.c
0c8169624b733658b1eee7afa553ac38e2f2660d - arm-trusted-firmware/plat/intel/soc/common/socfpga_storage.c
3eb20b0d72778ce95cdd02e0732ff2485fdcbe49 - arm-trusted-firmware/plat/intel/soc/common/include/plat_macros.S
55418579bc9725e40a61a81af232a46218f27291 - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_private.h
f10900dcc55350c0601a0fcddce82a8d8faeb902 - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_sip_svc.h
3886a4a113d64631d91373640cc1e9d6ad0f9de5 - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_handoff.h
ffac73fe826ff46223b2ddaebd9e7206528dfe33 - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_emac.h
987353d4fcf33b0589d816a77ed534bd4b0ee784 - arm-trusted-firmware/plat/intel/soc/common/include/platform_def.h
04e0e1415877c38b1d5b29fd0db73a6ec1bbc63c - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_system_manager.h
c02cf900011574561e4a40f32b4328ee9b4fc2dc - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_fcs.h
b117623bbdd5a56a0ff191770082cd80e5b860e4 - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_mailbox.h
90cc387dc45aa325c65a5f792054dbf87337d0c0 - arm-trusted-firmware/plat/intel/soc/common/include/socfpga_reset_manager.h
c72a5bba918c6067f6a77a639c42bc477c71de2c - arm-trusted-firmware/plat/intel/soc/common/drivers/wdt/watchdog.c
5c64677609f95ebafb78a49847ca9c07c1a3aa87 - arm-trusted-firmware/plat/intel/soc/common/drivers/wdt/watchdog.h
5e8868245cddc9cd3bff4ded0c90d2f8b356920d - arm-trusted-firmware/plat/intel/soc/common/drivers/ccu/ncore_ccu.h
4a2ceded30ce0c9be27082dc3e0a0f646e41c555 - arm-trusted-firmware/plat/intel/soc/common/drivers/ccu/ncore_ccu.c
c9354b6d74c4a24fae2207b5b999882056d88e91 - arm-trusted-firmware/plat/intel/soc/common/drivers/qspi/cadence_qspi.h
41479908d06f853d367898b86dda07763652f4c7 - arm-trusted-firmware/plat/intel/soc/common/drivers/qspi/cadence_qspi.c
ee464010f7478ad28450e239244175a97360cef4 - arm-trusted-firmware/plat/intel/soc/common/aarch64/plat_helpers.S
c93b1e05180647b1752b51838d7b935bf554e073 - arm-trusted-firmware/plat/intel/soc/common/aarch64/platform_common.c
8b1c7bd1975b587b7b972a8471ba45698080074c - arm-trusted-firmware/plat/intel/soc/common/sip/socfpga_sip_ecc.c
def81ce5e821eeb00d79cf3474f11987dd6f1d5a - arm-trusted-firmware/plat/intel/soc/common/sip/socfpga_sip_fcs.c
dbb5c27c52afd2347aa5d78b423a051d694a5c1e - arm-trusted-firmware/plat/intel/soc/common/soc/socfpga_emac.c
30326906ea4956c9a459d8a32363b2ca3de50733 - arm-trusted-firmware/plat/intel/soc/common/soc/socfpga_mailbox.c
6a4cfd87ff051f635d35973a9d14d941e0dc377e - arm-trusted-firmware/plat/intel/soc/common/soc/socfpga_system_manager.c
23d9dff6e9c23385b4ccea7791e18d709f29f6d0 - arm-trusted-firmware/plat/intel/soc/common/soc/socfpga_handoff.c
46033ef6c11ee3af5452b7fdf9b90c20050c0be8 - arm-trusted-firmware/plat/intel/soc/common/soc/socfpga_reset_manager.c
f1e4a10f906499fc859ce623d4571dc63e7d5273 - arm-trusted-firmware/plat/intel/soc/agilex/bl31_plat_setup.c
4bbfc2267980533e77f9d529ab7d174d48d90403 - arm-trusted-firmware/plat/intel/soc/agilex/bl2_plat_setup.c
e61cd2fc029895773c3e7781028ff30b7d863cb7 - arm-trusted-firmware/plat/intel/soc/agilex/include/agilex_pinmux.h
fc798b0a8b41f3e6053be0d0669917e2a704807e - arm-trusted-firmware/plat/intel/soc/agilex/include/agilex_clock_manager.h
a86635994a276adad357b7b9a9408af38860c61c - arm-trusted-firmware/plat/intel/soc/agilex/include/agilex_memory_controller.h
c3fe6580aad543effa72713fb4d54e4fdcd7f76e - arm-trusted-firmware/plat/intel/soc/agilex/include/agilex_noc.h
592af310a2153553607e67158a137e3b7d297c79 - arm-trusted-firmware/plat/intel/soc/agilex/include/socfpga_plat_def.h
2cbef8a830bfec6a533910d7a00ca01de32629c3 - arm-trusted-firmware/plat/intel/soc/agilex/include/agilex_mmc.h
3a9e2ef84999f167350febae7da7117e414fdaaf - arm-trusted-firmware/plat/intel/soc/agilex/soc/agilex_clock_manager.c
0701baf6d3a2c6d67485a189fa41e9c33fd20ca4 - arm-trusted-firmware/plat/intel/soc/agilex/soc/agilex_memory_controller.c
3c317104013baa1af66596ba8f1eef175f48843d - arm-trusted-firmware/plat/intel/soc/agilex/soc/agilex_mmc.c
f28f931b63cba463d5ec189bc42550444729edad - arm-trusted-firmware/plat/intel/soc/agilex/soc/agilex_pinmux.c
1e8b5a5e05d44ab9f8f3bcbdc873885fc49c39de - arm-trusted-firmware/plat/intel/soc/n5x/bl31_plat_setup.c
956551e3f043e449ce36fb1696d99d2ae5b925d3 - arm-trusted-firmware/plat/intel/soc/n5x/include/socfpga_plat_def.h
2d32dba27247198d6cd35d150dc8eeba3c8ed8ff - arm-trusted-firmware/bl2u/bl2u.ld.S
0cd1ab24947e0ea5ce307a171756d88683d36cde - arm-trusted-firmware/bl2u/bl2u_main.c
1df1aad13ba7e2ed5cb1ae4a6200d169a1715578 - arm-trusted-firmware/bl2u/aarch64/bl2u_entrypoint.S
738660771364acfab975427664536a581abb78df - arm-trusted-firmware/bl2u/aarch32/bl2u_entrypoint.S
20113f49289a58e42b03525ea9427f94e093f58f - arm-trusted-firmware/bl1/bl1_private.h
653f6de57d95cb1d74a23acc6389ab9292ef0451 - arm-trusted-firmware/bl1/bl1_fwu.c
d006178768f88929b34ddd8b6f7caf6ffb1577b4 - arm-trusted-firmware/bl1/bl1_main.c
f34fa7c71b4b146c22d99ea5e88650c232833b2b - arm-trusted-firmware/bl1/bl1.ld.S
587ecb158bf5940ddc7f95250a8802df39806ef0 - arm-trusted-firmware/bl1/aarch64/bl1_context_mgmt.c
5c5e2355ca375fa98ae30f56bcf2f57ea7056c71 - arm-trusted-firmware/bl1/aarch64/bl1_entrypoint.S
d6181e93a353f492a54a5222fe53d793cc6d46d7 - arm-trusted-firmware/bl1/aarch64/bl1_exceptions.S
284a0afe619de982f2bd1d4b1c625831ef7b3b5e - arm-trusted-firmware/bl1/aarch64/bl1_arch_setup.c
095ac3b2483b968f263618a4bd6cdd8d6f66d321 - arm-trusted-firmware/bl1/aarch32/bl1_context_mgmt.c
6ef2d19cb4ab43cba39eb87d49604192b1f3b2bd - arm-trusted-firmware/bl1/aarch32/bl1_entrypoint.S
32bd99d2c29b908009a4aea495162f0bb76949db - arm-trusted-firmware/bl1/aarch32/bl1_exceptions.S
8d6e2008e280f848fb14017ba5ba559a10724421 - arm-trusted-firmware/bl1/aarch32/bl1_arch_setup.c
85b2afc44851dc57e79c264641730d0e2eca3016 - arm-trusted-firmware/bl1/tbbr/tbbr_img_desc.c
2c87153926f8a458cffc9a435e15571ba721c2fa - arm-trusted-firmware/licenses/LICENSE.MIT
3a094362be710094e9435bc1e4d7eebfa468338d - arm-trusted-firmware/bl2/bl2_el3.ld.S
88bbfcb3f9b827bdab7f16cdfe892b2aa1470576 - arm-trusted-firmware/bl2/bl2_image_load_v2.c
991c05cee7a30247e2edcade94405aef95480121 - arm-trusted-firmware/bl2/bl2_private.h
0b07a71ab893d39e7884f11f46b95245ab0cf303 - arm-trusted-firmware/bl2/bl2.ld.S
d8756b1a7295709e6757c7dbfc53741267823e2a - arm-trusted-firmware/bl2/bl2_main.c
62ef4221f56feaf0907dbe17cad47a9bab86bf03 - arm-trusted-firmware/bl2/aarch64/bl2_el3_exceptions.S
777576955f2ae3959035c33791a33835fe6578f4 - arm-trusted-firmware/bl2/aarch64/bl2_rme_entrypoint.S
a34048b4cc67bca14b7594e2c1a53b4c0376d779 - arm-trusted-firmware/bl2/aarch64/bl2_el3_entrypoint.S
c426fa02b617581d2495667828e9430110cf713a - arm-trusted-firmware/bl2/aarch64/bl2_entrypoint.S
247751d71fb2863f439cc217ac18c219dbf15453 - arm-trusted-firmware/bl2/aarch64/bl2_run_next_image.S
776c1699268eee43ba9230cb7e785e298e56a233 - arm-trusted-firmware/bl2/aarch64/bl2_arch_setup.c
e514ace46685e16066700af9ec41ffbfa825b369 - arm-trusted-firmware/bl2/aarch32/bl2_el3_exceptions.S
aac463ba1d35408d94f960ade6d2db95d68455ab - arm-trusted-firmware/bl2/aarch32/bl2_el3_entrypoint.S
e7ec4f132c5a2ca9bb5f999f47079e4d473e77d9 - arm-trusted-firmware/bl2/aarch32/bl2_entrypoint.S
f64693060b1ef904b4abfc04b8480a0f458494c5 - arm-trusted-firmware/bl2/aarch32/bl2_run_next_image.S
2534665e628b7612c3896fed4e659f3351601296 - arm-trusted-firmware/bl2/aarch32/bl2_arch_setup.c

Change-Id: I31d99229f74adf7acea6637c27a2aba88e7caf82
This commit is contained in:
svcmobrel-release
2024-09-06 00:00:44 -07:00
parent 01a60fccc9
commit 33b089d1e7
3858 changed files with 659607 additions and 0 deletions

View File

@@ -0,0 +1,25 @@
#
# Copyright (c) 2019-2020, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS = -W
SPHINXBUILD = sphinx-build
SPHINXPROJ = TrustedFirmware-A
SOURCEDIR = .
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@@ -0,0 +1,15 @@
/*
* Copyright (c) 2021, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Set the white-space property of tables to normal.
* With this setting sequences of whitespace inside
* a table will collapse into a single whitespace,
* and text will wrap when necessary.
*/
.wy-table-responsive table td {
white-space: normal;
}

View File

@@ -0,0 +1,22 @@
Contributor Acknowledgements
============================
.. note::
This file is only relevant for legacy contributions, to acknowledge the
specific contributors referred to in "Arm Limited and Contributors" copyright
notices. As contributors are now encouraged to put their name or company name
directly into the copyright notices, this file is not relevant for new
contributions. See the :ref:`License` document for the correct template to
use for new contributions.
- Linaro Limited
- Marvell International Ltd.
- NVIDIA Corporation
- NXP Semiconductors
- Socionext Inc.
- STMicroelectronics
- Xilinx, Inc.
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,56 @@
Support & Contact
-----------------
We welcome any feedback on |TF-A| and there are several methods for providing
it or for obtaining support.
.. warning::
If you think you have found a security vulnerability, please report this using
the process defined in the :ref:`Security Handling` document.
Mailing Lists
^^^^^^^^^^^^^
Public mailing lists for TF-A and the wider Trusted Firmware project are
hosted on TrustedFirmware.org. The mailing lists can be used for general
enquiries, enhancement requests and issue reports, or to follow and participate
in technical or organizational discussions around the project. These discussions
include design proposals, advance notice of changes and upcoming events.
The relevant lists for the TF-A project are:
- `TF-A development`_
- `TF-A-Tests development`_
You can see a `summary of all the lists`_ on the TrustedFirmware.org website.
Open Tech Forum Call
^^^^^^^^^^^^^^^^^^^^
Every other week, we organize a call with all interested TF-A contributors.
Anyone is welcome to join. This is an opportunity to discuss any technical
topic within the community. More details can be found `here`_.
.. _here: https://www.trustedfirmware.org/meetings/tf-a-technical-forum/
Issue Tracker
^^^^^^^^^^^^^
Bug reports may be filed on the `issue tracker`_ on the TrustedFirmware.org
website. Using this tracker gives everyone visibility of the known issues in
TF-A.
Arm Licensees
^^^^^^^^^^^^^
Arm licensees have an additional support conduit - they may contact Arm directly
via their partner managers.
.. _`issue tracker`: https://developer.trustedfirmware.org
.. _`TF-A development`: https://lists.trustedfirmware.org/pipermail/tf-a/
.. _`TF-A-Tests development`: https://lists.trustedfirmware.org/pipermail/tf-a-tests/
.. _`summary of all the lists`: https://lists.trustedfirmware.org
--------------
*Copyright (c) 2019-2020, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,127 @@
Feature Overview
================
This page provides an overview of the current |TF-A| feature set. For a full
description of these features and their implementation details, please see
the documents that are part of the *Components* and *System Design* chapters.
The :ref:`Change Log & Release Notes` provides details of changes made since the
last release.
Current features
----------------
- Initialization of the secure world, for example exception vectors, control
registers and interrupts for the platform.
- Library support for CPU specific reset and power down sequences. This
includes support for errata workarounds and the latest Arm DynamIQ CPUs.
- Drivers to enable standard initialization of Arm System IP, for example
Generic Interrupt Controller (GIC), Cache Coherent Interconnect (CCI),
Cache Coherent Network (CCN), Network Interconnect (NIC) and TrustZone
Controller (TZC).
- A generic |SCMI| driver to interface with conforming power controllers, for
example the Arm System Control Processor (SCP).
- SMC (Secure Monitor Call) handling, conforming to the `SMC Calling
Convention`_ using an EL3 runtime services framework.
- |PSCI| library support for CPU, cluster and system power management
use-cases.
This library is pre-integrated with the AArch64 EL3 Runtime Software, and
is also suitable for integration with other AArch32 EL3 Runtime Software,
for example an AArch32 Secure OS.
- A minimal AArch32 Secure Payload (*SP_MIN*) to demonstrate |PSCI| library
integration with AArch32 EL3 Runtime Software.
- Secure Monitor library code such as world switching, EL1 context management
and interrupt routing.
When a Secure-EL1 Payload (SP) is present, for example a Secure OS, the
AArch64 EL3 Runtime Software must be integrated with a Secure Payload
Dispatcher (SPD) component to customize the interaction with the SP.
- A Test SP and SPD to demonstrate AArch64 Secure Monitor functionality and SP
interaction with PSCI.
- SPDs for the `OP-TEE Secure OS`_, `NVIDIA Trusted Little Kernel`_
and `Trusty Secure OS`_.
- A Trusted Board Boot implementation, conforming to all mandatory TBBR
requirements. This includes image authentication, Firmware Update (or
recovery mode), and packaging of the various firmware images into a
Firmware Image Package (FIP).
- Pre-integration of TBB with the Arm CryptoCell product, to take advantage of
its hardware Root of Trust and crypto acceleration services.
- Reliability, Availability, and Serviceability (RAS) functionality, including
- A Secure Partition Manager (SPM) to manage Secure Partitions in
Secure-EL0, which can be used to implement simple management and
security services.
- An |SDEI| dispatcher to route interrupt-based |SDEI| events.
- An Exception Handling Framework (EHF) that allows dispatching of EL3
interrupts to their registered handlers, to facilitate firmware-first
error handling.
- A dynamic configuration framework that enables each of the firmware images
to be configured at runtime if required by the platform. It also enables
loading of a hardware configuration (for example, a kernel device tree)
as part of the FIP, to be passed through the firmware stages.
This feature is now incorporated inside the firmware configuration framework
(fconf).
- Support for alternative boot flows, for example to support platforms where
the EL3 Runtime Software is loaded using other firmware or a separate
secure system processor, or where a non-TF-A ROM expects BL2 to be loaded
at EL3.
- Support for the GCC, LLVM and Arm Compiler 6 toolchains.
- Support for combining several libraries into a "romlib" image that may be
shared across images to reduce memory footprint. The romlib image is stored
in ROM but is accessed through a jump-table that may be stored
in read-write memory, allowing for the library code to be patched.
- Support for the Secure Partition Manager Dispatcher (SPMD) component as a
new standard service.
- Support for ARMv8.3 pointer authentication in the normal and secure worlds.
The use of pointer authentication in the normal world is enabled whenever
architectural support is available, without the need for additional build
flags.
- Position-Independent Executable (PIE) support. Currently for BL2, BL31, and
TSP, with further support to be added in a future release.
Still to come
-------------
- Support for additional platforms.
- Refinements to Position Independent Executable (PIE) support.
- Continued support for the FF-A v1.0 (formally known as SPCI) specification, to enable the
use of secure partition management in the secure world.
- Documentation enhancements.
- Ongoing support for new architectural features, CPUs and System IP.
- Ongoing support for new Arm system architecture specifications.
- Ongoing security hardening, optimization and quality improvements.
.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest
.. _OP-TEE Secure OS: https://github.com/OP-TEE/optee_os
.. _NVIDIA Trusted Little Kernel: http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
.. _Trusty Secure OS: https://source.android.com/security/trusty
--------------
*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,13 @@
About
=====
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
features
release-information
maintainers
contact
acknowledgements

View File

@@ -0,0 +1,865 @@
Project Maintenance
===================
Trusted Firmware-A (TF-A) is an open governance community project. All
contributions are ultimately merged by the maintainers listed below. Technical
ownership of most parts of the codebase falls on the code owners listed
below. An acknowledgement from these code owners is required before the
maintainers merge a contribution.
More details may be found in the `Project Maintenance Process`_ document.
.. |M| replace:: **Mail**
.. |G| replace:: **GitHub ID**
.. |F| replace:: **Files**
.. _maintainers:
Maintainers
-----------
:|M|: Dan Handley <dan.handley@arm.com>
:|G|: `danh-arm`_
:|M|: Soby Mathew <soby.mathew@arm.com>
:|G|: `soby-mathew`_
:|M|: Sandrine Bailleux <sandrine.bailleux@arm.com>
:|G|: `sandrine-bailleux-arm`_
:|M|: Alexei Fedorov <Alexei.Fedorov@arm.com>
:|G|: `AlexeiFedorov`_
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Mark Dykes <mark.dykes@arm.com>
:|G|: `mardyk01`_
:|M|: Olivier Deprez <olivier.deprez@arm.com>
:|G|: `odeprez`_
:|M|: Bipin Ravi <bipin.ravi@arm.com>
:|G|: `bipinravi-arm`_
:|M|: Joanna Farley <joanna.farley@arm.com>
:|G|: `joannafarley-arm`_
:|M|: Julius Werner <jwerner@chromium.org>
:|G|: `jwerner-chromium`_
:|M|: Varun Wadekar <vwadekar@nvidia.com>
:|G|: `vwadekar`_
:|M|: Andre Przywara <andre.przywara@arm.com>
:|G|: `Andre-ARM`_
:|M|: Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>
:|G|: `laurenw-arm`_
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|M|: Raghu Krishnamurthy <raghu.ncstate@icloud.com>
:|G|: `raghuncstate`_
.. _code owners:
Code owners
-----------
Common Code
~~~~~~~~~~~
Armv7-A architecture port
^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Etienne Carriere <etienne.carriere@linaro.org>
:|G|: `etienne-lms`_
Build Definitions for CMake Build System
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
:|G|: `javieralso-arm`_
:|M|: Chris Kay <chris.kay@arm.com>
:|G|: `CJKay`_
:|F|: /
Software Delegated Exception Interface (SDEI)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Mark Dykes <mark.dykes@arm.com>
:|G|: `mardyk01`_
:|M|: John Powell <john.powell@arm.com>
:|G|: `john-powell-arm`_
:|F|: services/std_svc/sdei/
Trusted Boot
^^^^^^^^^^^^
:|M|: Sandrine Bailleux <sandrine.bailleux@arm.com>
:|G|: `sandrine-bailleux-arm`_
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Manish Badarkhe <manish.badarkhe@arm.com>
:|G|: `ManishVB-Arm`_
:|F|: drivers/auth/
Secure Partition Manager (SPM)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Olivier Deprez <olivier.deprez@arm.com>
:|G|: `odeprez`_
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Maksims Svecovs <maksims.svecovs@arm.com>
:|G|: `max-shvetsov`_
:|M|: Joao Alves <Joao.Alves@arm.com>
:|G|: `J-Alves`_
:|F|: services/std_svc/spm\*
Exception Handling Framework (EHF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Manish Badarkhe <manish.badarkhe@arm.com>
:|G|: `ManishVB-Arm`_
:|M|: John Powell <john.powell@arm.com>
:|G|: `john-powell-arm`_
:|F|: bl31/ehf.c
Realm Management Extension (RME)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Bipin Ravi <bipin.ravi@arm.com>
:|G|: `bipinravi-arm`_
:|M|: Mark Dykes <mark.dykes@arm.com>
:|G|: `mardyk01`_
:|M|: John Powell <john.powell@arm.com>
:|G|: `john-powell-arm`_
:|M|: Zelalem Aweke <Zelalem.Aweke@arm.com>
:|G|: `zelalem-aweke`_
Drivers, Libraries and Framework Code
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Console API framework
^^^^^^^^^^^^^^^^^^^^^
:|M|: Julius Werner <jwerner@chromium.org>
:|G|: `jwerner-chromium`_
:|F|: drivers/console/
:|F|: include/drivers/console.h
:|F|: plat/common/aarch64/crash_console_helpers.S
coreboot support libraries
^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Julius Werner <jwerner@chromium.org>
:|G|: `jwerner-chromium`_
:|F|: drivers/coreboot/
:|F|: include/drivers/coreboot/
:|F|: include/lib/coreboot.h
:|F|: lib/coreboot/
eMMC/UFS drivers
^^^^^^^^^^^^^^^^
:|M|: Haojian Zhuang <haojian.zhuang@linaro.org>
:|G|: `hzhuang1`_
:|F|: drivers/partition/
:|F|: drivers/synopsys/emmc/
:|F|: drivers/synopsys/ufs/
:|F|: drivers/ufs/
:|F|: include/drivers/dw_ufs.h
:|F|: include/drivers/ufs.h
:|F|: include/drivers/synopsys/dw_mmc.h
JTAG DCC console driver
^^^^^^^^^^^^^^^^^^^^^^^
:M: Michal Simek <michal.simek@xilinx.com>
:G: `michalsimek`_
:M: Venkatesh Yadav Abbarapu <venkatesh.abbarapu@xilinx.com>
:G: `venkatesh`_
:F: drivers/arm/dcc/
:F: include/drivers/arm/dcc.h
Power State Coordination Interface (PSCI)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
:|G|: `javieralso-arm`_
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|M|: Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>
:|G|: `laurenw-arm`_
:|M|: Zelalem Aweke <Zelalem.Aweke@arm.com>
:|G|: `zelalem-aweke`_
:|F|: lib/psci/
DebugFS
^^^^^^^
:|M|: Olivier Deprez <olivier.deprez@arm.com>
:|G|: `odeprez`_
:|F|: lib/debugfs/
Firmware Configuration Framework (FCONF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|M|: Manish Badarkhe <manish.badarkhe@arm.com>
:|G|: `ManishVB-Arm`_
:|M|: Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>
:|G|: `laurenw-arm`_
:|F|: lib/fconf/
Performance Measurement Framework (PMF)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Joao Alves <Joao.Alves@arm.com>
:|G|: `J-Alves`_
:|M|: Jimmy Brisson <Jimmy.Brisson@arm.com>
:|G|: `theotherjimmy`_
:|F|: lib/pmf/
Arm CPU libraries
^^^^^^^^^^^^^^^^^
:|M|: Lauren Wehrmeister <Lauren.Wehrmeister@arm.com>
:|G|: `laurenw-arm`_
:|M|: John Powell <john.powell@arm.com>
:|G|: `john-powell-arm`_
:|F|: lib/cpus/
Reliability Availability Serviceabilty (RAS) framework
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Olivier Deprez <olivier.deprez@arm.com>
:|G|: `odeprez`_
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|F|: lib/extensions/ras/
Activity Monitors Unit (AMU) extensions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Alexei Fedorov <Alexei.Fedorov@arm.com>
:|G|: `AlexeiFedorov`_
:|M|: Chris Kay <chris.kay@arm.com>
:|G|: `CJKay`_
:|F|: lib/extensions/amu/
Memory Partitioning And Monitoring (MPAM) extensions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Zelalem Aweke <Zelalem.Aweke@arm.com>
:|G|: `zelalem-aweke`_
:|M|: Jimmy Brisson <Jimmy.Brisson@arm.com>
:|G|: `theotherjimmy`_
:|F|: lib/extensions/mpam/
Pointer Authentication (PAuth) and Branch Target Identification (BTI) extensions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Alexei Fedorov <Alexei.Fedorov@arm.com>
:|G|: `AlexeiFedorov`_
:|M|: Zelalem Aweke <Zelalem.Aweke@arm.com>
:|G|: `zelalem-aweke`_
:|F|: lib/extensions/pauth/
Statistical Profiling Extension (SPE)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Zelalem Aweke <Zelalem.Aweke@arm.com>
:|G|: `zelalem-aweke`_
:|M|: Jimmy Brisson <Jimmy.Brisson@arm.com>
:|G|: `theotherjimmy`_
:|F|: lib/extensions/spe/
Scalable Vector Extension (SVE)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jimmy Brisson <Jimmy.Brisson@arm.com>
:|G|: `theotherjimmy`_
:|F|: lib/extensions/sve/
Standard C library
^^^^^^^^^^^^^^^^^^
:|M|: Alexei Fedorov <Alexei.Fedorov@arm.com>
:|G|: `AlexeiFedorov`_
:|M|: John Powell <john.powell@arm.com>
:|G|: `john-powell-arm`_
:|F|: lib/libc/
Library At ROM (ROMlib)
^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|F|: lib/romlib/
Translation tables (``xlat_tables``) library
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
:|G|: `javieralso-arm`_
:|M|: Joao Alves <Joao.Alves@arm.com>
:|G|: `J-Alves`_
:|F|: lib/xlat\_tables_\*/
IO abstraction layer
^^^^^^^^^^^^^^^^^^^^
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Olivier Deprez <olivier.deprez@arm.com>
:|G|: `odeprez`_
:|F|: drivers/io/
GIC driver
^^^^^^^^^^
:|M|: Alexei Fedorov <Alexei.Fedorov@arm.com>
:|G|: `AlexeiFedorov`_
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|M|: Olivier Deprez <olivier.deprez@arm.com>
:|G|: `odeprez`_
:|F|: drivers/arm/gic/
Libfdt wrappers
^^^^^^^^^^^^^^^
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|M|: Manish Badarkhe <manish.badarkhe@arm.com>
:|G|: `ManishVB-Arm`_
:|F|: common/fdt_wrappers.c
Firmware Encryption Framework
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Sumit Garg <sumit.garg@linaro.org>
:|G|: `b49020`_
:|F|: drivers/io/io_encrypted.c
:|F|: include/drivers/io/io_encrypted.h
:|F|: include/tools_share/firmware_encrypted.h
Measured Boot
^^^^^^^^^^^^^
:|M|: Alexei Fedorov <Alexei.Fedorov@arm.com>
:|G|: `AlexeiFedorov`_
:|M|: Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
:|G|: `javieralso-arm`_
:|F|: drivers/measured_boot
:|F|: include/drivers/measured_boot
:|F|: plat/arm/board/fvp/fvp_measured_boot.c
System Control and Management Interface (SCMI) Server
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Etienne Carriere <etienne.carriere@st.com>
:|G|: `etienne-lms`_
:|M|: Peng Fan <peng.fan@nxp.com>
:|G|: `MrVan`_
:|F|: drivers/scmi-msg
:|F|: include/drivers/scmi\*
Max Power Mitigation Mechanism (MPMM)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Chris Kay <chris.kay@arm.com>
:|G|: `CJKay`_
:|F|: include/lib/mpmm/
:|F|: lib/mpmm/
Granule Protection Tables Library (GPT-RME)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Mark Dykes <mark.dykes@arm.com>
:|G|: `mardyk01`_
:|M|: John Powell <john.powell@arm.com>
:|G|: `john-powell-arm`_
:|F|: lib/gpt_rme
:|F|: include/lib/gpt_rme
Platform Ports
~~~~~~~~~~~~~~
Allwinner ARMv8 platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Andre Przywara <andre.przywara@arm.com>
:|G|: `Andre-ARM`_
:|M|: Samuel Holland <samuel@sholland.org>
:|G|: `smaeul`_
:|F|: docs/plat/allwinner.rst
:|F|: plat/allwinner/
:|F|: drivers/allwinner/
Amlogic Meson S905 (GXBB) platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Andre Przywara <andre.przywara@arm.com>
:|G|: `Andre-ARM`_
:|F|: docs/plat/meson-gxbb.rst
:|F|: drivers/amlogic/
:|F|: plat/amlogic/gxbb/
Amlogic Meson S905x (GXL) platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Remi Pommarel <repk@triplefau.lt>
:|G|: `remi-triplefault`_
:|F|: docs/plat/meson-gxl.rst
:|F|: plat/amlogic/gxl/
Amlogic Meson S905X2 (G12A) platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Carlo Caione <ccaione@baylibre.com>
:|G|: `carlocaione`_
:|F|: docs/plat/meson-g12a.rst
:|F|: plat/amlogic/g12a/
Amlogic Meson A113D (AXG) platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Carlo Caione <ccaione@baylibre.com>
:|G|: `carlocaione`_
:|F|: docs/plat/meson-axg.rst
:|F|: plat/amlogic/axg/
Arm FPGA platform port
^^^^^^^^^^^^^^^^^^^^^^
:|M|: Andre Przywara <andre.przywara@arm.com>
:|G|: `Andre-ARM`_
:|M|: Javier Almansa Sobrino <Javier.AlmansaSobrino@arm.com>
:|G|: `javieralso-arm`_
:|F|: plat/arm/board/arm_fpga
Arm FVP Platform port
^^^^^^^^^^^^^^^^^^^^^
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Madhukar Pappireddy <Madhukar.Pappireddy@arm.com>
:|G|: `madhukar-Arm`_
:|F|: plat/arm/board/fvp
Arm Juno Platform port
^^^^^^^^^^^^^^^^^^^^^^
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|M|: Chris Kay <chris.kay@arm.com>
:|G|: `CJKay`_
:|F|: plat/arm/board/juno
Arm Morello and N1SDP Platform ports
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Manoj Kumar <manoj.kumar3@arm.com>
:|G|: `manojkumar-arm`_
:|M|: Chandni Cherukuri <chandni.cherukuri@arm.com>
:|G|: `chandnich`_
:|F|: plat/arm/board/morello
:|F|: plat/arm/board/n1sdp
Arm Rich IoT Platform ports
^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
:|G|: `abdellatif-elkhlifi`_
:|M|: Vishnu Banavath <vishnu.banavath@arm.com>
:|G|: `vishnu-banavath`_
:|F|: plat/arm/board/corstone700
:|F|: plat/arm/board/a5ds
:|F|: plat/arm/board/corstone1000
Arm Reference Design platform ports
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Thomas Abraham <thomas.abraham@arm.com>
:|G|: `thomas-arm`_
:|M|: Vijayenthiran Subramaniam <vijayenthiran.subramaniam@arm.com>
:|G|: `vijayenthiran-arm`_
:|F|: plat/arm/css/sgi/
:|F|: plat/arm/board/rde1edge/
:|F|: plat/arm/board/rdn1edge/
:|F|: plat/arm/board/rdn2/
:|F|: plat/arm/board/rdv1/
:|F|: plat/arm/board/rdv1mc/
:|F|: plat/arm/board/sgi575/
Arm Total Compute platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Arunachalam Ganapathy <arunachalam.ganapathy@arm.com>
:|G|: `arugan02`_
:|M|: Usama Arif <usama.arif@arm.com>
:|G|: `uarif1`_
:|F|: plat/arm/board/tc
HiSilicon HiKey and HiKey960 platform ports
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Haojian Zhuang <haojian.zhuang@linaro.org>
:|G|: `hzhuang1`_
:|F|: docs/plat/hikey.rst
:|F|: docs/plat/hikey960.rst
:|F|: plat/hisilicon/hikey/
:|F|: plat/hisilicon/hikey960/
HiSilicon Poplar platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Shawn Guo <shawn.guo@linaro.org>
:|G|: `shawnguo2`_
:|F|: docs/plat/poplar.rst
:|F|: plat/hisilicon/poplar/
Intel SocFPGA platform ports
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Tien Hock Loh <tien.hock.loh@intel.com>
:|G|: `thloh85-intel`_
:|M|: Hadi Asyrafi <muhammad.hadi.asyrafi.abdul.halim@intel.com>
:|G|: mabdulha
:|F|: plat/intel/soc
:|F|: drivers/intel/soc/
MediaTek platform ports
^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Rex-BC Chen <rex-bc.chen@mediatek.com>
:|G|: `mtk-rex-bc-chen`_
:|M|: Leon Chen <leon.chen@mediatek.com>
:|G|: `leon-chen-mtk`_
:|F|: docs/plat/mt\*.rst
:|F|: plat/mediatek/
Marvell platform ports and SoC drivers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Konstantin Porotchkin <kostap@marvell.com>
:|G|: `kostapr`_
:|F|: docs/plat/marvell/
:|F|: plat/marvell/
:|F|: drivers/marvell/
:|F|: tools/marvell/
NVidia platform ports
^^^^^^^^^^^^^^^^^^^^^
:|M|: Varun Wadekar <vwadekar@nvidia.com>
:|G|: `vwadekar`_
:|F|: docs/plat/nvidia-tegra.rst
:|F|: include/lib/cpus/aarch64/denver.h
:|F|: lib/cpus/aarch64/denver.S
:|F|: plat/nvidia/
NXP i.MX 7 WaRP7 platform port and SoC drivers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Bryan O'Donoghue <bryan.odonoghue@linaro.org>
:|G|: `bryanodonoghue`_
:|M|: Jun Nie <jun.nie@linaro.org>
:|G|: `niej`_
:|F|: docs/plat/warp7.rst
:|F|: plat/imx/common/
:|F|: plat/imx/imx7/
:|F|: drivers/imx/timer/
:|F|: drivers/imx/uart/
:|F|: drivers/imx/usdhc/
NXP i.MX 8 platform port
^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Peng Fan <peng.fan@nxp.com>
:|G|: `MrVan`_
:|F|: docs/plat/imx8.rst
:|F|: plat/imx/
NXP i.MX8M platform port
^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jacky Bai <ping.bai@nxp.com>
:|G|: `JackyBai`_
:|F|: docs/plat/imx8m.rst
:|F|: plat/imx/imx8m/
NXP QorIQ Layerscape common code for platform ports
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Pankaj Gupta <pankaj.gupta@nxp.com>
:|G|: `pangupta`_
:|M|: Jiafei Pan <jiafei.pan@nxp.com>
:|G|: `JiafeiPan`_
:|F|: docs/plat/nxp/
:|F|: plat/nxp/
:|F|: drivers/nxp/
:|F|: tools/nxp/
NXP SoC Part LX2160A and its platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Pankaj Gupta <pankaj.gupta@nxp.com>
:|G|: `pangupta`_
:|F|: plat/nxp/soc-lx2160a
:|F|: plat/nxp/soc-lx2160a/lx2162aqds
:|F|: plat/nxp/soc-lx2160a/lx2160aqds
:|F|: plat/nxp/soc-lx2160a/lx2160ardb
NXP SoC Part LS1028A and its platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jiafei Pan <jiafei.pan@nxp.com>
:|G|: `JiafeiPan`_
:|F|: plat/nxp/soc-ls1028a
:|F|: plat/nxp/soc-ls1028a/ls1028ardb
NXP SoC Part LS1043A and its platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jiafei Pan <jiafei.pan@nxp.com>
:|G|: `JiafeiPan`_
:|F|: plat/nxp/soc-ls1043a
:|F|: plat/nxp/soc-ls1043a/ls1043ardb
NXP SoC Part LS1046A and its platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jiafei Pan <jiafei.pan@nxp.com>
:|G|: `JiafeiPan`_
:|F|: plat/nxp/soc-ls1046a
:|F|: plat/nxp/soc-ls1046a/ls1046ardb
:|F|: plat/nxp/soc-ls1046a/ls1046afrwy
:|F|: plat/nxp/soc-ls1046a/ls1046aqds
NXP SoC Part LS1088A and its platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jiafei Pan <jiafei.pan@nxp.com>
:|G|: `JiafeiPan`_
:|F|: plat/nxp/soc-ls1088a
:|F|: plat/nxp/soc-ls1088a/ls1088ardb
:|F|: plat/nxp/soc-ls1088a/ls1088aqds
QEMU platform port
^^^^^^^^^^^^^^^^^^
:|M|: Jens Wiklander <jens.wiklander@linaro.org>
:|G|: `jenswi-linaro`_
:|F|: docs/plat/qemu.rst
:|F|: plat/qemu/
QTI platform port
^^^^^^^^^^^^^^^^^
:|M|: Saurabh Gorecha <sgorecha@codeaurora.org>
:|G|: `sgorecha`_
:|M|: Lachit Patel <lpatel@codeaurora.org>
:|G|: `lachitp`_
:|M|: Sreevyshanavi Kare <skare@codeaurora.org>
:|G|: `sreekare`_
:|M|: QTI TF Maintainers <qti.trustedfirmware.maintainers@codeaurora.org>
:|F|: docs/plat/qti.rst
:|F|: plat/qti/
QTI MSM8916 platform port
^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Stephan Gerhold <stephan@gerhold.net>
:|G|: `stephan-gh`_
:|M|: Nikita Travkin <nikita@trvn.ru>
:|G|: `TravMurav`_
:|F|: docs/plat/qti-msm8916.rst
:|F|: plat/qti/msm8916/
Raspberry Pi 3 platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>
:|G|: `grandpaul`_
:|F|: docs/plat/rpi3.rst
:|F|: plat/rpi/rpi3/
:|F|: plat/rpi/common/
:|F|: drivers/rpi3/
:|F|: include/drivers/rpi3/
Raspberry Pi 4 platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Andre Przywara <andre.przywara@arm.com>
:|G|: `Andre-ARM`_
:|F|: docs/plat/rpi4.rst
:|F|: plat/rpi/rpi4/
:|F|: plat/rpi/common/
:|F|: drivers/rpi3/
:|F|: include/drivers/rpi3/
Renesas rcar-gen3 platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Jorge Ramirez-Ortiz <jramirez@baylibre.com>
:|G|: `ldts`_
:|M|: Marek Vasut <marek.vasut@gmail.com>
:|G|: `marex`_
:|F|: docs/plat/rcar-gen3.rst
:|F|: plat/renesas/common
:|F|: plat/renesas/rcar
:|F|: drivers/renesas/common
:|F|: drivers/renesas/rcar
:|F|: tools/renesas/rcar_layout_create
Renesas RZ/G2 platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Biju Das <biju.das.jz@bp.renesas.com>
:|G|: `bijucdas`_
:|M|: Marek Vasut <marek.vasut@gmail.com>
:|G|: `marex`_
:|M|: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>
:|G|: `prabhakarlad`_
:|F|: docs/plat/rz-g2.rst
:|F|: plat/renesas/common
:|F|: plat/renesas/rzg
:|F|: drivers/renesas/common
:|F|: drivers/renesas/rzg
:|F|: tools/renesas/rzg_layout_create
RockChip platform port
^^^^^^^^^^^^^^^^^^^^^^
:|M|: Tony Xie <tony.xie@rock-chips.com>
:|G|: `TonyXie06`_
:|G|: `rockchip-linux`_
:|M|: Heiko Stuebner <heiko@sntech.de>
:|G|: `mmind`_
:|M|: Julius Werner <jwerner@chromium.org>
:|G|: `jwerner-chromium`_
:|F|: plat/rockchip/
STM32MP1 platform port
^^^^^^^^^^^^^^^^^^^^^^
:|M|: Yann Gautier <yann.gautier@st.com>
:|G|: `Yann-lms`_
:|F|: docs/plat/stm32mp1.rst
:|F|: drivers/st/
:|F|: fdts/stm32\*
:|F|: include/drivers/st/
:|F|: include/dt-bindings/\*/stm32\*
:|F|: plat/st/
:|F|: tools/stm32image/
Synquacer platform port
^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Sumit Garg <sumit.garg@linaro.org>
:|G|: `b49020`_
:|F|: docs/plat/synquacer.rst
:|F|: plat/socionext/synquacer/
Texas Instruments platform port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Nishanth Menon <nm@ti.com>
:|G|: `nmenon`_
:|F|: docs/plat/ti-k3.rst
:|F|: plat/ti/
UniPhier platform port
^^^^^^^^^^^^^^^^^^^^^^
:|M|: Orphan
:|F|: docs/plat/socionext-uniphier.rst
:|F|: plat/socionext/uniphier/
Xilinx platform port
^^^^^^^^^^^^^^^^^^^^
:|M|: Michal Simek <michal.simek@xilinx.com>
:|G|: `michalsimek`_
:|M|: Venkatesh Yadav Abbarapu <venkatesh.abbarapu@xilinx.com>
:|G|: `venkatesh`_
:|F|: docs/plat/xilinx-zynqmp.rst
:|F|: plat/xilinx/
Secure Payloads and Dispatchers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
OP-TEE dispatcher
^^^^^^^^^^^^^^^^^
:|M|: Jens Wiklander <jens.wiklander@linaro.org>
:|G|: `jenswi-linaro`_
:|F|: docs/components/spd/optee-dispatcher.rst
:|F|: services/spd/opteed/
TLK/Trusty secure payloads
^^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Varun Wadekar <vwadekar@nvidia.com>
:|G|: `vwadekar`_
:|F|: docs/components/spd/tlk-dispatcher.rst
:|F|: docs/components/spd/trusty-dispatcher.rst
:|F|: include/bl32/payloads/tlk.h
:|F|: services/spd/tlkd/
:|F|: services/spd/trusty/
Test Secure Payload (TSP)
^^^^^^^^^^^^^^^^^^^^^^^^^
:|M|: Manish Badarkhe <manish.badarkhe@arm.com>
:|G|: `ManishVB-Arm`_
:|F|: bl32/tsp/
:|F|: services/spd/tspd/
Tools
~~~~~
Fiptool
^^^^^^^
:|M|: Joao Alves <Joao.Alves@arm.com>
:|G|: `J-Alves`_
:|F|: tools/fiptool/
Cert_create tool
^^^^^^^^^^^^^^^^
:|M|: Sandrine Bailleux <sandrine.bailleux@arm.com>
:|G|: `sandrine-bailleux-arm`_
:|F|: tools/cert_create/
Encrypt_fw tool
^^^^^^^^^^^^^^^
:|M|: Sumit Garg <sumit.garg@linaro.org>
:|G|: `b49020`_
:|F|: tools/encrypt_fw/
Sptool
^^^^^^
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|F|: tools/sptool/
Build system
^^^^^^^^^^^^
:|M|: Manish Pandey <manish.pandey2@arm.com>
:|G|: `manish-pandey-arm`_
:|F|: Makefile
:|F|: make_helpers/
Threat Model
~~~~~~~~~~~~~
:|M|: Zelalem Aweke <Zelalem.Aweke@arm.com>
:|G|: `zelalem-aweke`_
:|M|: Sandrine Bailleux <sandrine.bailleux@arm.com>
:|G|: `sandrine-bailleux-arm`_
:|M|: Joanna Farley <joanna.farley@arm.com>
:|G|: `joannafarley-arm`_
:|M|: Raghu Krishnamurthy <raghu.ncstate@icloud.com>
:|G|: `raghuncstate`_
:|M|: Varun Wadekar <vwadekar@nvidia.com>
:|G|: `vwadekar`_
:|F|: docs/threat_model/
Conventional Changelog Extensions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:|M|: Chris Kay <chris.kay@arm.com>
:|G|: `CJKay`_
:|F|: tools/conventional-changelog-tf-a
.. _AlexeiFedorov: https://github.com/AlexeiFedorov
.. _Andre-ARM: https://github.com/Andre-ARM
.. _Anson-Huang: https://github.com/Anson-Huang
.. _bijucdas: https://github.com/bijucdas
.. _bryanodonoghue: https://github.com/bryanodonoghue
.. _b49020: https://github.com/b49020
.. _carlocaione: https://github.com/carlocaione
.. _danh-arm: https://github.com/danh-arm
.. _etienne-lms: https://github.com/etienne-lms
.. _glneo: https://github.com/glneo
.. _grandpaul: https://github.com/grandpaul
.. _hzhuang1: https://github.com/hzhuang1
.. _JackyBai: https://github.com/JackyBai
.. _jenswi-linaro: https://github.com/jenswi-linaro
.. _jwerner-chromium: https://github.com/jwerner-chromium
.. _kostapr: https://github.com/kostapr
.. _lachitp: https://github.com/lachitp
.. _ldts: https://github.com/ldts
.. _marex: https://github.com/marex
.. _masahir0y: https://github.com/masahir0y
.. _michalsimek: https://github.com/michalsimek
.. _mmind: https://github.com/mmind
.. _MrVan: https://github.com/MrVan
.. _mtk-rex-bc-chen: https://github.com/mtk-rex-bc-chen
.. _leon-chen-mtk: https://github.com/leon-chen-mtk
.. _niej: https://github.com/niej
.. _npoushin: https://github.com/npoushin
.. _prabhakarlad: https://github.com/prabhakarlad
.. _remi-triplefault: https://github.com/repk
.. _rockchip-linux: https://github.com/rockchip-linux
.. _sandrine-bailleux-arm: https://github.com/sandrine-bailleux-arm
.. _sgorecha: https://github.com/sgorecha
.. _shawnguo2: https://github.com/shawnguo2
.. _smaeul: https://github.com/smaeul
.. _soby-mathew: https://github.com/soby-mathew
.. _sreekare: https://github.com/sreekare
.. _stephan-gh: https://github.com/stephan-gh
.. _thloh85-intel: https://github.com/thloh85-intel
.. _thomas-arm: https://github.com/thomas-arm
.. _TonyXie06: https://github.com/TonyXie06
.. _TravMurav: https://github.com/TravMurav
.. _vwadekar: https://github.com/vwadekar
.. _venkatesh: https://github.com/vabbarap
.. _Yann-lms: https://github.com/Yann-lms
.. _manish-pandey-arm: https://github.com/manish-pandey-arm
.. _mardyk01: https://github.com/mardyk01
.. _odeprez: https://github.com/odeprez
.. _bipinravi-arm: https://github.com/bipinravi-arm
.. _joannafarley-arm: https://github.com/joannafarley-arm
.. _ManishVB-Arm: https://github.com/ManishVB-Arm
.. _max-shvetsov: https://github.com/max-shvetsov
.. _javieralso-arm: https://github.com/javieralso-arm
.. _laurenw-arm: https://github.com/laurenw-arm
.. _zelalem-aweke: https://github.com/zelalem-aweke
.. _theotherjimmy: https://github.com/theotherjimmy
.. _J-Alves: https://github.com/J-Alves
.. _madhukar-Arm: https://github.com/madhukar-Arm
.. _john-powell-arm: https://github.com/john-powell-arm
.. _raghuncstate: https://github.com/raghuncstate
.. _CJKay: https://github.com/cjkay
.. _nmenon: https://github.com/nmenon
.. _manojkumar-arm: https://github.com/manojkumar-arm
.. _chandnich: https://github.com/chandnich
.. _abdellatif-elkhlifi: https://github.com/abdellatif-elkhlifi
.. _vishnu-banavath: https://github.com/vishnu-banavath
.. _vijayenthiran-arm: https://github.com/vijayenthiran-arm
.. _arugan02: https://github.com/arugan02
.. _uarif1: https://github.com/uarif1
.. _pangupta: https://github.com/pangupta
.. _JiafeiPan: https://github.com/JiafeiPan
.. _Project Maintenance Process: https://developer.trustedfirmware.org/w/collaboration/project-maintenance-process/

View File

@@ -0,0 +1,71 @@
Release Processes
=================
Project Release Cadence
-----------------------
The project currently aims to do a release once every 6 months which will be
tagged on the master branch. There will be a code freeze (stop merging
non-essential changes) up to 4 weeks prior to the target release date. The release
candidates will start appearing after this and only bug fixes or updates
required for the release will be merged. The maintainers are free to use their
judgement on what changes are essential for the release. A release branch may be
created after code freeze if there are significant changes that need merging onto
the integration branch during the merge window.
The release testing will be performed on release candidates and depending on
issues found, additional release candidates may be created to fix the issues.
::
|<----------6 months---------->|
|<---4 weeks--->| |<---4 weeks--->|
+-----------------------------------------------------------> time
| | | |
code freeze ver w.x code freeze ver y.z
Upcoming Releases
~~~~~~~~~~~~~~~~~
These are the estimated dates for the upcoming release. These may change
depending on project requirement and partner feedback.
+-----------------+---------------------------+------------------------------+
| Release Version | Target Date | Expected Code Freeze |
+=================+===========================+==============================+
| v2.0 | 1st week of Oct '18 | 1st week of Sep '18 |
+-----------------+---------------------------+------------------------------+
| v2.1 | 5th week of Mar '19 | 1st week of Mar '19 |
+-----------------+---------------------------+------------------------------+
| v2.2 | 4th week of Oct '19 | 1st week of Oct '19 |
+-----------------+---------------------------+------------------------------+
| v2.3 | 4th week of Apr '20 | 1st week of Apr '20 |
+-----------------+---------------------------+------------------------------+
| v2.4 | 2nd week of Nov '20 | 4th week of Oct '20 |
+-----------------+---------------------------+------------------------------+
| v2.5 | 3rd week of May '21 | 5th week of Apr '21 |
+-----------------+---------------------------+------------------------------+
| v2.6 | 4th week of Nov '21 | 2nd week of Nov '21 |
+-----------------+---------------------------+------------------------------+
| v2.7 | 2nd week of May '22 | 4th week of Apr '22 |
+-----------------+---------------------------+------------------------------+
Removal of Deprecated Interfaces
--------------------------------
As mentioned in the :ref:`Platform Compatibility Policy`, this is a live
document cataloging all the deprecated interfaces in TF-A project and the
Release version after which it will be removed.
+--------------------------------+-------------+---------+---------------------------------------------------------+
| Interface | Deprecation | Removed | Comments |
| | Date | after | |
| | | Release | |
+================================+=============+=========+=========================================================+
| STM32MP_USE_STM32IMAGE macro | Dec '21 | 2.7 | FIP is the recommended boot method for STM32MP |
+--------------------------------+-------------+---------+---------------------------------------------------------+
--------------
*Copyright (c) 2018-2021, Arm Limited and Contributors. All rights reserved.*

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,34 @@
Activity Monitors
=================
FEAT_AMUv1 of the Armv8-A architecture introduces the Activity Monitors
extension. This extension describes the architecture for the Activity Monitor
Unit (|AMU|), an optional non-invasive component for monitoring core events
through a set of 64-bit counters.
When the ``ENABLE_AMU=1`` build option is provided, Trusted Firmware-A sets up
the |AMU| prior to its exit from EL3, and will save and restore architected
|AMU| counters as necessary upon suspend and resume.
.. _Activity Monitor Auxiliary Counters:
Auxiliary counters
------------------
FEAT_AMUv1 describes a set of implementation-defined auxiliary counters (also
known as group 1 counters), controlled by the ``ENABLE_AMU_AUXILIARY_COUNTERS``
build option.
As a security precaution, Trusted Firmware-A does not enable these by default.
Instead, platforms may configure their auxiliary counters through one of two
possible mechanisms:
- |FCONF|, controlled by the ``ENABLE_AMU_FCONF`` build option.
- A platform implementation of the ``plat_amu_topology`` function (the default).
See :ref:`Activity Monitor Unit (AMU) Bindings` for documentation on the |FCONF|
device tree bindings.
--------------
*Copyright (c) 2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,435 @@
Arm SiP Services
================
This document enumerates and describes the Arm SiP (Silicon Provider) services.
SiP services are non-standard, platform-specific services offered by the silicon
implementer or platform provider. They are accessed via ``SMC`` ("SMC calls")
instruction executed from Exception Levels below EL3. SMC calls for SiP
services:
- Follow `SMC Calling Convention`_;
- Use SMC function IDs that fall in the SiP range, which are ``0xc2000000`` -
``0xc200ffff`` for 64-bit calls, and ``0x82000000`` - ``0x8200ffff`` for 32-bit
calls.
The Arm SiP implementation offers the following services:
- Performance Measurement Framework (PMF)
- Execution State Switching service
- DebugFS interface
Source definitions for Arm SiP service are located in the ``arm_sip_svc.h`` header
file.
Performance Measurement Framework (PMF)
---------------------------------------
The :ref:`Performance Measurement Framework <firmware_design_pmf>`
allows callers to retrieve timestamps captured at various paths in TF-A
execution.
Execution State Switching service
---------------------------------
Execution State Switching service provides a mechanism for a non-secure lower
Exception Level (either EL2, or NS EL1 if EL2 isn't implemented) to request to
switch its execution state (a.k.a. Register Width), either from AArch64 to
AArch32, or from AArch32 to AArch64, for the calling CPU. This service is only
available when Trusted Firmware-A (TF-A) is built for AArch64 (i.e. when build
option ``ARCH`` is set to ``aarch64``).
``ARM_SIP_SVC_EXE_STATE_SWITCH``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t Function ID
uint32_t PC hi
uint32_t PC lo
uint32_t Cookie hi
uint32_t Cookie lo
Return:
uint32_t
The function ID parameter must be ``0x82000020``. It uniquely identifies the
Execution State Switching service being requested.
The parameters *PC hi* and *PC lo* defines upper and lower words, respectively,
of the entry point (physical address) at which execution should start, after
Execution State has been switched. When calling from AArch64, *PC hi* must be 0.
When execution starts at the supplied entry point after Execution State has been
switched, the parameters *Cookie hi* and *Cookie lo* are passed in CPU registers
0 and 1, respectively. When calling from AArch64, *Cookie hi* must be 0.
This call can only be made on the primary CPU, before any secondaries were
brought up with ``CPU_ON`` PSCI call. Otherwise, the call will always fail.
The effect of switching execution state is as if the Exception Level were
entered for the first time, following power on. This means CPU registers that
have a defined reset value by the Architecture will assume that value. Other
registers should not be expected to hold their values before the call was made.
CPU endianness, however, is preserved from the previous execution state. Note
that this switches the execution state of the calling CPU only. This is not a
substitute for PSCI ``SYSTEM_RESET``.
The service may return the following error codes:
- ``STATE_SW_E_PARAM``: If any of the parameters were deemed invalid for
a specific request.
- ``STATE_SW_E_DENIED``: If the call is not successful, or when TF-A is
built for AArch32.
If the call is successful, the caller wouldn't observe the SMC returning.
Instead, execution starts at the supplied entry point, with the CPU registers 0
and 1 populated with the supplied *Cookie hi* and *Cookie lo* values,
respectively.
DebugFS interface
-----------------
The optional DebugFS interface is accessed through an SMC SiP service. Refer
to the component documentation for details.
String parameters are passed through a shared buffer using a specific union:
.. code:: c
union debugfs_parms {
struct {
char fname[MAX_PATH_LEN];
} open;
struct mount {
char srv[MAX_PATH_LEN];
char where[MAX_PATH_LEN];
char spec[MAX_PATH_LEN];
} mount;
struct {
char path[MAX_PATH_LEN];
dir_t dir;
} stat;
struct {
char oldpath[MAX_PATH_LEN];
char newpath[MAX_PATH_LEN];
} bind;
};
Format of the dir_t structure as such:
.. code:: c
typedef struct {
char name[NAMELEN];
long length;
unsigned char mode;
unsigned char index;
unsigned char dev;
qid_t qid;
} dir_t;
* Identifiers
======================== =============================================
SMC_OK 0
SMC_UNK -1
DEBUGFS_E_INVALID_PARAMS -2
======================== =============================================
======================== =============================================
MOUNT 0
CREATE 1
OPEN 2
CLOSE 3
READ 4
WRITE 5
SEEK 6
BIND 7
STAT 8
INIT 10
VERSION 11
======================== =============================================
MOUNT
~~~~~
Description
^^^^^^^^^^^
This operation mounts a blob of data pointed to by path stored in `src`, at
filesystem location pointed to by path stored in `where`, using driver pointed
to by path in `spec`.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``MOUNT``
======== ============================================================
Return values
^^^^^^^^^^^^^
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if mount operation failed
=============== ==========================================================
OPEN
~~~~
Description
^^^^^^^^^^^
This operation opens the file path pointed to by `fname`.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``OPEN``
uint32_t mode
======== ============================================================
mode can be one of:
.. code:: c
enum mode {
O_READ = 1 << 0,
O_WRITE = 1 << 1,
O_RDWR = 1 << 2,
O_BIND = 1 << 3,
O_DIR = 1 << 4,
O_STAT = 1 << 5
};
Return values
^^^^^^^^^^^^^
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if open operation failed
uint32_t w1: file descriptor id on success.
=============== ==========================================================
CLOSE
~~~~~
Description
^^^^^^^^^^^
This operation closes a file described by a file descriptor obtained by a
previous call to OPEN.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``CLOSE``
uint32_t File descriptor id returned by OPEN
======== ============================================================
Return values
^^^^^^^^^^^^^
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if close operation failed
=============== ==========================================================
READ
~~~~
Description
^^^^^^^^^^^
This operation reads a number of bytes from a file descriptor obtained by
a previous call to OPEN.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``READ``
uint32_t File descriptor id returned by OPEN
uint32_t Number of bytes to read
======== ============================================================
Return values
^^^^^^^^^^^^^
On success, the read data is retrieved from the shared buffer after the
operation.
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if read operation failed
uint32_t w1: number of bytes read on success.
=============== ==========================================================
SEEK
~~~~
Description
^^^^^^^^^^^
Move file pointer for file described by given `file descriptor` of given
`offset` related to `whence`.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``SEEK``
uint32_t File descriptor id returned by OPEN
sint32_t offset in the file relative to whence
uint32_t whence
======== ============================================================
whence can be one of:
========= ============================================================
KSEEK_SET 0
KSEEK_CUR 1
KSEEK_END 2
========= ============================================================
Return values
^^^^^^^^^^^^^
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if seek operation failed
=============== ==========================================================
BIND
~~~~
Description
^^^^^^^^^^^
Create a link from `oldpath` to `newpath`.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``BIND``
======== ============================================================
Return values
^^^^^^^^^^^^^
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if bind operation failed
=============== ==========================================================
STAT
~~~~
Description
^^^^^^^^^^^
Perform a stat operation on provided file `name` and returns the directory
entry statistics into `dir`.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``STAT``
======== ============================================================
Return values
^^^^^^^^^^^^^
=============== ==========================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if stat operation failed
=============== ==========================================================
INIT
~~~~
Description
^^^^^^^^^^^
Initial call to setup the shared exchange buffer. Notice if successful once,
subsequent calls fail after a first initialization. The caller maps the same
page frame in its virtual space and uses this buffer to exchange string
parameters with filesystem primitives.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``INIT``
uint64_t Physical address of the shared buffer.
======== ============================================================
Return values
^^^^^^^^^^^^^
=============== ======================================================
int32_t w0 == SMC_OK on success
w0 == DEBUGFS_E_INVALID_PARAMS if already initialized,
or internal error occurred.
=============== ======================================================
VERSION
~~~~~~~
Description
^^^^^^^^^^^
Returns the debugfs interface version if implemented in TF-A.
Parameters
^^^^^^^^^^
======== ============================================================
uint32_t FunctionID (0x82000030 / 0xC2000030)
uint32_t ``VERSION``
======== ============================================================
Return values
^^^^^^^^^^^^^
=============== ======================================================
int32_t w0 == SMC_OK on success
w0 == SMC_UNK if interface is not implemented
uint32_t w1: On success, debugfs interface version, 32 bits
value with major version number in upper 16 bits and
minor version in lower 16 bits.
=============== ======================================================
* CREATE(1) and WRITE (5) command identifiers are unimplemented and
return `SMC_UNK`.
--------------
*Copyright (c) 2017-2020, Arm Limited and Contributors. All rights reserved.*
.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest

View File

@@ -0,0 +1,332 @@
Chain of trust bindings
=======================
The device tree allows to describe the chain of trust with the help of
'cot' node which contain 'manifests' and 'images' as sub-nodes.
'manifests' and 'images' nodes contains number of sub-nodes (i.e. 'certificate'
and 'image' nodes) mentioning properties of the certificate and image respectively.
Also, device tree describes 'non-volatile-counters' node which contains number of
sub-nodes mentioning properties of all non-volatile-counters used in the chain of trust.
cot
------------------------------------------------------------------
This is root node which contains 'manifests' and 'images' as sub-nodes
Manifests and Certificate node bindings definition
----------------------------------------------------------------
- Manifests node
Description: Container of certificate nodes.
PROPERTIES
- compatible:
Usage: required
Value type: <string>
Definition: must be "arm, cert-descs"
- Certificate node
Description:
Describes certificate properties which are used
during the authentication process.
PROPERTIES
- root-certificate
Usage:
Required for the certificate with no parent.
In other words, certificates which are validated
using root of trust public key.
Value type: <boolean>
- image-id
Usage: Required for every certificate with unique id.
Value type: <u32>
- parent
Usage:
It refers to their parent image, which typically contains
information to authenticate the certificate.
This property is required for all non-root certificates.
This property is not required for root-certificates
as root-certificates are validated using root of trust
public key provided by platform.
Value type: <phandle>
- signing-key
Usage:
This property is used to refer public key node present in
parent certificate node and it is required property for all
non-root certificates which are authenticated using public-key
present in parent certificate.
This property is not required for root-certificates
as root-certificates are validated using root of trust
public key provided by platform.
Value type: <phandle>
- antirollback-counter
Usage:
This property is used by all certificates which are
protected against rollback attacks using a non-volatile
counter and it is an optional property.
This property is used to refer one of the non-volatile
counter sub-node present in 'non-volatile counters' node.
Value type: <phandle>
SUBNODES
- Description:
Hash and public key information present in the certificate
are shown by these nodes.
- public key node
Description: Provide public key information in the certificate.
PROPERTIES
- oid
Usage:
This property provides the Object ID of public key
provided in the certificate which the help of which
public key information can be extracted.
Value type: <string>
- hash node
Description: Provide the hash information in the certificate.
PROPERTIES
- oid
Usage:
This property provides the Object ID of hash provided in
the certificate which the help of which hash information
can be extracted.
Value type: <string>
Example:
.. code:: c
cot {
manifests {
compatible = "arm, cert-descs”
trusted-key-cert: trusted-key-cert {
root-certificate;
image-id = <TRUSTED_KEY_CERT_ID>;
antirollback-counter = <&trusted_nv_counter>;
trusted-world-pk: trusted-world-pk {
oid = TRUSTED_WORLD_PK_OID;
};
non-trusted-world-pk: non-trusted-world-pk {
oid = NON_TRUSTED_WORLD_PK_OID;
};
};
scp_fw_key_cert: scp_fw_key_cert {
image-id = <SCP_FW_KEY_CERT_ID>;
parent = <&trusted-key-cert>;
signing-key = <&trusted_world_pk>;
antirollback-counter = <&trusted_nv_counter>;
scp_fw_content_pk: scp_fw_content_pk {
oid = SCP_FW_CONTENT_CERT_PK_OID;
};
};
.
.
.
next-certificate {
};
};
};
Images and Image node bindings definition
-----------------------------------------
- Images node
Description: Container of image nodes
PROPERTIES
- compatible:
Usage: required
Value type: <string>
Definition: must be "arm, img-descs"
- Image node
Description:
Describes image properties which will be used during
authentication process.
PROPERTIES
- image-id
Usage: Required for every image with unique id.
Value type: <u32>
- parent
Usage:
Required for every image to provide a reference to
its parent image, which contains the necessary information
to authenticate it.
Value type: <phandle>
- hash
Usage:
Required for all images which are validated using
hash method. This property is used to refer hash
node present in parent certificate node.
Value type: <phandle>
Note:
Currently, all images are validated using 'hash'
method. In future, there may be multiple methods can
be used to validate the image.
Example:
.. code:: c
cot {
images {
compatible = "arm, img-descs";
scp_bl2_image {
image-id = <SCP_BL2_IMAGE_ID>;
parent = <&scp_fw_content_cert>;
hash = <&scp_fw_hash>;
};
.
.
.
next-img {
};
};
};
non-volatile counter node binding definition
--------------------------------------------
- non-volatile counters node
Description: Contains properties for non-volatile counters.
PROPERTIES
- compatible:
Usage: required
Value type: <string>
Definition: must be "arm, non-volatile-counter"
- #address-cells
Usage: required
Value type: <u32>
Definition:
Must be set according to address size
of non-volatile counter register
- #size-cells
Usage: required
Value type: <u32>
Definition: must be set to 0
SUBNODE
- counters node
Description: Contains various non-volatile counters present in the platform.
PROPERTIES
- id
Usage: Required for every nv-counter with unique id.
Value type: <u32>
- reg
Usage:
Register base address of non-volatile counter and it is required
property.
Value type: <u32>
- oid
Usage:
This property provides the Object ID of non-volatile counter
provided in the certificate and it is required property.
Value type: <string>
Example:
Below is non-volatile counters example for ARM platform
.. code:: c
non_volatile_counters: non_volatile_counters {
compatible = "arm, non-volatile-counter";
#address-cells = <1>;
#size-cells = <0>;
trusted-nv-counter: trusted_nv_counter {
id = <TRUSTED_NV_CTR_ID>;
reg = <TFW_NVCTR_BASE>;
oid = TRUSTED_FW_NVCOUNTER_OID;
};
non_trusted_nv_counter: non_trusted_nv_counter {
id = <NON_TRUSTED_NV_CTR_ID>;
reg = <NTFW_CTR_BASE>;
oid = NON_TRUSTED_FW_NVCOUNTER_OID;
};
};
Future update to chain of trust binding
---------------------------------------
This binding document needs to be revisited to generalise some terminologies
which are currently specific to X.509 certificates for e.g. Object IDs.
*Copyright (c) 2020, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,125 @@
========
Debug FS
========
.. contents::
Overview
--------
The *DebugFS* feature is primarily aimed at exposing firmware debug data to
higher SW layers such as a non-secure component. Such component can be the
TFTF test payload or a Linux kernel module.
Virtual filesystem
------------------
The core functionality lies in a virtual file system based on a 9p file server
interface (`Notes on the Plan 9 Kernel Source`_ and
`Linux 9p remote filesystem protocol`_).
The implementation permits exposing virtual files, firmware drivers, and file blobs.
Namespace
~~~~~~~~~
Two namespaces are exposed:
- # is used as root for drivers (e.g. #t0 is the first uart)
- / is used as root for virtual "files" (e.g. /fip, or /dev/uart)
9p interface
~~~~~~~~~~~~
The associated primitives are:
- Unix-like:
- open(): create a file descriptor that acts as a handle to the file passed as
an argument.
- close(): close the file descriptor created by open().
- read(): read from a file to a buffer.
- write(): write from a buffer to a file.
- seek(): set the file position indicator of a file descriptor either to a
relative or an absolute offset.
- stat(): get information about a file (type, mode, size, ...).
.. code:: c
int open(const char *name, int flags);
int close(int fd);
int read(int fd, void *buf, int n);
int write(int fd, void *buf, int n);
int seek(int fd, long off, int whence);
int stat(char *path, dir_t *dir);
- Specific primitives :
- mount(): create a link between a driver and spec.
- create(): create a file in a specific location.
- bind(): expose the content of a directory to another directory.
.. code:: c
int mount(char *srv, char *mnt, char *spec);
int create(const char *name, int flags);
int bind(char *path, char *where);
This interface is embedded into the BL31 run-time payload when selected by build
options. The interface multiplexes drivers or emulated "files":
- Debug data can be partitioned into different virtual files e.g. expose PMF
measurements through a file, and internal firmware state counters through
another file.
- This permits direct access to a firmware driver, mainly for test purposes
(e.g. a hardware device that may not be accessible to non-privileged/
non-secure layers, or for which no support exists in the NS side).
SMC interface
-------------
The communication with the 9p layer in BL31 is made through an SMC conduit
(`SMC Calling Convention`_), using a specific SiP Function Id. An NS
shared buffer is used to pass path string parameters, or e.g. to exchange
data on a read operation. Refer to :ref:`ARM SiP Services <arm sip services>`
for a description of the SMC interface.
Security considerations
-----------------------
- Due to the nature of the exposed data, the feature is considered experimental
and importantly **shall only be used in debug builds**.
- Several primitive imply string manipulations and usage of string formats.
- Special care is taken with the shared buffer to avoid TOCTOU attacks.
Limitations
-----------
- In order to setup the shared buffer, the component consuming the interface
needs to allocate a physical page frame and transmit its address.
- In order to map the shared buffer, BL31 requires enabling the dynamic xlat
table option.
- Data exchange is limited by the shared buffer length. A large read operation
might be split into multiple read operations of smaller chunks.
- On concurrent access, a spinlock is implemented in the BL31 service to protect
the internal work buffer, and re-entrancy into the filesystem layers.
- Notice, a physical device driver if exposed by the firmware may conflict with
the higher level OS if the latter implements its own driver for the same
physical device.
Applications
------------
The SMC interface is accessible from an NS environment, that is:
- a test payload, bootloader or hypervisor running at NS-EL2
- a Linux kernel driver running at NS-EL1
- a Linux userspace application through the kernel driver
--------------
*Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.*
.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest
.. _Notes on the Plan 9 Kernel Source: http://lsub.org/who/nemo/9.pdf
.. _Linux 9p remote filesystem protocol: https://www.kernel.org/doc/Documentation/filesystems/9p.txt
.. _ARM SiP Services: arm-sip-service.rst

View File

@@ -0,0 +1,619 @@
Exception Handling Framework
============================
This document describes various aspects of handling exceptions by Runtime
Firmware (BL31) that are targeted at EL3, other than SMCs. The |EHF| takes care
of the following exceptions when targeted at EL3:
- Interrupts
- Synchronous External Aborts
- Asynchronous External Aborts
|TF-A|'s handling of synchronous ``SMC`` exceptions raised from lower ELs is
described in the :ref:`Firmware Design document <handling-an-smc>`. However, the
|EHF| changes the semantics of `Interrupt handling`_ and :ref:`synchronous
exceptions <Effect on SMC calls>` other than SMCs.
The |EHF| is selected by setting the build option ``EL3_EXCEPTION_HANDLING`` to
``1``, and is only available for AArch64 systems.
Introduction
------------
Through various control bits in the ``SCR_EL3`` register, the Arm architecture
allows for asynchronous exceptions to be routed to EL3. As described in the
:ref:`Interrupt Management Framework` document, depending on the chosen
interrupt routing model, TF-A appropriately sets the ``FIQ`` and ``IRQ`` bits of
``SCR_EL3`` register to effect this routing. For most use cases, other than for
the purpose of facilitating context switch between Normal and Secure worlds,
FIQs and IRQs routed to EL3 are not required to be handled in EL3.
However, the evolving system and standards landscape demands that various
exceptions are targeted at and handled in EL3. For instance:
- Starting with ARMv8.2 architecture extension, many RAS features have been
introduced to the Arm architecture. With RAS features implemented, various
components of the system may use one of the asynchronous exceptions to signal
error conditions to PEs. These error conditions are of critical nature, and
it's imperative that corrective or remedial actions are taken at the earliest
opportunity. Therefore, a *Firmware-first Handling* approach is generally
followed in response to RAS events in the system.
- The Arm `SDEI specification`_ defines interfaces through which Normal world
interacts with the Runtime Firmware in order to request notification of
system events. The |SDEI| specification requires that these events are
notified even when the Normal world executes with the exceptions masked. This
too implies that firmware-first handling is required, where the events are
first received by the EL3 firmware, and then dispatched to Normal world
through purely software mechanism.
For |TF-A|, firmware-first handling means that asynchronous exceptions are
suitably routed to EL3, and the Runtime Firmware (BL31) is extended to include
software components that are capable of handling those exceptions that target
EL3. These components—referred to as *dispatchers* [#spd]_ in general—may
choose to:
.. _delegation-use-cases:
- Receive and handle exceptions entirely in EL3, meaning the exceptions
handling terminates in EL3.
- Receive exceptions, but handle part of the exception in EL3, and delegate the
rest of the handling to a dedicated software stack running at lower Secure
ELs. In this scheme, the handling spans various secure ELs.
- Receive exceptions, but handle part of the exception in EL3, and delegate
processing of the error to dedicated software stack running at lower secure
ELs (as above); additionally, the Normal world may also be required to
participate in the handling, or be notified of such events (for example, as
an |SDEI| event). In this scheme, exception handling potentially and
maximally spans all ELs in both Secure and Normal worlds.
On any given system, all of the above handling models may be employed
independently depending on platform choice and the nature of the exception
received.
.. [#spd] Not to be confused with :ref:`Secure Payload Dispatcher
<firmware_design_sel1_spd>`, which is an EL3 component that operates in EL3
on behalf of Secure OS.
The role of Exception Handling Framework
----------------------------------------
Corollary to the use cases cited above, the primary role of the |EHF| is to
facilitate firmware-first handling of exceptions on Arm systems. The |EHF| thus
enables multiple exception dispatchers in runtime firmware to co-exist, register
for, and handle exceptions targeted at EL3. This section outlines the basics,
and the rest of this document expands the various aspects of the |EHF|.
In order to arbitrate exception handling among dispatchers, the |EHF| operation
is based on a priority scheme. This priority scheme is closely tied to how the
Arm GIC architecture defines it, although it's applied to non-interrupt
exceptions too (SErrors, for example).
The platform is required to `partition`__ the Secure priority space into
priority levels as applicable for the Secure software stack. It then assigns the
dispatchers to one or more priority levels. The dispatchers then register
handlers for the priority levels at runtime. A dispatcher can register handlers
for more than one priority level.
.. __: `Partitioning priority levels`_
.. _ehf-figure:
.. image:: ../resources/diagrams/draw.io/ehf.svg
A priority level is *active* when a handler at that priority level is currently
executing in EL3, or has delegated the execution to a lower EL. For interrupts,
this is implicit when an interrupt is targeted and acknowledged at EL3, and the
priority of the acknowledged interrupt is used to match its registered handler.
The priority level is likewise implicitly deactivated when the interrupt
handling concludes by EOIing the interrupt.
Non-interrupt exceptions (SErrors, for example) don't have a notion of priority.
In order for the priority arbitration to work, the |EHF| provides APIs in order
for these non-interrupt exceptions to assume a priority, and to interwork with
interrupts. Dispatchers handling such exceptions must therefore explicitly
activate and deactivate the respective priority level as and when they're
handled or delegated.
Because priority activation and deactivation for interrupt handling is implicit
and involves GIC priority masking, it's impossible for a lower priority
interrupt to preempt a higher priority one. By extension, this means that a
lower priority dispatcher cannot preempt a higher-priority one. Priority
activation and deactivation for non-interrupt exceptions, however, has to be
explicit. The |EHF| therefore disallows for lower priority level to be activated
whilst a higher priority level is active, and would result in a panic.
Likewise, a panic would result if it's attempted to deactivate a lower priority
level when a higher priority level is active.
In essence, priority level activation and deactivation conceptually works like a
stack—priority levels stack up in strictly increasing fashion, and need to be
unstacked in strictly the reverse order. For interrupts, the GIC ensures this is
the case; for non-interrupts, the |EHF| monitors and asserts this. See
`Transition of priority levels`_.
.. _interrupt-handling:
Interrupt handling
------------------
The |EHF| is a client of *Interrupt Management Framework*, and registers the
top-level handler for interrupts that target EL3, as described in the
:ref:`Interrupt Management Framework` document. This has the following
implications:
- On GICv3 systems, when executing in S-EL1, pending Non-secure interrupts of
sufficient priority are signalled as FIQs, and therefore will be routed to
EL3. As a result, S-EL1 software cannot expect to handle Non-secure
interrupts at S-EL1. Essentially, this deprecates the routing mode described
as :ref:`CSS=0, TEL3=0 <EL3 interrupts>`.
In order for S-EL1 software to handle Non-secure interrupts while having
|EHF| enabled, the dispatcher must adopt a model where Non-secure interrupts
are received at EL3, but are then :ref:`synchronously <sp-synchronous-int>`
handled over to S-EL1.
- On GICv2 systems, it's required that the build option ``GICV2_G0_FOR_EL3`` is
set to ``1`` so that *Group 0* interrupts target EL3.
- While executing in Secure world, |EHF| sets GIC Priority Mask Register to the
lowest Secure priority. This means that no Non-secure interrupts can preempt
Secure execution. See `Effect on SMC calls`_ for more details.
As mentioned above, with |EHF|, the platform is required to partition *Group 0*
interrupts into distinct priority levels. A dispatcher that chooses to receive
interrupts can then *own* one or more priority levels, and register interrupt
handlers for them. A given priority level can be assigned to only one handler. A
dispatcher may register more than one priority level.
Dispatchers are assigned interrupt priority levels in two steps:
.. _Partitioning priority levels:
Partitioning priority levels
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Interrupts are associated to dispatchers by way of grouping and assigning
interrupts to a priority level. In other words, all interrupts that are to
target a particular dispatcher should fall in a particular priority level. For
priority assignment:
- Of the 8 bits of priority that Arm GIC architecture permits, bit 7 must be 0
(secure space).
- Depending on the number of dispatchers to support, the platform must choose
to use the top *n* of the 7 remaining bits to identify and assign interrupts
to individual dispatchers. Choosing *n* bits supports up to 2\ :sup:`n`
distinct dispatchers. For example, by choosing 2 additional bits (i.e., bits
6 and 5), the platform can partition into 4 secure priority ranges: ``0x0``,
``0x20``, ``0x40``, and ``0x60``. See `Interrupt handling example`_.
.. note::
The Arm GIC architecture requires that a GIC implementation that supports two
security states must implement at least 32 priority levels; i.e., at least 5
upper bits of the 8 bits are writeable. In the scheme described above, when
choosing *n* bits for priority range assignment, the platform must ensure
that at least ``n+1`` top bits of GIC priority are writeable.
The priority thus assigned to an interrupt is also used to determine the
priority of delegated execution in lower ELs. Delegated execution in lower EL is
associated with a priority level chosen with ``ehf_activate_priority()`` API
(described `later`__). The chosen priority level also determines the interrupts
masked while executing in a lower EL, therefore controls preemption of delegated
execution.
.. __: `ehf-apis`_
The platform expresses the chosen priority levels by declaring an array of
priority level descriptors. Each entry in the array is of type
``ehf_pri_desc_t``, and declares a priority level, and shall be populated by the
``EHF_PRI_DESC()`` macro.
.. warning::
The macro ``EHF_PRI_DESC()`` installs the descriptors in the array at a
computed index, and not necessarily where the macro is placed in the array.
The size of the array might therefore be larger than what it appears to be.
The ``ARRAY_SIZE()`` macro therefore should be used to determine the size of
array.
Finally, this array of descriptors is exposed to |EHF| via the
``EHF_REGISTER_PRIORITIES()`` macro.
Refer to the `Interrupt handling example`_ for usage. See also: `Interrupt
Prioritisation Considerations`_.
Programming priority
~~~~~~~~~~~~~~~~~~~~
The text in `Partitioning priority levels`_ only describes how the platform
expresses the required levels of priority. It however doesn't choose interrupts
nor program the required priority in GIC.
The :ref:`Firmware Design guide<configuring-secure-interrupts>` explains methods
for configuring secure interrupts. |EHF| requires the platform to enumerate
interrupt properties (as opposed to just numbers) of Secure interrupts. The
priority of secure interrupts must match that as determined in the
`Partitioning priority levels`_ section above.
See `Limitations`_, and also refer to `Interrupt handling example`_ for
illustration.
Registering handler
-------------------
Dispatchers register handlers for their priority levels through the following
API:
.. code:: c
int ehf_register_priority_handler(int pri, ehf_handler_t handler)
The API takes two arguments:
- The priority level for which the handler is being registered;
- The handler to be registered. The handler must be aligned to 4 bytes.
If a dispatcher owns more than one priority levels, it has to call the API for
each of them.
The API will succeed, and return ``0``, only if:
- There exists a descriptor with the priority level requested.
- There are no handlers already registered by a previous call to the API.
Otherwise, the API returns ``-1``.
The interrupt handler should have the following signature:
.. code:: c
typedef int (*ehf_handler_t)(uint32_t intr_raw, uint32_t flags, void *handle,
void *cookie);
The parameters are as obtained from the top-level :ref:`EL3 interrupt handler
<el3-runtime-firmware>`.
The :ref:`SDEI dispatcher<SDEI: Software Delegated Exception Interface>`, for
example, expects the platform to allocate two different priority levels—
``PLAT_SDEI_CRITICAL_PRI``, and ``PLAT_SDEI_NORMAL_PRI`` —and registers the
same handler to handle both levels.
Interrupt handling example
--------------------------
The following annotated snippet demonstrates how a platform might choose to
assign interrupts to fictitious dispatchers:
.. code:: c
#include <common/interrupt_props.h>
#include <drivers/arm/gic_common.h>
#include <exception_mgmt.h>
...
/*
* This platform uses 2 bits for interrupt association. In total, 3 upper
* bits are in use.
*
* 7 6 5 3 0
* .-.-.-.----------.
* |0|b|b| ..0.. |
* '-'-'-'----------'
*/
#define PLAT_PRI_BITS 2
/* Priorities for individual dispatchers */
#define DISP0_PRIO 0x00 /* Not used */
#define DISP1_PRIO 0x20
#define DISP2_PRIO 0x40
#define DISP3_PRIO 0x60
/* Install priority level descriptors for each dispatcher */
ehf_pri_desc_t plat_exceptions[] = {
EHF_PRI_DESC(PLAT_PRI_BITS, DISP1_PRIO),
EHF_PRI_DESC(PLAT_PRI_BITS, DISP2_PRIO),
EHF_PRI_DESC(PLAT_PRI_BITS, DISP3_PRIO),
};
/* Expose priority descriptors to Exception Handling Framework */
EHF_REGISTER_PRIORITIES(plat_exceptions, ARRAY_SIZE(plat_exceptions),
PLAT_PRI_BITS);
...
/* List interrupt properties for GIC driver. All interrupts target EL3 */
const interrupt_prop_t plat_interrupts[] = {
/* Dispatcher 1 owns interrupts d1_0 and d1_1, so assigns priority DISP1_PRIO */
INTR_PROP_DESC(d1_0, DISP1_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d1_1, DISP1_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
/* Dispatcher 2 owns interrupts d2_0 and d2_1, so assigns priority DISP2_PRIO */
INTR_PROP_DESC(d2_0, DISP2_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d2_1, DISP2_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
/* Dispatcher 3 owns interrupts d3_0 and d3_1, so assigns priority DISP3_PRIO */
INTR_PROP_DESC(d3_0, DISP3_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
INTR_PROP_DESC(d3_1, DISP3_PRIO, INTR_TYPE_EL3, GIC_INTR_CFG_LEVEL),
};
...
/* Dispatcher 1 registers its handler */
ehf_register_priority_handler(DISP1_PRIO, disp1_handler);
/* Dispatcher 2 registers its handler */
ehf_register_priority_handler(DISP2_PRIO, disp2_handler);
/* Dispatcher 3 registers its handler */
ehf_register_priority_handler(DISP3_PRIO, disp3_handler);
...
See also the `Build-time flow`_ and the `Run-time flow`_.
.. _Activating and Deactivating priorities:
Activating and Deactivating priorities
--------------------------------------
A priority level is said to be *active* when an exception of that priority is
being handled: for interrupts, this is implied when the interrupt is
acknowledged; for non-interrupt exceptions, such as SErrors or :ref:`SDEI
explicit dispatches <explicit-dispatch-of-events>`, this has to be done via
calling ``ehf_activate_priority()``. See `Run-time flow`_.
Conversely, when the dispatcher has reached a logical resolution for the cause
of the exception, the corresponding priority level ought to be deactivated. As
above, for interrupts, this is implied when the interrupt is EOId in the GIC;
for other exceptions, this has to be done via calling
``ehf_deactivate_priority()``.
Thanks to `different provisions`__ for exception delegation, there are
potentially more than one work flow for deactivation:
.. __: `delegation-use-cases`_
.. _deactivation workflows:
- The dispatcher has addressed the cause of the exception, and decided to take
no further action. In this case, the dispatcher's handler deactivates the
priority level before returning to the |EHF|. Runtime firmware, upon exit
through an ``ERET``, resumes execution before the interrupt occurred.
- The dispatcher has to delegate the execution to lower ELs, and the cause of
the exception can be considered resolved only when the lower EL returns
signals complete (via an ``SMC``) at a future point in time. The following
sequence ensues:
#. The dispatcher calls ``setjmp()`` to setup a jump point, and arranges to
enter a lower EL upon the next ``ERET``.
#. Through the ensuing ``ERET`` from runtime firmware, execution is delegated
to a lower EL.
#. The lower EL completes its execution, and signals completion via an
``SMC``.
#. The ``SMC`` is handled by the same dispatcher that handled the exception
previously. Noticing the conclusion of exception handling, the dispatcher
does ``longjmp()`` to resume beyond the previous jump point.
As mentioned above, the |EHF| provides the following APIs for activating and
deactivating interrupt:
.. _ehf-apis:
- ``ehf_activate_priority()`` activates the supplied priority level, but only
if the current active priority is higher than the given one; otherwise
panics. Also, to prevent interruption by physical interrupts of lower
priority, the |EHF| programs the *Priority Mask Register* corresponding to
the PE to the priority being activated. Dispatchers typically only need to
call this when handling exceptions other than interrupts, and it needs to
delegate execution to a lower EL at a desired priority level.
- ``ehf_deactivate_priority()`` deactivates a given priority, but only if the
current active priority is equal to the given one; otherwise panics. |EHF|
also restores the *Priority Mask Register* corresponding to the PE to the
priority before the call to ``ehf_activate_priority()``. Dispatchers
typically only need to call this after handling exceptions other than
interrupts.
The calling of APIs are subject to allowed `transitions`__. See also the
`Run-time flow`_.
.. __: `Transition of priority levels`_
Transition of priority levels
-----------------------------
The |EHF| APIs ``ehf_activate_priority()`` and ``ehf_deactivate_priority()`` can
be called to transition the current priority level on a PE. A given sequence of
calls to these APIs are subject to the following conditions:
- For activation, the |EHF| only allows for the priority to increase (i.e.
numeric value decreases);
- For deactivation, the |EHF| only allows for the priority to decrease (i.e.
numeric value increases). Additionally, the priority being deactivated is
required to be the current priority.
If these are violated, a panic will result.
.. _Effect on SMC calls:
Effect on SMC calls
-------------------
In general, Secure execution is regarded as more important than Non-secure
execution. As discussed elsewhere in this document, EL3 execution, and any
delegated execution thereafter, has the effect of raising GIC's priority
mask—either implicitly by acknowledging Secure interrupts, or when dispatchers
call ``ehf_activate_priority()``. As a result, Non-secure interrupts cannot
preempt any Secure execution.
SMCs from Non-secure world are synchronous exceptions, and are mechanisms for
Non-secure world to request Secure services. They're broadly classified as
*Fast* or *Yielding* (see `SMCCC`__).
.. __: https://developer.arm.com/docs/den0028/latest
- *Fast* SMCs are atomic from the caller's point of view. I.e., they return
to the caller only when the Secure world has finished serving the request.
Any Non-secure interrupts that become pending meanwhile cannot preempt Secure
execution.
- *Yielding* SMCs carry the semantics of a preemptible, lower-priority request.
A pending Non-secure interrupt can preempt Secure execution handling a
Yielding SMC. I.e., the caller might observe a Yielding SMC returning when
either:
#. Secure world completes the request, and the caller would find ``SMC_OK``
as the return code.
#. A Non-secure interrupt preempts Secure execution. Non-secure interrupt is
handled, and Non-secure execution resumes after ``SMC`` instruction.
The dispatcher handling a Yielding SMC must provide a different return code
to the Non-secure caller to distinguish the latter case. This return code,
however, is not standardised (unlike ``SMC_UNKNOWN`` or ``SMC_OK``, for
example), so will vary across dispatchers that handle the request.
For the latter case above, dispatchers before |EHF| expect Non-secure interrupts
to be taken to S-EL1 [#irq]_, so would get a chance to populate the designated
preempted error code before yielding to Non-secure world.
The introduction of |EHF| changes the behaviour as described in `Interrupt
handling`_.
When |EHF| is enabled, in order to allow Non-secure interrupts to preempt
Yielding SMC handling, the dispatcher must call ``ehf_allow_ns_preemption()``
API. The API takes one argument, the error code to be returned to the Non-secure
world upon getting preempted.
.. [#irq] In case of GICv2, Non-secure interrupts while in S-EL1 were signalled
as IRQs, and in case of GICv3, FIQs.
Build-time flow
---------------
Please refer to the `figure`__ above.
.. __: `ehf-figure`_
The build-time flow involves the following steps:
#. Platform assigns priorities by installing priority level descriptors for
individual dispatchers, as described in `Partitioning priority levels`_.
#. Platform provides interrupt properties to GIC driver, as described in
`Programming priority`_.
#. Dispatcher calling ``ehf_register_priority_handler()`` to register an
interrupt handler.
Also refer to the `Interrupt handling example`_.
Run-time flow
-------------
.. _interrupt-flow:
The following is an example flow for interrupts:
#. The GIC driver, during initialization, iterates through the platform-supplied
interrupt properties (see `Programming priority`_), and configures the
interrupts. This programs the appropriate priority and group (Group 0) on
interrupts belonging to different dispatchers.
#. The |EHF|, during its initialisation, registers a top-level interrupt handler
with the :ref:`Interrupt Management Framework<el3-runtime-firmware>` for EL3
interrupts. This also results in setting the routing bits in ``SCR_EL3``.
#. When an interrupt belonging to a dispatcher fires, GIC raises an EL3/Group 0
interrupt, and is taken to EL3.
#. The top-level EL3 interrupt handler executes. The handler acknowledges the
interrupt, reads its *Running Priority*, and from that, determines the
dispatcher handler.
#. The |EHF| programs the *Priority Mask Register* of the PE to the priority of
the interrupt received.
#. The |EHF| marks that priority level *active*, and jumps to the dispatcher
handler.
#. Once the dispatcher handler finishes its job, it has to immediately
*deactivate* the priority level before returning to the |EHF|. See
`deactivation workflows`_.
.. _non-interrupt-flow:
The following is an example flow for exceptions that targets EL3 other than
interrupt:
#. The platform provides handlers for the specific kind of exception.
#. The exception arrives, and the corresponding handler is executed.
#. The handler calls ``ehf_activate_priority()`` to activate the required
priority level. This also has the effect of raising GIC priority mask, thus
preventing interrupts of lower priority from preempting the handling. The
handler may choose to do the handling entirely in EL3 or delegate to a lower
EL.
#. Once exception handling concludes, the handler calls
``ehf_deactivate_priority()`` to deactivate the priority level activated
earlier. This also has the effect of lowering GIC priority mask to what it
was before.
Interrupt Prioritisation Considerations
---------------------------------------
The GIC priority scheme, by design, prioritises Secure interrupts over Normal
world ones. The platform further assigns relative priorities amongst Secure
dispatchers through |EHF|.
As mentioned in `Partitioning priority levels`_, interrupts targeting distinct
dispatchers fall in distinct priority levels. Because they're routed via the
GIC, interrupt delivery to the PE is subject to GIC prioritisation rules. In
particular, when an interrupt is being handled by the PE (i.e., the interrupt is
in *Active* state), only interrupts of higher priority are signalled to the PE,
even if interrupts of same or lower priority are pending. This has the side
effect of one dispatcher being starved of interrupts by virtue of another
dispatcher handling its (higher priority) interrupts.
The |EHF| doesn't enforce a particular prioritisation policy, but the platform
should carefully consider the assignment of priorities to dispatchers integrated
into runtime firmware. The platform should sensibly delineate priority to
various dispatchers according to their nature. In particular, dispatchers of
critical nature (RAS, for example) should be assigned higher priority than
others (|SDEI|, for example); and within |SDEI|, Critical priority
|SDEI| should be assigned higher priority than Normal ones.
Limitations
-----------
The |EHF| has the following limitations:
- Although there could be up to 128 Secure dispatchers supported by the GIC
priority scheme, the size of descriptor array exposed with
``EHF_REGISTER_PRIORITIES()`` macro is currently limited to 32. This serves most
expected use cases. This may be expanded in the future, should use cases
demand so.
- The platform must ensure that the priority assigned to the dispatcher in the
exception descriptor and the programmed priority of interrupts handled by the
dispatcher match. The |EHF| cannot verify that this has been followed.
--------------
*Copyright (c) 2018-2020, Arm Limited and Contributors. All rights reserved.*
.. _SDEI specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf

View File

@@ -0,0 +1,142 @@
Activity Monitor Unit (AMU) Bindings
====================================
To support platform-defined Activity Monitor Unit (|AMU|) auxiliary counters
through FCONF, the ``HW_CONFIG`` device tree accepts several |AMU|-specific
nodes and properties.
Bindings
^^^^^^^^
.. contents::
:local:
``/cpus/cpus/cpu*`` node properties
"""""""""""""""""""""""""""""""""""
The ``cpu`` node has been augmented to support a handle to an associated |AMU|
view, which should describe the counters offered by the core.
+---------------+-------+---------------+-------------------------------------+
| Property name | Usage | Value type | Description |
+===============+=======+===============+=====================================+
| ``amu`` | O | ``<phandle>`` | If present, indicates that an |AMU| |
| | | | is available and its counters are |
| | | | described by the node provided. |
+---------------+-------+---------------+-------------------------------------+
``/cpus/amus`` node properties
""""""""""""""""""""""""""""""
The ``amus`` node describes the |AMUs| implemented by the cores in the system.
This node does not have any properties.
``/cpus/amus/amu*`` node properties
"""""""""""""""""""""""""""""""""""
An ``amu`` node describes the layout and meaning of the auxiliary counter
registers of one or more |AMUs|, and may be shared by multiple cores.
+--------------------+-------+------------+------------------------------------+
| Property name | Usage | Value type | Description |
+====================+=======+============+====================================+
| ``#address-cells`` | R | ``<u32>`` | Value shall be 1. Specifies that |
| | | | the ``reg`` property array of |
| | | | children of this node uses a |
| | | | single cell. |
+--------------------+-------+------------+------------------------------------+
| ``#size-cells`` | R | ``<u32>`` | Value shall be 0. Specifies that |
| | | | no size is required in the ``reg`` |
| | | | property in children of this node. |
+--------------------+-------+------------+------------------------------------+
``/cpus/amus/amu*/counter*`` node properties
""""""""""""""""""""""""""""""""""""""""""""
A ``counter`` node describes an auxiliary counter belonging to the parent |AMU|
view.
+-------------------+-------+-------------+------------------------------------+
| Property name | Usage | Value type | Description |
+===================+=======+=============+====================================+
| ``reg`` | R | array | Represents the counter register |
| | | | index, and must be a single cell. |
+-------------------+-------+-------------+------------------------------------+
| ``enable-at-el3`` | O | ``<empty>`` | The presence of this property |
| | | | indicates that this counter should |
| | | | be enabled prior to EL3 exit. |
+-------------------+-------+-------------+------------------------------------+
Example
^^^^^^^
An example system offering four cores made up of two clusters, where the cores
of each cluster share different |AMUs|, may use something like the following:
.. code-block::
cpus {
#address-cells = <2>;
#size-cells = <0>;
amus {
amu0: amu-0 {
#address-cells = <1>;
#size-cells = <0>;
counterX: counter@0 {
reg = <0>;
enable-at-el3;
};
counterY: counter@1 {
reg = <1>;
enable-at-el3;
};
};
amu1: amu-1 {
#address-cells = <1>;
#size-cells = <0>;
counterZ: counter@0 {
reg = <0>;
enable-at-el3;
};
};
};
cpu0@00000 {
...
amu = <&amu0>;
};
cpu1@00100 {
...
amu = <&amu0>;
};
cpu2@10000 {
...
amu = <&amu1>;
};
cpu3@10100 {
...
amu = <&amu1>;
};
}
In this situation, ``cpu0`` and ``cpu1`` (the two cores in the first cluster),
share the view of their AMUs defined by ``amu0``. Likewise, ``cpu2`` and
``cpu3`` (the two cores in the second cluster), share the view of their |AMUs|
defined by ``amu1``. This will cause ``counterX`` and ``counterY`` to be enabled
for both ``cpu0`` and ``cpu1``, and ``counterZ`` to be enabled for both ``cpu2``
and ``cpu3``.

View File

@@ -0,0 +1,32 @@
DTB binding for FCONF properties
================================
This document describes the device tree format of |FCONF| properties. These
properties are not related to a specific platform and can be queried from
common code.
Dynamic configuration
~~~~~~~~~~~~~~~~~~~~~
The |FCONF| framework expects a *dtb-registry* node with the following field:
- compatible [mandatory]
- value type: <string>
- Must be the string "fconf,dyn_cfg-dtb_registry".
Then a list of subnodes representing a configuration |DTB|, which can be used
by |FCONF|. Each subnode should be named according to the information it
contains, and must be formed with the following fields:
- load-address [mandatory]
- value type: <u64>
- Physical loading base address of the configuration.
- max-size [mandatory]
- value type: <u32>
- Maximum size of the configuration.
- id [mandatory]
- value type: <u32>
- Image ID of the configuration.

View File

@@ -0,0 +1,149 @@
Firmware Configuration Framework
================================
This document provides an overview of the |FCONF| framework.
Introduction
~~~~~~~~~~~~
The Firmware CONfiguration Framework (|FCONF|) is an abstraction layer for
platform specific data, allowing a "property" to be queried and a value
retrieved without the requesting entity knowing what backing store is being used
to hold the data.
It is used to bridge new and old ways of providing platform-specific data.
Today, information like the Chain of Trust is held within several, nested
platform-defined tables. In the future, it may be provided as part of a device
blob, along with the rest of the information about images to load.
Introducing this abstraction layer will make migration easier and will preserve
functionality for platforms that cannot / don't want to use device tree.
Accessing properties
~~~~~~~~~~~~~~~~~~~~
Properties defined in the |FCONF| are grouped around namespaces and
sub-namespaces: a.b.property.
Examples namespace can be:
- (|TBBR|) Chain of Trust data: tbbr.cot.trusted_boot_fw_cert
- (|TBBR|) dynamic configuration info: tbbr.dyn_config.disable_auth
- Arm io policies: arm.io_policies.bl2_image
- GICv3 properties: hw_config.gicv3_config.gicr_base
Properties can be accessed with the ``FCONF_GET_PROPERTY(a,b,property)`` macro.
Defining properties
~~~~~~~~~~~~~~~~~~~
Properties composing the |FCONF| have to be stored in C structures. If
properties originate from a different backend source such as a device tree,
then the platform has to provide a ``populate()`` function which essentially
captures the property and stores them into a corresponding |FCONF| based C
structure.
Such a ``populate()`` function is usually platform specific and is associated
with a specific backend source. For example, a populator function which
captures the hardware topology of the platform from the HW_CONFIG device tree.
Hence each ``populate()`` function must be registered with a specific
``config_type`` identifier. It broadly represents a logical grouping of
configuration properties which is usually a device tree file.
Example:
- FW_CONFIG: properties related to base address, maximum size and image id
of other DTBs etc.
- TB_FW: properties related to trusted firmware such as IO policies,
mbedtls heap info etc.
- HW_CONFIG: properties related to hardware configuration of the SoC
such as topology, GIC controller, PSCI hooks, CPU ID etc.
Hence the ``populate()`` callback must be registered to the (|FCONF|) framework
with the ``FCONF_REGISTER_POPULATOR()`` macro. This ensures that the function
would be called inside the generic ``fconf_populate()`` function during
initialization.
::
int fconf_populate_topology(uintptr_t config)
{
/* read hw config dtb and fill soc_topology struct */
}
FCONF_REGISTER_POPULATOR(HW_CONFIG, topology, fconf_populate_topology);
Then, a wrapper has to be provided to match the ``FCONF_GET_PROPERTY()`` macro:
::
/* generic getter */
#define FCONF_GET_PROPERTY(a,b,property) a##__##b##_getter(property)
/* my specific getter */
#define hw_config__topology_getter(prop) soc_topology.prop
This second level wrapper can be used to remap the ``FCONF_GET_PROPERTY()`` to
anything appropriate: structure, array, function, etc..
To ensure a good interpretation of the properties, this documentation must
explain how the properties are described for a specific backend. Refer to the
:ref:`binding-document` section for more information and example.
Loading the property device tree
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``fconf_load_config(image_id)`` must be called to load fw_config and
tb_fw_config devices tree containing the properties' values. This must be done
after the io layer is initialized, as the |DTB| is stored on an external
device (FIP).
.. uml:: ../../resources/diagrams/plantuml/fconf_bl1_load_config.puml
Populating the properties
~~~~~~~~~~~~~~~~~~~~~~~~~
Once a valid device tree is available, the ``fconf_populate(config)`` function
can be used to fill the C data structure with the data from the config |DTB|.
This function will call all the ``populate()`` callbacks which have been
registered with ``FCONF_REGISTER_POPULATOR()`` as described above.
.. uml:: ../../resources/diagrams/plantuml/fconf_bl2_populate.puml
Namespace guidance
~~~~~~~~~~~~~~~~~~
As mentioned above, properties are logically grouped around namespaces and
sub-namespaces. The following concepts should be considered when adding new
properties/namespaces.
The framework differentiates two types of properties:
- Properties used inside common code.
- Properties used inside platform specific code.
The first category applies to properties being part of the firmware and shared
across multiple platforms. They should be globally accessible and defined
inside the ``lib/fconf`` directory. The namespace must be chosen to reflect the
feature/data abstracted.
Example:
- |TBBR| related properties: tbbr.cot.bl2_id
- Dynamic configuration information: dyn_cfg.dtb_info.hw_config_id
The second category should represent the majority of the properties defined
within the framework: Platform specific properties. They must be accessed only
within the platform API and are defined only inside the platform scope. The
namespace must contain the platform name under which the properties defined
belong.
Example:
- Arm io framework: arm.io_policies.bl31_id
.. _binding-document:
Properties binding information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. toctree::
:maxdepth: 1
fconf_properties
amu-bindings
mpmm-bindings

View File

@@ -0,0 +1,48 @@
Maximum Power Mitigation Mechanism (MPMM) Bindings
==================================================
|MPMM| support cannot be determined at runtime by the firmware. Instead, these
DTB bindings allow the platform to communicate per-core support for |MPMM| via
the ``HW_CONFIG`` device tree blob.
Bindings
^^^^^^^^
.. contents::
:local:
``/cpus/cpus/cpu*`` node properties
"""""""""""""""""""""""""""""""""""
The ``cpu`` node has been augmented to allow the platform to indicate support
for |MPMM| on a given core.
+-------------------+-------+-------------+------------------------------------+
| Property name | Usage | Value type | Description |
+===================+=======+=============+====================================+
| ``supports-mpmm`` | O | ``<empty>`` | If present, indicates that |MPMM| |
| | | | is available on this core. |
+-------------------+-------+-------------+------------------------------------+
Example
^^^^^^^
An example system offering two cores, one with support for |MPMM| and one
without, can be described as follows:
.. code-block::
cpus {
#address-cells = <2>;
#size-cells = <0>;
cpu0@00000 {
...
supports-mpmm;
};
cpu1@00100 {
...
};
}

View File

@@ -0,0 +1,252 @@
FF-A manifest binding to device tree
========================================
This document defines the nodes and properties used to define a partition,
according to the FF-A specification.
Version 1.0
-----------
Partition Properties
^^^^^^^^^^^^^^^^^^^^
- compatible [mandatory]
- value type: <string>
- Must be the string "arm,ffa-manifest-X.Y" which specifies the major and
minor versions of the device tree binding for the FFA manifest represented
by this node. The minor number is incremented if the binding changes in a
backwards compatible manner.
- X is an integer representing the major version number of this document.
- Y is an integer representing the minor version number of this document.
- ffa-version [mandatory]
- value type: <u32>
- Must be two 16 bits values (X, Y), concatenated as 31:16 -> X,
15:0 -> Y, where:
- X is the major version of FF-A expected by the partition at the FFA
instance it will execute.
- Y is the minor version of FF-A expected by the partition at the FFA
instance it will execute.
- uuid [mandatory]
- value type: <prop-encoded-array>
- An array consisting of 4 <u32> values, identifying the UUID of the service
implemented by this partition. The UUID format is described in RFC 4122.
- id
- value type: <u32>
- Pre-allocated partition ID.
- auxiliary-id
- value type: <u32>
- Pre-allocated ID that could be used in memory management transactions.
- description
- value type: <string>
- Name of the partition e.g. for debugging purposes.
- execution-ctx-count [mandatory]
- value type: <u32>
- Number of vCPUs that a VM or SP wants to instantiate.
- In the absence of virtualization, this is the number of execution
contexts that a partition implements.
- If value of this field = 1 and number of PEs > 1 then the partition is
treated as UP & migrate capable.
- If the value of this field > 1 then the partition is treated as a MP
capable partition irrespective of the number of PEs.
- exception-level [mandatory]
- value type: <u32>
- The target exception level for the partition:
- 0x0: EL1
- 0x1: S_EL0
- 0x2: S_EL1
- execution-state [mandatory]
- value type: <u32>
- The target execution state of the partition:
- 0: AArch64
- 1: AArch32
- load-address
- value type: <u64>
- Physical base address of the partition in memory. Absence of this field
indicates that the partition is position independent and can be loaded at
any address chosen at boot time.
- entrypoint-offset
- value type: <u64>
- Offset from the base of the partition's binary image to the entry point of
the partition. Absence of this field indicates that the entry point is at
offset 0x0 from the base of the partition's binary.
- xlat-granule [mandatory]
- value type: <u32>
- Translation granule used with the partition:
- 0x0: 4k
- 0x1: 16k
- 0x2: 64k
- boot-order
- value type: <u32>
- A unique number amongst all partitions that specifies if this partition
must be booted before others. The partition with the smaller number will be
booted first.
- rx-tx-buffer
- value type: "memory-regions" node
- Specific "memory-regions" nodes that describe the RX/TX buffers expected
by the partition.
The "compatible" must be the string "arm,ffa-manifest-rx_tx-buffer".
- messaging-method [mandatory]
- value type: <u8>
- Specifies which messaging methods are supported by the partition, set bit
means the feature is supported, clear bit - not supported:
- Bit[0]: partition can receive direct requests if set
- Bit[1]: partition can send direct requests if set
- Bit[2]: partition can send and receive indirect messages
- managed-exit
- value type: <empty>
- Specifies if managed exit is supported.
- has-primary-scheduler
- value type: <empty>
- Presence of this field indicates that the partition implements the primary
scheduler. If so, run-time EL must be EL1.
- run-time-model
- value type: <u32>
- Run time model that the SPM must enforce for this SP:
- 0x0: Run to completion
- 0x1: Preemptible
- time-slice-mem
- value type: <empty>
- Presence of this field indicates that the partition doesn't expect the
partition manager to time slice long running memory management functions.
- gp-register-num
- value type: <u32>
- Presence of this field indicates that the partition expects the
ffa_init_info structure to be passed in via the specified general purpose
register.
The field specifies the general purpose register number but not its width.
The width is derived from the partition's execution state, as specified in
the partition properties. For example, if the number value is 1 then the
general-purpose register used will be x1 in AArch64 state and w1 in AArch32
state.
- stream-endpoint-ids
- value type: <prop-encoded-array>
- List of <u32> tuples, identifying the IDs this partition is acting as
proxy for.
Memory Regions
--------------
- compatible [mandatory]
- value type: <string>
- Must be the string "arm,ffa-manifest-memory-regions".
- description
- value type: <string>
- Name of the memory region e.g. for debugging purposes.
- pages-count [mandatory]
- value type: <u32>
- Count of pages of memory region as a multiple of the translation granule
size
- attributes [mandatory]
- value type: <u32>
- Mapping modes: ORed to get required permission
- 0x1: Read
- 0x2: Write
- 0x4: Execute
- base-address
- value type: <u64>
- Base address of the region. The address must be aligned to the translation
granule size.
The address given may be a Physical Address (PA), Virtual Address (VA), or
Intermediate Physical Address (IPA). Refer to the FFA specification for
more information on the restrictions around the address type.
If the base address is omitted then the partition manager must map a memory
region of the specified size into the partition's translation regime and
then communicate the region properties (including the base address chosen
by the partition manager) to the partition.
Device Regions
--------------
- compatible [mandatory]
- value type: <string>
- Must be the string "arm,ffa-manifest-device-regions".
- description
- value type: <string>
- Name of the device region e.g. for debugging purposes.
- reg [mandatory]
- value type: <prop-encoded-array>
- A (address, num-pages) pair describing the device, where:
- address: The physical base address <u64> value of the device MMIO
region.
- num-pages: The <u32> number of pages of the region. The total size of
the region is this value multiplied by the translation granule size.
- attributes [mandatory]
- value type: <u32>
- Mapping modes: ORed to get required permission
- 0x1: Read
- 0x2: Write
- 0x4: Execute
- smmu-id
- value type: <u32>
- On systems with multiple System Memory Management Units (SMMUs) this
identifier is used to inform the partition manager which SMMU the device is
upstream of. If the field is omitted then it is assumed that the device is
not upstream of any SMMU.
- stream-ids
- value type: <prop-encoded-array>
- A list of (id, mem-manage) pair, where:
- id: A unique <u32> value amongst all devices assigned to the partition.
- interrupts [mandatory]
- value type: <prop-encoded-array>
- A list of (id, attributes) pair describing the device interrupts, where:
- id: The <u32> interrupt IDs.
- attributes: A <u32> value,
containing the attributes for each interrupt ID:
- Interrupt type: SPI, PPI, SGI
- Interrupt configuration: Edge triggered, Level triggered
- Interrupt security state: Secure, Non-secure
- Interrupt priority value
- Target execution context/vCPU for each SPI
- exclusive-access
- value type: <empty>
- Presence of this field implies that this endpoint must be granted exclusive
access and ownership of this device's MMIO region.
--------------
*Copyright (c) 2019-2021, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,400 @@
Firmware Update (FWU)
=====================
Introduction
------------
This document describes the design of the Firmware Update (FWU) feature, which
enables authenticated firmware to update firmware images from external
interfaces such as USB, UART, SD-eMMC, NAND, NOR or Ethernet to SoC Non-Volatile
memories such as NAND Flash, LPDDR2-NVM or any memory determined by the
platform. This feature functions even when the current firmware in the system
is corrupt or missing; it therefore may be used as a recovery mode. It may also
be complemented by other, higher level firmware update software.
FWU implements a specific part of the Trusted Board Boot Requirements (TBBR)
specification, Arm DEN0006C-1. It should be used in conjunction with the
:ref:`Trusted Board Boot` design document, which describes the image
authentication parts of the Trusted Firmware-A (TF-A) TBBR implementation.
Scope
~~~~~
This document describes the secure world FWU design. It is beyond its scope to
describe how normal world FWU images should operate. To implement normal world
FWU images, please refer to the "Non-Trusted Firmware Updater" requirements in
the TBBR.
FWU Overview
------------
The FWU boot flow is primarily mediated by BL1. Since BL1 executes in ROM, and
it is usually desirable to minimize the amount of ROM code, the design allows
some parts of FWU to be implemented in other secure and normal world images.
Platform code may choose which parts are implemented in which images but the
general expectation is:
- BL1 handles:
- Detection and initiation of the FWU boot flow.
- Copying images from non-secure to secure memory
- FWU image authentication
- Context switching between the normal and secure world during the FWU
process.
- Other secure world FWU images handle platform initialization required by
the FWU process.
- Normal world FWU images handle loading of firmware images from external
interfaces to non-secure memory.
The primary requirements of the FWU feature are:
#. Export a BL1 SMC interface to interoperate with other FWU images executing
at other Exception Levels.
#. Export a platform interface to provide FWU common code with the information
it needs, and to enable platform specific FWU functionality. See the
:ref:`Porting Guide` for details of this interface.
TF-A uses abbreviated image terminology for FWU images like for other TF-A
images. See the :ref:`Image Terminology` document for an explanation of these
terms.
The following diagram shows the FWU boot flow for Arm development platforms.
Arm CSS platforms like Juno have a System Control Processor (SCP), and these
use all defined FWU images. Other platforms may use a subset of these.
|Flow Diagram|
Image Identification
--------------------
Each FWU image and certificate is identified by a unique ID, defined by the
platform, which BL1 uses to fetch an image descriptor (``image_desc_t``) via a
call to ``bl1_plat_get_image_desc()``. The same ID is also used to prepare the
Chain of Trust (Refer to the :ref:`Authentication Framework & Chain of Trust`
document for more information).
The image descriptor includes the following information:
- Executable or non-executable image. This indicates whether the normal world
is permitted to request execution of a secure world FWU image (after
authentication). Secure world certificates and non-AP images are examples
of non-executable images.
- Secure or non-secure image. This indicates whether the image is
authenticated/executed in secure or non-secure memory.
- Image base address and size.
- Image entry point configuration (an ``entry_point_info_t``).
- FWU image state.
BL1 uses the FWU image descriptors to:
- Validate the arguments of FWU SMCs
- Manage the state of the FWU process
- Initialize the execution state of the next FWU image.
FWU State Machine
-----------------
BL1 maintains state for each FWU image during FWU execution. FWU images at lower
Exception Levels raise SMCs to invoke FWU functionality in BL1, which causes
BL1 to update its FWU image state. The BL1 image states and valid state
transitions are shown in the diagram below. Note that secure images have a more
complex state machine than non-secure images.
|FWU state machine|
The following is a brief description of the supported states:
- RESET: This is the initial state of every image at the start of FWU.
Authentication failure also leads to this state. A secure
image may yield to this state if it has completed execution.
It can also be reached by using ``FWU_SMC_IMAGE_RESET``.
- COPYING: This is the state of a secure image while BL1 is copying it
in blocks from non-secure to secure memory.
- COPIED: This is the state of a secure image when BL1 has completed
copying it to secure memory.
- AUTHENTICATED: This is the state of an image when BL1 has successfully
authenticated it.
- EXECUTED: This is the state of a secure, executable image when BL1 has
passed execution control to it.
- INTERRUPTED: This is the state of a secure, executable image after it has
requested BL1 to resume normal world execution.
BL1 SMC Interface
-----------------
BL1_SMC_CALL_COUNT
~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x0
Return:
uint32_t
This SMC returns the number of SMCs supported by BL1.
BL1_SMC_UID
~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x1
Return:
UUID : 32 bits in each of w0-w3 (or r0-r3 for AArch32 callers)
This SMC returns the 128-bit `Universally Unique Identifier`_ for the
BL1 SMC service.
BL1_SMC_VERSION
~~~~~~~~~~~~~~~
::
Argument:
uint32_t function ID : 0x3
Return:
uint32_t : Bits [31:16] Major Version
Bits [15:0] Minor Version
This SMC returns the current version of the BL1 SMC service.
BL1_SMC_RUN_IMAGE
~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x4
entry_point_info_t *ep_info
Return:
void
Pre-conditions:
if (normal world caller) synchronous exception
if (ep_info not EL3) synchronous exception
This SMC passes execution control to an EL3 image described by the provided
``entry_point_info_t`` structure. In the normal TF-A boot flow, BL2 invokes
this SMC for BL1 to pass execution control to BL31.
FWU_SMC_IMAGE_COPY
~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x10
unsigned int image_id
uintptr_t image_addr
unsigned int block_size
unsigned int image_size
Return:
int : 0 (Success)
: -ENOMEM
: -EPERM
Pre-conditions:
if (image_id is invalid) return -EPERM
if (image_id is non-secure image) return -EPERM
if (image_id state is not (RESET or COPYING)) return -EPERM
if (secure world caller) return -EPERM
if (image_addr + block_size overflows) return -ENOMEM
if (image destination address + image_size overflows) return -ENOMEM
if (source block is in secure memory) return -ENOMEM
if (source block is not mapped into BL1) return -ENOMEM
if (image_size > free secure memory) return -ENOMEM
if (image overlaps another image) return -EPERM
This SMC copies the secure image indicated by ``image_id`` from non-secure memory
to secure memory for later authentication. The image may be copied in a single
block or multiple blocks. In either case, the total size of the image must be
provided in ``image_size`` when invoking this SMC for the first time for each
image; it is ignored in subsequent calls (if any) for the same image.
The ``image_addr`` and ``block_size`` specify the source memory block to copy from.
The destination address is provided by the platform code.
If ``block_size`` is greater than the amount of remaining bytes to copy for this
image then the former is truncated to the latter. The copy operation is then
considered as complete and the FWU state machine transitions to the "COPIED"
state. If there is still more to copy, the FWU state machine stays in or
transitions to the COPYING state (depending on the previous state).
When using multiple blocks, the source blocks do not necessarily need to be in
contiguous memory.
Once the SMC is handled, BL1 returns from exception to the normal world caller.
FWU_SMC_IMAGE_AUTH
~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x11
unsigned int image_id
uintptr_t image_addr
unsigned int image_size
Return:
int : 0 (Success)
: -ENOMEM
: -EPERM
: -EAUTH
Pre-conditions:
if (image_id is invalid) return -EPERM
if (secure world caller)
if (image_id state is not RESET) return -EPERM
if (image_addr/image_size is not mapped into BL1) return -ENOMEM
else // normal world caller
if (image_id is secure image)
if (image_id state is not COPIED) return -EPERM
else // image_id is non-secure image
if (image_id state is not RESET) return -EPERM
if (image_addr/image_size is in secure memory) return -ENOMEM
if (image_addr/image_size not mapped into BL1) return -ENOMEM
This SMC authenticates the image specified by ``image_id``. If the image is in the
RESET state, BL1 authenticates the image in place using the provided
``image_addr`` and ``image_size``. If the image is a secure image in the COPIED
state, BL1 authenticates the image from the secure memory that BL1 previously
copied the image into.
BL1 returns from exception to the caller. If authentication succeeds then BL1
sets the image state to AUTHENTICATED. If authentication fails then BL1 returns
the -EAUTH error and sets the image state back to RESET.
FWU_SMC_IMAGE_EXECUTE
~~~~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x12
unsigned int image_id
Return:
int : 0 (Success)
: -EPERM
Pre-conditions:
if (image_id is invalid) return -EPERM
if (secure world caller) return -EPERM
if (image_id is non-secure image) return -EPERM
if (image_id is non-executable image) return -EPERM
if (image_id state is not AUTHENTICATED) return -EPERM
This SMC initiates execution of a previously authenticated image specified by
``image_id``, in the other security world to the caller. The current
implementation only supports normal world callers initiating execution of a
secure world image.
BL1 saves the normal world caller's context, sets the secure image state to
EXECUTED, and returns from exception to the secure image.
FWU_SMC_IMAGE_RESUME
~~~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x13
register_t image_param
Return:
register_t : image_param (Success)
: -EPERM
Pre-conditions:
if (normal world caller and no INTERRUPTED secure image) return -EPERM
This SMC resumes execution in the other security world while there is a secure
image in the EXECUTED/INTERRUPTED state.
For normal world callers, BL1 sets the previously interrupted secure image state
to EXECUTED. For secure world callers, BL1 sets the previously executing secure
image state to INTERRUPTED. In either case, BL1 saves the calling world's
context, restores the resuming world's context and returns from exception into
the resuming world. If the call is successful then the caller provided
``image_param`` is returned to the resumed world, otherwise an error code is
returned to the caller.
FWU_SMC_SEC_IMAGE_DONE
~~~~~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x14
Return:
int : 0 (Success)
: -EPERM
Pre-conditions:
if (normal world caller) return -EPERM
This SMC indicates completion of a previously executing secure image.
BL1 sets the previously executing secure image state to the RESET state,
restores the normal world context and returns from exception into the normal
world.
FWU_SMC_UPDATE_DONE
~~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x15
register_t client_cookie
Return:
N/A
This SMC completes the firmware update process. BL1 calls the platform specific
function ``bl1_plat_fwu_done``, passing the optional argument ``client_cookie`` as
a ``void *``. The SMC does not return.
FWU_SMC_IMAGE_RESET
~~~~~~~~~~~~~~~~~~~
::
Arguments:
uint32_t function ID : 0x16
unsigned int image_id
Return:
int : 0 (Success)
: -EPERM
Pre-conditions:
if (secure world caller) return -EPERM
if (image in EXECUTED) return -EPERM
This SMC sets the state of an image to RESET and zeroes the memory used by it.
This is only allowed if the image is not being executed.
--------------
*Copyright (c) 2015-2019, Arm Limited and Contributors. All rights reserved.*
.. _Universally Unique Identifier: https://tools.ietf.org/rfc/rfc4122.txt
.. |Flow Diagram| image:: ../resources/diagrams/fwu_flow.png
.. |FWU state machine| image:: ../resources/diagrams/fwu_states.png

View File

@@ -0,0 +1,235 @@
Granule Protection Tables Library
=================================
This document describes the design of the granule protection tables (GPT)
library used by Trusted Firmware-A (TF-A). This library provides the APIs needed
to initialize the GPTs based on a data structure containing information about
the systems memory layout, configure the system registers to enable granule
protection checks based on these tables, and transition granules between
different PAS (physical address spaces) at runtime.
Arm CCA adds two new security states for a total of four: root, realm, secure, and
non-secure. In addition to new security states, corresponding physical address
spaces have been added to control memory access for each state. The PAS access
allowed to each security state can be seen in the table below.
.. list-table:: Security states and PAS access rights
:widths: 25 25 25 25 25
:header-rows: 1
* -
- Root state
- Realm state
- Secure state
- Non-secure state
* - Root PAS
- yes
- no
- no
- no
* - Realm PAS
- yes
- yes
- no
- no
* - Secure PAS
- yes
- no
- yes
- no
* - Non-secure PAS
- yes
- yes
- yes
- yes
The GPT can function as either a 1 level or 2 level lookup depending on how a
PAS region is configured. The first step is the level 0 table, each entry in the
level 0 table controls access to a relatively large region in memory (block
descriptor), and the entire region can belong to a single PAS when a one step
mapping is used, or a level 0 entry can link to a level 1 table where relatively
small regions (granules) of memory can be assigned to different PAS with a 2
step mapping. The type of mapping used for each PAS is determined by the user
when setting up the configuration structure.
Design Concepts and Interfaces
------------------------------
This section covers some important concepts and data structures used in the GPT
library.
There are three main parameters that determine how the tables are organized and
function: the PPS (protected physical space) which is the total amount of
protected physical address space in the system, PGS (physical granule size)
which is how large each level 1 granule is, and L0GPTSZ (level 0 GPT size) which
determines how much physical memory is governed by each level 0 entry. A granule
is the smallest unit of memory that can be independently assigned to a PAS.
L0GPTSZ is determined by the hardware and is read from the GPCCR_EL3 register.
PPS and PGS are passed into the APIs at runtime and can be determined in
whatever way is best for a given platform, either through some algorithm or hard
coded in the firmware.
GPT setup is split into two parts: table creation and runtime initialization. In
the table creation step, a data structure containing information about the
desired PAS regions is passed into the library which validates the mappings,
creates the tables in memory, and enables granule protection checks. In the
runtime initialization step, the runtime firmware locates the existing tables in
memory using the GPT register configuration and saves important data to a
structure used by the granule transition service which will be covered more
below.
In the reference implementation for FVP models, you can find an example of PAS
region definitions in the file ``include/plat/arm/common/arm_pas_def.h``. Table
creation API calls can be found in ``plat/arm/common/arm_bl2_setup.c`` and
runtime initialization API calls can be seen in
``plat/arm/common/arm_bl31_setup.c``.
Defining PAS regions
~~~~~~~~~~~~~~~~~~~~
A ``pas_region_t`` structure is a way to represent a physical address space and
its attributes that can be used by the GPT library to initialize the tables.
This structure is composed of the following:
#. The base physical address
#. The region size
#. The desired attributes of this memory region (mapping type, PAS type)
See the ``pas_region_t`` type in ``include/lib/gpt_rme/gpt_rme.h``.
The programmer should provide the API with an array containing ``pas_region_t``
structures, then the library will check the desired memory access layout for
validity and create tables to implement it.
``pas_region_t`` is a public type, however it is recommended that the macros
``GPT_MAP_REGION_BLOCK`` and ``GPT_MAP_REGION_GRANULE`` be used to populate
these structures instead of doing it manually to reduce the risk of future
compatibility issues. These macros take the base physical address, region size,
and PAS type as arguments to generate the pas_region_t structure. As the names
imply, ``GPT_MAP_REGION_BLOCK`` creates a region using only L0 mapping while
``GPT_MAP_REGION_GRANULE`` creates a region using L0 and L1 mappings.
Level 0 and Level 1 Tables
~~~~~~~~~~~~~~~~~~~~~~~~~~
The GPT initialization APIs require memory to be passed in for the tables to be
constructed, ``gpt_init_l0_tables`` takes a memory address and size for building
the level 0 tables and ``gpt_init_pas_l1_tables`` takes an address and size for
building the level 1 tables which are linked from level 0 descriptors. The
tables should have PAS type ``GPT_GPI_ROOT`` and a typical system might place
its level 0 table in SRAM and its level 1 table(s) in DRAM.
Granule Transition Service
~~~~~~~~~~~~~~~~~~~~~~~~~~
The Granule Transition Service allows memory mapped with GPT_MAP_REGION_GRANULE
ownership to be changed using SMC calls. Non-secure granules can be transitioned
to either realm or secure space, and realm and secure granules can be
transitioned back to non-secure. This library only allows memory mapped as
granules to be transitioned, memory mapped as blocks have their GPIs fixed after
table creation.
Library APIs
------------
The public APIs and types can be found in ``include/lib/gpt_rme/gpt_rme.h`` and this
section is intended to provide additional details and clarifications.
To create the GPTs and enable granule protection checks the APIs need to be
called in the correct order and at the correct time during the system boot
process.
#. Firmware must enable the MMU.
#. Firmware must call ``gpt_init_l0_tables`` to initialize the level 0 tables to
a default state, that is, initializing all of the L0 descriptors to allow all
accesses to all memory. The PPS is provided to this function as an argument.
#. DDR discovery and initialization by the system, the discovered DDR region(s)
are then added to the L1 PAS regions to be initialized in the next step and
used by the GTSI at runtime.
#. Firmware must call ``gpt_init_pas_l1_tables`` with a pointer to an array of
``pas_region_t`` structures containing the desired memory access layout. The
PGS is provided to this function as an argument.
#. Firmware must call ``gpt_enable`` to enable granule protection checks by
setting the correct register values.
#. In systems that make use of the granule transition service, runtime
firmware must call ``gpt_runtime_init`` to set up the data structures needed
by the GTSI to find the tables and transition granules between PAS types.
API Constraints
~~~~~~~~~~~~~~~
The values allowed by the API for PPS and PGS are enumerated types
defined in the file ``include/lib/gpt_rme/gpt_rme.h``.
Allowable values for PPS along with their corresponding size.
* ``GPCCR_PPS_4GB`` (4GB protected space, 0x100000000 bytes)
* ``GPCCR_PPS_64GB`` (64GB protected space, 0x1000000000 bytes)
* ``GPCCR_PPS_1TB`` (1TB protected space, 0x10000000000 bytes)
* ``GPCCR_PPS_4TB`` (4TB protected space, 0x40000000000 bytes)
* ``GPCCR_PPS_16TB`` (16TB protected space, 0x100000000000 bytes)
* ``GPCCR_PPS_256TB`` (256TB protected space, 0x1000000000000 bytes)
* ``GPCCR_PPS_4PB`` (4PB protected space, 0x10000000000000 bytes)
Allowable values for PGS along with their corresponding size.
* ``GPCCR_PGS_4K`` (4KB granules, 0x1000 bytes)
* ``GPCCR_PGS_16K`` (16KB granules, 0x4000 bytes)
* ``GPCCR_PGS_64K`` (64KB granules, 0x10000 bytes)
Allowable values for L0GPTSZ along with the corresponding size.
* ``GPCCR_L0GPTSZ_30BITS`` (1GB regions, 0x40000000 bytes)
* ``GPCCR_L0GPTSZ_34BITS`` (16GB regions, 0x400000000 bytes)
* ``GPCCR_L0GPTSZ_36BITS`` (64GB regions, 0x1000000000 bytes)
* ``GPCCR_L0GPTSZ_39BITS`` (512GB regions, 0x8000000000 bytes)
Note that the value of the PPS, PGS, and L0GPTSZ definitions is an encoded value
corresponding to the size, not the size itself. The decoded hex representations
of the sizes have been provided for convenience.
The L0 table memory has some constraints that must be taken into account.
* The L0 table must be aligned to either the table size or 4096 bytes, whichever
is greater. L0 table size is the total protected space (PPS) divided by the
size of each L0 region (L0GPTSZ) multiplied by the size of each L0 descriptor
(8 bytes). ((PPS / L0GPTSZ) * 8)
* The L0 memory size must be greater than or equal to the table size.
* The L0 memory must fall within a PAS of type GPT_GPI_ROOT.
The L1 memory also has some constraints.
* The L1 tables must be aligned to their size. The size of each L1 table is the
size of each L0 region (L0GPTSZ) divided by the granule size (PGS) divided by
the granules controlled in each byte (2). ((L0GPTSZ / PGS) / 2)
* There must be enough L1 memory supplied to build all requested L1 tables.
* The L1 memory must fall within a PAS of type GPT_GPI_ROOT.
If an invalid combination of parameters is supplied, the APIs will print an
error message and return a negative value. The return values of APIs should be
checked to ensure successful configuration.
Sample Calculation for L0 memory size and alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let PPS=GPCCR_PPS_4GB and L0GPTSZ=GPCCR_L0GPTSZ_30BITS
We can find the total L0 table size with ((PPS / L0GPTSZ) * 8)
Substitute values to get this: ((0x100000000 / 0x40000000) * 8)
And solve to get 32 bytes. In this case, 4096 is greater than 32, so the L0
tables must be aligned to 4096 bytes.
Sample calculation for L1 table size and alignment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let PGS=GPCCR_PGS_4K and L0GPTSZ=GPCCR_L0GPTSZ_30BITS
We can find the size of each L1 table with ((L0GPTSZ / PGS) / 2).
Substitute values: ((0x40000000 / 0x1000) / 2)
And solve to get 0x20000 bytes per L1 table.

View File

@@ -0,0 +1,28 @@
Components
==========
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
spd/index
activity-monitors
arm-sip-service
debugfs-design
exception-handling
fconf/index
firmware-update
measured_boot/index
mpmm
platform-interrupt-controller-API
ras
romlib-design
sdei
secure-partition-manager
secure-partition-manager-mm
ffa-manifest-binding
xlat-tables-lib-v2-design
cot-binding
realm-management-extension
granule-protection-tables-design

View File

@@ -0,0 +1,35 @@
DTB binding for Event Log properties
====================================
This document describes the device tree format of Event Log properties.
These properties are not related to a specific platform and can be queried
from common code.
Dynamic configuration for Event Log
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Measured Boot driver expects a *tpm_event_log* node with the following field
in 'tb_fw_config', 'nt_fw_config' and 'tsp_fw_config' DTS files:
- compatible [mandatory]
- value type: <string>
- Must be the string "arm,tpm_event_log".
Then a list of properties representing Event Log configuration, which
can be used by Measured Boot driver. Each property is named according
to the information it contains:
- tpm_event_log_sm_addr [fvp_nt_fw_config.dts with OP-TEE]
- value type: <u64>
- Event Log base address in secure memory.
Note. Currently OP-TEE does not support reading DTBs from Secure memory
and this property should be removed when this feature is supported.
- tpm_event_log_addr [mandatory]
- value type: <u64>
- Event Log base address in non-secure memory.
- tpm_event_log_size [mandatory]
- value type: <u32>
- Event Log size.

View File

@@ -0,0 +1,12 @@
Measured Boot Driver (MBD)
==========================
.. _measured-boot-document:
Properties binding information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. toctree::
:maxdepth: 1
event_log

View File

@@ -0,0 +1,30 @@
Maximum Power Mitigation Mechanism (MPMM)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|MPMM| is an optional microarchitectural power management mechanism supported by
some Arm Armv9-A cores, beginning with the Cortex-X2, Cortex-A710 and
Cortex-A510 cores. This mechanism detects and limits high-activity events to
assist in |SoC| processor power domain dynamic power budgeting and limit the
triggering of whole-rail (i.e. clock chopping) responses to overcurrent
conditions.
|MPMM| is enabled on a per-core basis by the EL3 runtime firmware. The presence
of |MPMM| cannot be determined at runtime by the firmware, and therefore the
platform must expose this information through one of two possible mechanisms:
- |FCONF|, controlled by the ``ENABLE_MPMM_FCONF`` build option.
- A platform implementation of the ``plat_mpmm_topology`` function (the
default).
See :ref:`Maximum Power Mitigation Mechanism (MPMM) Bindings` for documentation
on the |FCONF| device tree bindings.
.. warning::
|MPMM| exposes gear metrics through the auxiliary |AMU| counters. An
external power controller can use these metrics to budget SoC power by
limiting the number of cores that can execute higher-activity workloads or
switching to a different DVFS operating point. When this is the case, the
|AMU| counters that make up the |MPMM| gears must be enabled by the EL3
runtime firmware - please see :ref:`Activity Monitor Auxiliary Counters` for
documentation on enabling auxiliary |AMU| counters.

View File

@@ -0,0 +1,309 @@
Platform Interrupt Controller API
=================================
This document lists the optional platform interrupt controller API that
abstracts the runtime configuration and control of interrupt controller from the
generic code. The mandatory APIs are described in the
:ref:`Porting Guide <porting_guide_imf_in_bl31>`.
Function: unsigned int plat_ic_get_running_priority(void); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : void
Return : unsigned int
This API should return the priority of the interrupt the PE is currently
servicing. This must be be called only after an interrupt has already been
acknowledged via ``plat_ic_acknowledge_interrupt``.
In the case of Arm standard platforms using GIC, the *Running Priority Register*
is read to determine the priority of the interrupt.
Function: int plat_ic_is_spi(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : int
The API should return whether the interrupt ID (first parameter) is categorized
as a Shared Peripheral Interrupt. Shared Peripheral Interrupts are typically
associated to system-wide peripherals, and these interrupts can target any PE in
the system.
Function: int plat_ic_is_ppi(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : int
The API should return whether the interrupt ID (first parameter) is categorized
as a Private Peripheral Interrupt. Private Peripheral Interrupts are typically
associated with peripherals that are private to each PE. Interrupts from private
peripherals target to that PE only.
Function: int plat_ic_is_sgi(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : int
The API should return whether the interrupt ID (first parameter) is categorized
as a Software Generated Interrupt. Software Generated Interrupts are raised by
explicit programming by software, and are typically used in inter-PE
communication. Secure SGIs are reserved for use by Secure world software.
Function: unsigned int plat_ic_get_interrupt_active(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : int
This API should return the *active* status of the interrupt ID specified by the
first parameter, ``id``.
In case of Arm standard platforms using GIC, the implementation of the API reads
the GIC *Set Active Register* to read and return the active status of the
interrupt.
Function: void plat_ic_enable_interrupt(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : void
This API should enable the interrupt ID specified by the first parameter,
``id``. PEs in the system are expected to receive only enabled interrupts.
In case of Arm standard platforms using GIC, the implementation of the API
inserts barrier to make memory updates visible before enabling interrupt, and
then writes to GIC *Set Enable Register* to enable the interrupt.
Function: void plat_ic_disable_interrupt(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : void
This API should disable the interrupt ID specified by the first parameter,
``id``. PEs in the system are not expected to receive disabled interrupts.
In case of Arm standard platforms using GIC, the implementation of the API
writes to GIC *Clear Enable Register* to disable the interrupt, and inserts
barrier to make memory updates visible afterwards.
Function: void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Argument : unsigned int
Return : void
This API should set the priority of the interrupt specified by first parameter
``id`` to the value set by the second parameter ``priority``.
In case of Arm standard platforms using GIC, the implementation of the API
writes to GIC *Priority Register* set interrupt priority.
Function: int plat_ic_has_interrupt_type(unsigned int type); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : int
This API should return whether the platform supports a given interrupt type. The
parameter ``type`` shall be one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1``, or
``INTR_TYPE_NS``.
In case of Arm standard platforms using GICv3, the implementation of the API
returns ``1`` for all interrupt types.
In case of Arm standard platforms using GICv2, the API always return ``1`` for
``INTR_TYPE_NS``. Return value for other types depends on the value of build
option ``GICV2_G0_FOR_EL3``:
- For interrupt type ``INTR_TYPE_EL3``:
- When ``GICV2_G0_FOR_EL3`` is ``0``, it returns ``0``, indicating no support
for EL3 interrupts.
- When ``GICV2_G0_FOR_EL3`` is ``1``, it returns ``1``, indicating support for
EL3 interrupts.
- For interrupt type ``INTR_TYPE_S_EL1``:
- When ``GICV2_G0_FOR_EL3`` is ``0``, it returns ``1``, indicating support for
Secure EL1 interrupts.
- When ``GICV2_G0_FOR_EL3`` is ``1``, it returns ``0``, indicating no support
for Secure EL1 interrupts.
Function: void plat_ic_set_interrupt_type(unsigned int id, unsigned int type); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Argument : unsigned int
Return : void
This API should set the interrupt specified by first parameter ``id`` to the
type specified by second parameter ``type``. The ``type`` parameter can be
one of:
- ``INTR_TYPE_NS``: interrupt is meant to be consumed by the Non-secure world.
- ``INTR_TYPE_S_EL1``: interrupt is meant to be consumed by Secure EL1.
- ``INTR_TYPE_EL3``: interrupt is meant to be consumed by EL3.
In case of Arm standard platforms using GIC, the implementation of the API
writes to the GIC *Group Register* and *Group Modifier Register* (only GICv3) to
assign the interrupt to the right group.
For GICv3:
- ``INTR_TYPE_NS`` maps to Group 1 interrupt.
- ``INTR_TYPE_S_EL1`` maps to Secure Group 1 interrupt.
- ``INTR_TYPE_EL3`` maps to Secure Group 0 interrupt.
For GICv2:
- ``INTR_TYPE_NS`` maps to Group 1 interrupt.
- When the build option ``GICV2_G0_FOR_EL3`` is set to ``0`` (the default),
``INTR_TYPE_S_EL1`` maps to Group 0. Otherwise, ``INTR_TYPE_EL3`` maps to
Group 0 interrupt.
Function: void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : int
Argument : u_register_t
Return : void
This API should raise an EL3 SGI. The first parameter, ``sgi_num``, specifies
the ID of the SGI. The second parameter, ``target``, must be the MPIDR of the
target PE.
In case of Arm standard platforms using GIC, the implementation of the API
inserts barrier to make memory updates visible before raising SGI, then writes
to appropriate *SGI Register* in order to raise the EL3 SGI.
Function: void plat_ic_set_spi_routing(unsigned int id, unsigned int routing_mode, u_register_t mpidr); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Argument : unsigned int
Argument : u_register_t
Return : void
This API should set the routing mode of Share Peripheral Interrupt (SPI)
specified by first parameter ``id`` to that specified by the second parameter
``routing_mode``.
The ``routing_mode`` parameter can be one of:
- ``INTR_ROUTING_MODE_ANY`` means the interrupt can be routed to any PE in the
system. The ``mpidr`` parameter is ignored in this case.
- ``INTR_ROUTING_MODE_PE`` means the interrupt is routed to the PE whose MPIDR
value is specified by the parameter ``mpidr``.
In case of Arm standard platforms using GIC, the implementation of the API
writes to the GIC *Target Register* (GICv2) or *Route Register* (GICv3) to set
the routing.
Function: void plat_ic_set_interrupt_pending(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : void
This API should set the interrupt specified by first parameter ``id`` to
*Pending*.
In case of Arm standard platforms using GIC, the implementation of the API
inserts barrier to make memory updates visible before setting interrupt pending,
and writes to the GIC *Set Pending Register* to set the interrupt pending
status.
Function: void plat_ic_clear_interrupt_pending(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : void
This API should clear the *Pending* status of the interrupt specified by first
parameter ``id``.
In case of Arm standard platforms using GIC, the implementation of the API
writes to the GIC *Clear Pending Register* to clear the interrupt pending
status, and inserts barrier to make memory updates visible afterwards.
Function: unsigned int plat_ic_set_priority_mask(unsigned int id); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : int
This API should set the priority mask (first parameter) in the interrupt
controller such that only interrupts of higher priority than the supplied one
may be signalled to the PE. The API should return the current priority value
that it's overwriting.
In case of Arm standard platforms using GIC, the implementation of the API
inserts to order memory updates before updating mask, then writes to the GIC
*Priority Mask Register*, and make sure memory updates are visible before
potential trigger due to mask update.
.. _plat_ic_get_interrupt_id:
Function: unsigned int plat_ic_get_interrupt_id(unsigned int raw); [optional]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : unsigned int
Return : unsigned int
This API should extract and return the interrupt number from the raw value
obtained by the acknowledging the interrupt (read using
``plat_ic_acknowledge_interrupt()``). If the interrupt ID is invalid, this API
should return ``INTR_ID_UNAVAILABLE``.
In case of Arm standard platforms using GIC, the implementation of the API
masks out the interrupt ID field from the acknowledged value from GIC.
--------------
*Copyright (c) 2017-2019, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,241 @@
Reliability, Availability, and Serviceability (RAS) Extensions
==============================================================
This document describes |TF-A| support for Arm Reliability, Availability, and
Serviceability (RAS) extensions. RAS is a mandatory extension for Armv8.2 and
later CPUs, and also an optional extension to the base Armv8.0 architecture.
In conjunction with the |EHF|, support for RAS extension enables firmware-first
paradigm for handling platform errors: exceptions resulting from errors are
routed to and handled in EL3. Said errors are Synchronous External Abort (SEA),
Asynchronous External Abort (signalled as SErrors), Fault Handling and Error
Recovery interrupts. The |EHF| document mentions various :ref:`error handling
use-cases <delegation-use-cases>` .
For the description of Arm RAS extensions, Standard Error Records, and the
precise definition of RAS terminology, please refer to the Arm Architecture
Reference Manual. The rest of this document assumes familiarity with
architecture and terminology.
Overview
--------
As mentioned above, the RAS support in |TF-A| enables routing to and handling of
exceptions resulting from platform errors in EL3. It allows the platform to
define an External Abort handler, and to register RAS nodes and interrupts. RAS
framework also provides `helpers`__ for accessing Standard Error Records as
introduced by the RAS extensions.
.. __: `Standard Error Record helpers`_
The build option ``RAS_EXTENSION`` when set to ``1`` includes the RAS in run
time firmware; ``EL3_EXCEPTION_HANDLING`` and ``HANDLE_EA_EL3_FIRST`` must also
be set ``1``. ``RAS_TRAP_LOWER_EL_ERR_ACCESS`` controls the access to the RAS
error record registers from lower ELs.
.. _ras-figure:
.. image:: ../resources/diagrams/draw.io/ras.svg
See more on `Engaging the RAS framework`_.
Platform APIs
-------------
The RAS framework allows the platform to define handlers for External Abort,
Uncontainable Errors, Double Fault, and errors rising from EL3 execution. Please
refer to :ref:`RAS Porting Guide <External Abort handling and RAS Support>`.
Registering RAS error records
-----------------------------
RAS nodes are components in the system capable of signalling errors to PEs
through one one of the notification mechanisms—SEAs, SErrors, or interrupts. RAS
nodes contain one or more error records, which are registers through which the
nodes advertise various properties of the signalled error. Arm recommends that
error records are implemented in the Standard Error Record format. The RAS
architecture allows for error records to be accessible via system or
memory-mapped registers.
The platform should enumerate the error records providing for each of them:
- A handler to probe error records for errors;
- When the probing identifies an error, a handler to handle it;
- For memory-mapped error record, its base address and size in KB; for a system
register-accessed record, the start index of the record and number of
continuous records from that index;
- Any node-specific auxiliary data.
With this information supplied, when the run time firmware receives one of the
notification mechanisms, the RAS framework can iterate through and probe error
records for error, and invoke the appropriate handler to handle it.
The RAS framework provides the macros to populate error record information. The
macros are versioned, and the latest version as of this writing is 1. These
macros create a structure of type ``struct err_record_info`` from its arguments,
which are later passed to probe and error handlers.
For memory-mapped error records:
.. code:: c
ERR_RECORD_MEMMAP_V1(base_addr, size_num_k, probe, handler, aux)
And, for system register ones:
.. code:: c
ERR_RECORD_SYSREG_V1(idx_start, num_idx, probe, handler, aux)
The probe handler must have the following prototype:
.. code:: c
typedef int (*err_record_probe_t)(const struct err_record_info *info,
int *probe_data);
The probe handler must return a non-zero value if an error was detected, or 0
otherwise. The ``probe_data`` output parameter can be used to pass any useful
information resulting from probe to the error handler (see `below`__). For
example, it could return the index of the record.
.. __: `Standard Error Record helpers`_
The error handler must have the following prototype:
.. code:: c
typedef int (*err_record_handler_t)(const struct err_record_info *info,
int probe_data, const struct err_handler_data *const data);
The ``data`` constant parameter describes the various properties of the error,
including the reason for the error, exception syndrome, and also ``flags``,
``cookie``, and ``handle`` parameters from the :ref:`top-level exception handler
<EL3 interrupts>`.
The platform is expected populate an array using the macros above, and register
the it with the RAS framework using the macro ``REGISTER_ERR_RECORD_INFO()``,
passing it the name of the array describing the records. Note that the macro
must be used in the same file where the array is defined.
Standard Error Record helpers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The |TF-A| RAS framework provides probe handlers for Standard Error Records, for
both memory-mapped and System Register accesses:
.. code:: c
int ras_err_ser_probe_memmap(const struct err_record_info *info,
int *probe_data);
int ras_err_ser_probe_sysreg(const struct err_record_info *info,
int *probe_data);
When the platform enumerates error records, for those records in the Standard
Error Record format, these helpers maybe used instead of rolling out their own.
Both helpers above:
- Return non-zero value when an error is detected in a Standard Error Record;
- Set ``probe_data`` to the index of the error record upon detecting an error.
Registering RAS interrupts
--------------------------
RAS nodes can signal errors to the PE by raising Fault Handling and/or Error
Recovery interrupts. For the firmware-first handling paradigm for interrupts to
work, the platform must setup and register with |EHF|. See `Interaction with
Exception Handling Framework`_.
For each RAS interrupt, the platform has to provide structure of type ``struct
ras_interrupt``:
- Interrupt number;
- The associated error record information (pointer to the corresponding
``struct err_record_info``);
- Optionally, a cookie.
The platform is expected to define an array of ``struct ras_interrupt``, and
register it with the RAS framework using the macro
``REGISTER_RAS_INTERRUPTS()``, passing it the name of the array. Note that the
macro must be used in the same file where the array is defined.
The array of ``struct ras_interrupt`` must be sorted in the increasing order of
interrupt number. This allows for fast look of handlers in order to service RAS
interrupts.
Double-fault handling
---------------------
A Double Fault condition arises when an error is signalled to the PE while
handling of a previously signalled error is still underway. When a Double Fault
condition arises, the Arm RAS extensions only require for handler to perform
orderly shutdown of the system, as recovery may be impossible.
The RAS extensions part of Armv8.4 introduced new architectural features to deal
with Double Fault conditions, specifically, the introduction of ``NMEA`` and
``EASE`` bits to ``SCR_EL3`` register. These were introduced to assist EL3
software which runs part of its entry/exit routines with exceptions momentarily
masked—meaning, in such systems, External Aborts/SErrors are not immediately
handled when they occur, but only after the exceptions are unmasked again.
|TF-A|, for legacy reasons, executes entire EL3 with all exceptions unmasked.
This means that all exceptions routed to EL3 are handled immediately. |TF-A|
thus is able to detect a Double Fault conditions in software, without needing
the intended advantages of Armv8.4 Double Fault architecture extensions.
Double faults are fatal, and terminate at the platform double fault handler, and
doesn't return.
Engaging the RAS framework
--------------------------
Enabling RAS support is a platform choice constructed from three distinct, but
related, build options:
- ``RAS_EXTENSION=1`` includes the RAS framework in the run time firmware;
- ``EL3_EXCEPTION_HANDLING=1`` enables handling of exceptions at EL3. See
`Interaction with Exception Handling Framework`_;
- ``HANDLE_EA_EL3_FIRST=1`` enables routing of External Aborts and SErrors to
EL3.
The RAS support in |TF-A| introduces a default implementation of
``plat_ea_handler``, the External Abort handler in EL3. When ``RAS_EXTENSION``
is set to ``1``, it'll first call ``ras_ea_handler()`` function, which is the
top-level RAS exception handler. ``ras_ea_handler`` is responsible for iterating
to through platform-supplied error records, probe them, and when an error is
identified, look up and invoke the corresponding error handler.
Note that, if the platform chooses to override the ``plat_ea_handler`` function
and intend to use the RAS framework, it must explicitly call
``ras_ea_handler()`` from within.
Similarly, for RAS interrupts, the framework defines
``ras_interrupt_handler()``. The RAS framework arranges for it to be invoked
when a RAS interrupt taken at EL3. The function bisects the platform-supplied
sorted array of interrupts to look up the error record information associated
with the interrupt number. That error handler for that record is then invoked to
handle the error.
Interaction with Exception Handling Framework
---------------------------------------------
As mentioned in earlier sections, RAS framework interacts with the |EHF| to
arbitrate handling of RAS exceptions with others that are routed to EL3. This
means that the platform must partition a :ref:`priority level <Partitioning
priority levels>` for handling RAS exceptions. The platform must then define
the macro ``PLAT_RAS_PRI`` to the priority level used for RAS exceptions.
Platforms would typically want to allocate the highest secure priority for
RAS handling.
Handling of both :ref:`interrupt <interrupt-flow>` and :ref:`non-interrupt
<non-interrupt-flow>` exceptions follow the sequences outlined in the |EHF|
documentation. I.e., for interrupts, the priority management is implicit; but
for non-interrupt exceptions, they're explicit using :ref:`EHF APIs
<Activating and Deactivating priorities>`.
--------------
*Copyright (c) 2018-2019, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,267 @@
Realm Management Extension (RME)
====================================
FEAT_RME (or RME for short) is an Armv9-A extension and is one component of the
`Arm Confidential Compute Architecture (Arm CCA)`_. TF-A supports RME starting
from version 2.6. This chapter discusses the changes to TF-A to support RME and
provides instructions on how to build and run TF-A with RME.
RME support in TF-A
---------------------
The following diagram shows an Arm CCA software architecture with TF-A as the
EL3 firmware. In the Arm CCA architecture there are two additional security
states and address spaces: ``Root`` and ``Realm``. TF-A firmware runs in the
Root world. In the realm world, a Realm Management Monitor firmware (RMM)
manages the execution of Realm VMs and their interaction with the hypervisor.
.. image:: ../resources/diagrams/arm-cca-software-arch.png
RME is the hardware extension to support Arm CCA. To support RME, various
changes have been introduced to TF-A. We discuss those changes below.
Changes to translation tables library
***************************************
RME adds Root and Realm Physical address spaces. To support this, two new
memory type macros, ``MT_ROOT`` and ``MT_REALM``, have been added to the
:ref:`Translation (XLAT) Tables Library`. These macros are used to configure
memory regions as Root or Realm respectively.
.. note::
Only version 2 of the translation tables library supports the new memory
types.
Changes to context management
*******************************
A new CPU context for the Realm world has been added. The existing
:ref:`CPU context management API<PSCI Library Integration guide for Armv8-A
AArch32 systems>` can be used to manage Realm context.
Boot flow changes
*******************
In a typical TF-A boot flow, BL2 runs at Secure-EL1. However when RME is
enabled, TF-A runs in the Root world at EL3. Therefore, the boot flow is
modified to run BL2 at EL3 when RME is enabled. In addition to this, a
Realm-world firmware (RMM) is loaded by BL2 in the Realm physical address
space.
The boot flow when RME is enabled looks like the following:
1. BL1 loads and executes BL2 at EL3
2. BL2 loads images including RMM
3. BL2 transfers control to BL31
4. BL31 initializes SPM (if SPM is enabled)
5. BL31 initializes RMM
6. BL31 transfers control to Normal-world software
Granule Protection Tables (GPT) library
*****************************************
Isolation between the four physical address spaces is enforced by a process
called Granule Protection Check (GPC) performed by the MMU downstream any
address translation. GPC makes use of Granule Protection Table (GPT) in the
Root world that describes the physical address space assignment of every
page (granule). A GPT library that provides APIs to initialize GPTs and to
transition granules between different physical address spaces has been added.
More information about the GPT library can be found in the
:ref:`Granule Protection Tables Library` chapter.
RMM Dispatcher (RMMD)
************************
RMMD is a new standard runtime service that handles the switch to the Realm
world. It initializes the RMM and handles Realm Management Interface (RMI)
SMC calls from Non-secure and Realm worlds.
Test Realm Payload (TRP)
*************************
TRP is a small test payload that runs at R-EL2 and implements a subset of
the Realm Management Interface (RMI) commands to primarily test EL3 firmware
and the interface between R-EL2 and EL3. When building TF-A with RME enabled,
if a path to an RMM image is not provided, TF-A builds the TRP by default
and uses it as RMM image.
Building and running TF-A with RME
------------------------------------
This section describes how you can build and run TF-A with RME enabled.
We assume you have all the :ref:`Prerequisites` to build TF-A.
To enable RME, you need to set the ENABLE_RME build flag when building
TF-A. Currently, this feature is only supported for the FVP platform.
The following instructions show you how to build and run TF-A with RME
for two scenarios: TF-A with TF-A Tests, and four-world execution with
Hafnium and TF-A Tests. The instructions assume you have already obtained
TF-A. You can use the following command to clone TF-A.
.. code:: shell
git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
To run the tests, you need an FVP model. Please use the :ref:`latest version
<Arm Fixed Virtual Platforms (FVP)>` of *FVP_Base_RevC-2xAEMvA* model.
.. note::
ENABLE_RME build option is currently experimental.
Building TF-A with TF-A Tests
********************************************
Use the following instructions to build TF-A with `TF-A Tests`_ as the
non-secure payload (BL33).
**1. Obtain and build TF-A Tests**
.. code:: shell
git clone https://git.trustedfirmware.org/TF-A/tf-a-tests.git
cd tf-a-tests
make CROSS_COMPILE=aarch64-none-elf- PLAT=fvp DEBUG=1
This produces a TF-A Tests binary (*tftf.bin*) in the *build/fvp/debug* directory.
**2. Build TF-A**
.. code:: shell
cd trusted-firmware-a
make CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \
ENABLE_RME=1 \
FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
DEBUG=1 \
BL33=<path/to/tftf.bin> \
all fip
This produces *bl1.bin* and *fip.bin* binaries in the *build/fvp/debug* directory.
The above command also builds TRP. The TRP binary is packaged in *fip.bin*.
Four-world execution with Hafnium and TF-A Tests
****************************************************
Four-world execution involves software components at each security state: root,
secure, realm and non-secure. This section describes how to build TF-A
with four-world support. We use TF-A as the root firmware, `Hafnium`_ as the
secure component, TRP as the realm-world firmware and TF-A Tests as the
non-secure payload.
Before building TF-A, you first need to build the other software components.
You can find instructions on how to get and build TF-A Tests above.
**1. Obtain and build Hafnium**
.. code:: shell
git clone --recurse-submodules https://git.trustedfirmware.org/hafnium/hafnium.git
cd hafnium
# Use the default prebuilt LLVM/clang toolchain
PATH=$PWD/prebuilts/linux-x64/clang/bin:$PWD/prebuilts/linux-x64/dtc:$PATH
make PROJECT=reference
The Hafnium binary should be located at
*out/reference/secure_aem_v8a_fvp_clang/hafnium.bin*
**2. Build TF-A**
Build TF-A with RME as well as SPM enabled.
.. code:: shell
make CROSS_COMPILE=aarch64-none-elf- \
PLAT=fvp \
ENABLE_RME=1 \
FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts \
SPD=spmd \
SPMD_SPM_AT_SEL2=1 \
BRANCH_PROTECTION=1 \
CTX_INCLUDE_PAUTH_REGS=1 \
DEBUG=1 \
SP_LAYOUT_FILE=<path/to/tf-a-tests>/build/fvp/debug/sp_layout.json> \
BL32=<path/to/hafnium.bin> \
BL33=<path/to/tftf.bin> \
all fip
Running the tests
*********************
Use the following command to run the tests on FVP. TF-A Tests should boot
and run the default tests including RME tests.
.. code:: shell
FVP_Base_RevC-2xAEMvA \
-C bp.flashloader0.fname=<path/to/fip.bin> \
-C bp.secureflashloader.fname=<path/to/bl1.bin> \
-C bp.refcounter.non_arch_start_at_default=1 \
-C bp.refcounter.use_real_time=0 \
-C bp.ve_sysregs.exit_on_shutdown=1 \
-C cache_state_modelled=1 \
-C cluster0.NUM_CORES=4 \
-C cluster0.PA_SIZE=48 \
-C cluster0.ecv_support_level=2 \
-C cluster0.gicv3.cpuintf-mmap-access-level=2 \
-C cluster0.gicv3.without-DS-support=1 \
-C cluster0.gicv4.mask-virtual-interrupt=1 \
-C cluster0.has_arm_v8-6=1 \
-C cluster0.has_branch_target_exception=1 \
-C cluster0.has_rme=1 \
-C cluster0.has_rndr=1 \
-C cluster0.has_amu=1 \
-C cluster0.has_v8_7_pmu_extension=2 \
-C cluster0.max_32bit_el=-1 \
-C cluster0.restriction_on_speculative_execution=2 \
-C cluster0.restriction_on_speculative_execution_aarch32=2 \
-C cluster1.NUM_CORES=4 \
-C cluster1.PA_SIZE=48 \
-C cluster1.ecv_support_level=2 \
-C cluster1.gicv3.cpuintf-mmap-access-level=2 \
-C cluster1.gicv3.without-DS-support=1 \
-C cluster1.gicv4.mask-virtual-interrupt=1 \
-C cluster1.has_arm_v8-6=1 \
-C cluster1.has_branch_target_exception=1 \
-C cluster1.has_rme=1 \
-C cluster1.has_rndr=1 \
-C cluster1.has_amu=1 \
-C cluster1.has_v8_7_pmu_extension=2 \
-C cluster1.max_32bit_el=-1 \
-C cluster1.restriction_on_speculative_execution=2 \
-C cluster1.restriction_on_speculative_execution_aarch32=2 \
-C pci.pci_smmuv3.mmu.SMMU_AIDR=2 \
-C pci.pci_smmuv3.mmu.SMMU_IDR0=0x0046123B \
-C pci.pci_smmuv3.mmu.SMMU_IDR1=0x00600002 \
-C pci.pci_smmuv3.mmu.SMMU_IDR3=0x1714 \
-C pci.pci_smmuv3.mmu.SMMU_IDR5=0xFFFF0475 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR1=0xA0000002 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0 \
-C bp.pl011_uart0.out_file=uart0.log \
-C bp.pl011_uart1.out_file=uart1.log \
-C bp.pl011_uart2.out_file=uart2.log \
-C pctl.startup=0.0.0.0 \
-Q 1000 \
"$@"
The bottom of the output from *uart0* should look something like the following.
.. code-block:: shell
...
> Test suite 'FF-A Interrupt'
Passed
> Test suite 'SMMUv3 tests'
Passed
> Test suite 'PMU Leakage'
Passed
> Test suite 'DebugFS'
Passed
> Test suite 'Realm payload tests'
Passed
> Test suite 'Invalid memory access'
Passed
...
.. _Arm Confidential Compute Architecture (Arm CCA): https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
.. _Arm Architecture Models website: https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
.. _TF-A Tests: https://trustedfirmware-a-tests.readthedocs.io/en/latest
.. _Hafnium: https://www.trustedfirmware.org/projects/hafnium

View File

@@ -0,0 +1,155 @@
Library at ROM
==============
This document provides an overview of the "library at ROM" implementation in
Trusted Firmware-A (TF-A).
Introduction
~~~~~~~~~~~~
The "library at ROM" feature allows platforms to build a library of functions to
be placed in ROM. This reduces SRAM usage by utilising the available space in
ROM. The "library at ROM" contains a jump table with the list of functions that
are placed in ROM. The capabilities of the "library at ROM" are:
1. Functions can be from one or several libraries.
2. Functions can be patched after they have been programmed into ROM.
3. Platform-specific libraries can be placed in ROM.
4. Functions can be accessed by one or more BL images.
Index file
~~~~~~~~~~
.. image:: ../resources/diagrams/romlib_design.png
:width: 600
Library at ROM is described by an index file with the list of functions to be
placed in ROM. The index file is platform specific and its format is:
::
lib function [patch]
lib -- Name of the library the function belongs to
function -- Name of the function to be placed in library at ROM
[patch] -- Option to patch the function
It is also possible to insert reserved spaces in the list by using the keyword
"reserved" rather than the "lib" and "function" names as shown below:
::
reserved
The reserved spaces can be used to add more functions in the future without
affecting the order and location of functions already existing in the jump
table. Also, for additional flexibility and modularity, the index file can
include other index files.
For an index file example, refer to ``lib/romlib/jmptbl.i``.
Wrapper functions
~~~~~~~~~~~~~~~~~
.. image:: ../resources/diagrams/romlib_wrapper.png
:width: 600
When invoking a function of the "library at ROM", the calling sequence is as
follows:
BL image --> wrapper function --> jump table entry --> library at ROM
The index file is used to create a jump table which is placed in ROM. Then, the
wrappers refer to the jump table to call the "library at ROM" functions. The
wrappers essentially contain a branch instruction to the jump table entry
corresponding to the original function. Finally, the original function in the BL
image(s) is replaced with the wrapper function.
The "library at ROM" contains a necessary init function that initialises the
global variables defined by the functions inside "library at ROM".
Script
~~~~~~
There is a ``romlib_generate.py`` Python script that generates the necessary
files for the "library at ROM" to work. It implements multiple functions:
1. ``romlib_generate.py gentbl [args]`` - Generates the jump table by parsing
the index file.
2. ``romlib_generator.py genvar [args]`` - Generates the jump table global
variable (**not** the jump table itself) with the absolute address in ROM.
This global variable is, basically, a pointer to the jump table.
3. ``romlib_generator.py genwrappers [args]`` - Generates a wrapper function for
each entry in the index file except for the ones that contain the keyword
``patch``. The generated wrapper file is called ``<fn_name>.s``.
4. ``romlib_generator.py pre [args]`` - Preprocesses the index file which means
it resolves all the include commands in the file recursively. It can also
generate a dependency file of the included index files which can be directly
used in makefiles.
Each ``romlib_generate.py`` function has its own manual which is accessible by
runing ``romlib_generator.py [function] --help``.
``romlib_generate.py`` requires Python 3 environment.
Patching of functions in library at ROM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``romlib_generator.py genwrappers`` does not generate wrappers for the
entries in the index file that contain the keyword ``patch``. Thus, it allows
calling the function from the actual library by breaking the link to the
"library at ROM" version of this function.
The calling sequence for a patched function is as follows:
BL image --> function
Memory impact
~~~~~~~~~~~~~
Using library at ROM will modify the memory layout of the BL images:
- The ROM library needs a page aligned RAM section to hold the RW data. This
section is defined by the ROMLIB_RW_BASE and ROMLIB_RW_END macros.
On Arm platforms a section of 1 page (0x1000) is allocated at the top of SRAM.
This will have for effect to shift down all the BL images by 1 page.
- Depending on the functions moved to the ROM library, the size of the BL images
will be reduced.
For example: moving MbedTLS function into the ROM library reduces BL1 and
BL2, but not BL31.
- This change in BL images size can be taken into consideration to optimize the
memory layout when defining the BLx_BASE macros.
Build library at ROM
~~~~~~~~~~~~~~~~~~~~~
The environment variable ``CROSS_COMPILE`` must be set appropriately. Refer to
:ref:`Performing an Initial Build` for more information about setting this
variable.
In the below example the usage of ROMLIB together with mbed TLS is demonstrated
to showcase the benefits of library at ROM - it's not mandatory.
.. code:: shell
make PLAT=fvp \
MBEDTLS_DIR=</path/to/mbedtls/> \
TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=</path/to/bl33.bin> \
USE_ROMLIB=1 \
all fip
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,369 @@
SDEI: Software Delegated Exception Interface
============================================
This document provides an overview of the SDEI dispatcher implementation in
Trusted Firmware-A (TF-A).
Introduction
------------
Software Delegated Exception Interface (|SDEI|) is an Arm specification for
Non-secure world to register handlers with firmware to receive notifications
about system events. Firmware will first receive the system events by way of
asynchronous exceptions and, in response, arranges for the registered handler to
execute in the Non-secure EL.
Normal world software that interacts with the SDEI dispatcher (makes SDEI
requests and receives notifications) is referred to as the *SDEI Client*. A
client receives the event notification at the registered handler even when it
was executing with exceptions masked. The list of SDEI events available to the
client are specific to the platform [#std-event]_. See also `Determining client
EL`_.
.. _general SDEI dispatch:
The following figure depicts a general sequence involving SDEI client executing
at EL2 and an event dispatch resulting from the triggering of a bound interrupt.
A commentary is provided below:
.. uml:: ../resources/diagrams/plantuml/sdei_general.puml
As part of initialisation, the SDEI client binds a Non-secure interrupt [1], and
the SDEI dispatcher returns a platform dynamic event number [2]. The client then
registers a handler for that event [3], enables the event [5], and unmasks all
events on the current PE [7]. This sequence is typical of an SDEI client, but it
may involve additional SDEI calls.
At a later point in time, when the bound interrupt triggers [9], it's trapped to
EL3. The interrupt is handed over to the SDEI dispatcher, which then arranges to
execute the registered handler [10]. The client terminates its execution with
``SDEI_EVENT_COMPLETE`` [11], following which the dispatcher resumes the
original EL2 execution [13]. Note that the SDEI interrupt remains active until
the client handler completes, at which point EL3 does EOI [12].
Other than events bound to interrupts, as depicted in the sequence above, SDEI
events can be explicitly dispatched in response to other exceptions, for
example, upon receiving an *SError* or *Synchronous External Abort*. See
`Explicit dispatch of events`_.
The remainder of this document only discusses the design and implementation of
SDEI dispatcher in TF-A, and assumes that the reader is familiar with the SDEI
specification, the interfaces, and their requirements.
Defining events
---------------
A platform choosing to include the SDEI dispatcher must also define the events
available on the platform, along with their attributes.
The platform is expected to provide two arrays of event descriptors: one for
private events, and another for shared events. The SDEI dispatcher provides
``SDEI_PRIVATE_EVENT()`` and ``SDEI_SHARED_EVENT()`` macros to populate the
event descriptors. Both macros take 3 arguments:
- The event number: this must be a positive 32-bit integer.
- For an event that has a backing interrupt, the interrupt number the event is
bound to:
- If it's not applicable to an event, this shall be left as ``0``.
- If the event is dynamic, this should be specified as ``SDEI_DYN_IRQ``.
- A bit map of `Event flags`_.
To define event 0, the macro ``SDEI_DEFINE_EVENT_0()`` should be used. This
macro takes only one parameter: an SGI number to signal other PEs.
To define an event that's meant to be explicitly dispatched (i.e., not as a
result of receiving an SDEI interrupt), the macro ``SDEI_EXPLICIT_EVENT()``
should be used. It accepts two parameters:
- The event number (as above);
- Event priority: ``SDEI_MAPF_CRITICAL`` or ``SDEI_MAPF_NORMAL``, as described
below.
Once the event descriptor arrays are defined, they should be exported to the
SDEI dispatcher using the ``REGISTER_SDEI_MAP()`` macro, passing it the pointers
to the private and shared event descriptor arrays, respectively. Note that the
``REGISTER_SDEI_MAP()`` macro must be used in the same file where the arrays are
defined.
Regarding event descriptors:
- For Event 0:
- There must be exactly one descriptor in the private array, and none in the
shared array.
- The event should be defined using ``SDEI_DEFINE_EVENT_0()``.
- Must be bound to a Secure SGI on the platform.
- Explicit events should only be used in the private array.
- Statically bound shared and private interrupts must be bound to shared and
private interrupts on the platform, respectively. See the section on
`Configuration within Exception Handling Framework`_.
- Both arrays should be one-dimensional. The ``REGISTER_SDEI_MAP()`` macro
takes care of replicating private events for each PE on the platform.
- Both arrays must be sorted in the increasing order of event number.
The SDEI specification doesn't have provisions for discovery of available events
on the platform. The list of events made available to the client, along with
their semantics, have to be communicated out of band; for example, through
Device Trees or firmware configuration tables.
See also `Event definition example`_.
Event flags
~~~~~~~~~~~
Event flags describe the properties of the event. They are bit maps that can be
``OR``\ ed to form parameters to macros that define events (see
`Defining events`_).
- ``SDEI_MAPF_DYNAMIC``: Marks the event as dynamic. Dynamic events can be
bound to (or released from) any Non-secure interrupt at runtime via the
``SDEI_INTERRUPT_BIND`` and ``SDEI_INTERRUPT_RELEASE`` calls.
- ``SDEI_MAPF_BOUND``: Marks the event as statically bound to an interrupt.
These events cannot be re-bound at runtime.
- ``SDEI_MAPF_NORMAL``: Marks the event as having *Normal* priority. This is
the default priority.
- ``SDEI_MAPF_CRITICAL``: Marks the event as having *Critical* priority.
Event definition example
------------------------
.. code:: c
static sdei_ev_map_t plat_private_sdei[] = {
/* Event 0 definition */
SDEI_DEFINE_EVENT_0(8),
/* PPI */
SDEI_PRIVATE_EVENT(8, 23, SDEI_MAPF_BOUND),
/* Dynamic private events */
SDEI_PRIVATE_EVENT(100, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC),
SDEI_PRIVATE_EVENT(101, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC)
/* Events for explicit dispatch */
SDEI_EXPLICIT_EVENT(2000, SDEI_MAPF_NORMAL);
SDEI_EXPLICIT_EVENT(2000, SDEI_MAPF_CRITICAL);
};
/* Shared event mappings */
static sdei_ev_map_t plat_shared_sdei[] = {
SDEI_SHARED_EVENT(804, 0, SDEI_MAPF_DYNAMIC),
/* Dynamic shared events */
SDEI_SHARED_EVENT(3000, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC),
SDEI_SHARED_EVENT(3001, SDEI_DYN_IRQ, SDEI_MAPF_DYNAMIC)
};
/* Export SDEI events */
REGISTER_SDEI_MAP(plat_private_sdei, plat_shared_sdei);
Configuration within Exception Handling Framework
-------------------------------------------------
The SDEI dispatcher functions alongside the Exception Handling Framework. This
means that the platform must assign priorities to both Normal and Critical SDEI
interrupts for the platform:
- Install priority descriptors for Normal and Critical SDEI interrupts.
- For those interrupts that are statically bound (i.e. events defined as having
the ``SDEI_MAPF_BOUND`` property), enumerate their properties for the GIC
driver to configure interrupts accordingly.
The interrupts must be configured to target EL3. This means that they should
be configured as *Group 0*. Additionally, on GICv2 systems, the build option
``GICV2_G0_FOR_EL3`` must be set to ``1``.
See also :ref:`porting_guide_sdei_requirements`.
Determining client EL
---------------------
The SDEI specification requires that the *physical* SDEI client executes in the
highest Non-secure EL implemented on the system. This means that the dispatcher
will only allow SDEI calls to be made from:
- EL2, if EL2 is implemented. The Hypervisor is expected to implement a
*virtual* SDEI dispatcher to support SDEI clients in Guest Operating Systems
executing in Non-secure EL1.
- Non-secure EL1, if EL2 is not implemented or disabled.
See the function ``sdei_client_el()`` in ``sdei_private.h``.
.. _explicit-dispatch-of-events:
Explicit dispatch of events
---------------------------
Typically, an SDEI event dispatch is caused by the PE receiving interrupts that
are bound to an SDEI event. However, there are cases where the Secure world
requires dispatch of an SDEI event as a direct or indirect result of a past
activity, such as receiving a Secure interrupt or an exception.
The SDEI dispatcher implementation provides ``sdei_dispatch_event()`` API for
this purpose. The API has the following signature:
.. code:: c
int sdei_dispatch_event(int ev_num);
The parameter ``ev_num`` is the event number to dispatch. The API returns ``0``
on success, or ``-1`` on failure.
The following figure depicts a scenario involving explicit dispatch of SDEI
event. A commentary is provided below:
.. uml:: ../resources/diagrams/plantuml/sdei_explicit_dispatch.puml
As part of initialisation, the SDEI client registers a handler for a platform
event [1], enables the event [3], and unmasks the current PE [5]. Note that,
unlike in `general SDEI dispatch`_, this doesn't involve interrupt binding, as
bound or dynamic events can't be explicitly dispatched (see the section below).
At a later point in time, a critical event [#critical-event]_ is trapped into
EL3 [7]. EL3 performs a first-level triage of the event, and a RAS component
assumes further handling [8]. The dispatch completes, but intends to involve
Non-secure world in further handling, and therefore decides to explicitly
dispatch an event [10] (which the client had already registered for [1]). The
rest of the sequence is similar to that in the `general SDEI dispatch`_: the
requested event is dispatched to the client (assuming all the conditions are
met), and when the handler completes, the preempted execution resumes.
Conditions for event dispatch
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All of the following requirements must be met for the API to return ``0`` and
event to be dispatched:
- SDEI events must be unmasked on the PE. I.e. the client must have called
``PE_UNMASK`` beforehand.
- Event 0 can't be dispatched.
- The event must be declared using the ``SDEI_EXPLICIT_EVENT()`` macro
described above.
- The event must be private to the PE.
- The event must have been registered for and enabled.
- A dispatch for the same event must not be outstanding. I.e. it hasn't already
been dispatched and is yet to be completed.
- The priority of the event (either Critical or Normal, as configured by the
platform at build-time) shouldn't cause priority inversion. This means:
- If it's of Normal priority, neither Normal nor Critical priority dispatch
must be outstanding on the PE.
- If it's of a Critical priority, no Critical priority dispatch must be
outstanding on the PE.
Further, the caller should be aware of the following assumptions made by the
dispatcher:
- The caller of the API is a component running in EL3; for example, a RAS
driver.
- The requested dispatch will be permitted by the Exception Handling Framework.
I.e. the caller must make sure that the requested dispatch has sufficient
priority so as not to cause priority level inversion within Exception
Handling Framework.
- The caller must be prepared for the SDEI dispatcher to restore the Non-secure
context, and mark that the active context.
- The call will block until the SDEI client completes the event (i.e. when the
client calls either ``SDEI_EVENT_COMPLETE`` or ``SDEI_COMPLETE_AND_RESUME``).
- The caller must be prepared for this API to return failure and handle
accordingly.
Porting requirements
--------------------
The porting requirements of the SDEI dispatcher are outlined in the
:ref:`Porting Guide <porting_guide_sdei_requirements>`.
Note on writing SDEI event handlers
-----------------------------------
*This section pertains to SDEI event handlers in general, not just when using
the TF-A SDEI dispatcher.*
The SDEI specification requires that event handlers preserve the contents of all
registers except ``x0`` to ``x17``. This has significance if event handler is
written in C: compilers typically adjust the stack frame at the beginning and
end of C functions. For example, AArch64 GCC typically produces the following
function prologue and epilogue:
::
c_event_handler:
stp x29, x30, [sp,#-32]!
mov x29, sp
...
bl ...
...
ldp x29, x30, [sp],#32
ret
The register ``x29`` is used as frame pointer in the prologue. Because neither a
valid ``SDEI_EVENT_COMPLETE`` nor ``SDEI_EVENT_COMPLETE_AND_RESUME`` calls
return to the handler, the epilogue never gets executed, and registers ``x29``
and ``x30`` (in the case above) are inadvertently corrupted. This violates the
SDEI specification, and the normal execution thereafter will result in
unexpected behaviour.
To work this around, it's advised that the top-level event handlers are
implemented in assembly, following a similar pattern as below:
::
asm_event_handler:
/* Save link register whilst maintaining stack alignment */
stp xzr, x30, [sp, #-16]!
bl c_event_handler
/* Restore link register */
ldp xzr, x30, [sp], #16
/* Complete call */
ldr x0, =SDEI_EVENT_COMPLETE
smc #0
b .
--------------
*Copyright (c) 2017-2019, Arm Limited and Contributors. All rights reserved.*
.. rubric:: Footnotes
.. [#std-event] Except event 0, which is defined by the SDEI specification as a
standard event.
.. [#critical-event] Examples of critical events are *SError*, *Synchronous
External Abort*, *Fault Handling interrupt* or *Error
Recovery interrupt* from one of RAS nodes in the system.
.. _SDEI specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
.. _Software Delegated Exception Interface: `SDEI specification`_

View File

@@ -0,0 +1,834 @@
Secure Partition Manager (MM)
*****************************
Foreword
========
Two implementations of a Secure Partition Manager co-exist in the TF-A codebase:
- SPM based on the FF-A specification (:ref:`Secure Partition Manager`).
- SPM based on the MM interface.
Both implementations differ in their architectures and only one can be selected
at build time.
This document describes the latter implementation where the Secure Partition Manager
resides at EL3 and management services run from isolated Secure Partitions at S-EL0.
The communication protocol is established through the Management Mode (MM) interface.
Background
==========
In some market segments that primarily deal with client-side devices like mobile
phones, tablets, STBs and embedded devices, a Trusted OS instantiates trusted
applications to provide security services like DRM, secure payment and
authentication. The Global Platform TEE Client API specification defines the API
used by Non-secure world applications to access these services. A Trusted OS
fulfils the requirements of a security service as described above.
Management services are typically implemented at the highest level of privilege
in the system, i.e. EL3 in Trusted Firmware-A (TF-A). The service requirements are
fulfilled by the execution environment provided by TF-A.
The following diagram illustrates the corresponding software stack:
|Image 1|
In other market segments that primarily deal with server-side devices (e.g. data
centres and enterprise servers) the secure software stack typically does not
include a Global Platform Trusted OS. Security functions are accessed through
other interfaces (e.g. ACPI TCG TPM interface, UEFI runtime variable service).
Placement of management and security functions with diverse requirements in a
privileged Exception Level (i.e. EL3 or S-EL1) makes security auditing of
firmware more difficult and does not allow isolation of unrelated services from
each other either.
Introduction
============
A **Secure Partition** is a software execution environment instantiated in
S-EL0 that can be used to implement simple management and security services.
Since S-EL0 is an unprivileged Exception Level, a Secure Partition relies on
privileged firmware (i.e. TF-A) to be granted access to system and processor
resources. Essentially, it is a software sandbox in the Secure world that runs
under the control of privileged software, provides one or more services and
accesses the following system resources:
- Memory and device regions in the system address map.
- PE system registers.
- A range of synchronous exceptions (e.g. SMC function identifiers).
Note that currently TF-A only supports handling one Secure Partition.
A Secure Partition enables TF-A to implement only the essential secure
services in EL3 and instantiate the rest in a partition in S-EL0.
Furthermore, multiple Secure Partitions can be used to isolate unrelated
services from each other.
The following diagram illustrates the place of a Secure Partition in a typical
Armv8-A software stack. A single or multiple Secure Partitions provide secure
services to software components in the Non-secure world and other Secure
Partitions.
|Image 2|
The TF-A build system is responsible for including the Secure Partition image
in the FIP. During boot, BL2 includes support to authenticate and load the
Secure Partition image. A BL31 component called **Secure Partition Manager
(SPM)** is responsible for managing the partition. This is semantically
similar to a hypervisor managing a virtual machine.
The SPM is responsible for the following actions during boot:
- Allocate resources requested by the Secure Partition.
- Perform architectural and system setup required by the Secure Partition to
fulfil a service request.
- Implement a standard interface that is used for initialising a Secure
Partition.
The SPM is responsible for the following actions during runtime:
- Implement a standard interface that is used by a Secure Partition to fulfil
service requests.
- Implement a standard interface that is used by the Non-secure world for
accessing the services exported by a Secure Partition. A service can be
invoked through a SMC.
Alternatively, a partition can be viewed as a thread of execution running under
the control of the SPM. Hence common programming concepts described below are
applicable to a partition.
Description
===========
The previous section introduced some general aspects of the software
architecture of a Secure Partition. This section describes the specific choices
made in the current implementation of this software architecture. Subsequent
revisions of the implementation will include a richer set of features that
enable a more flexible architecture.
Building TF-A with Secure Partition support
-------------------------------------------
SPM is supported on the Arm FVP exclusively at the moment. The current
implementation supports inclusion of only a single Secure Partition in which a
service always runs to completion (e.g. the requested services cannot be
preempted to give control back to the Normal world).
It is not currently possible for BL31 to integrate SPM support and a Secure
Payload Dispatcher (SPD) at the same time; they are mutually exclusive. In the
SPM bootflow, a Secure Partition image executing at S-EL0 replaces the Secure
Payload image executing at S-EL1 (e.g. a Trusted OS). Both are referred to as
BL32.
A working prototype of a SP has been implemented by re-purposing the EDK2 code
and tools, leveraging the concept of the *Standalone Management Mode (MM)* in
the UEFI specification (see the PI v1.6 Volume 4: Management Mode Core
Interface). This will be referred to as the *Standalone MM Secure Partition* in
the rest of this document.
To enable SPM support in TF-A, the source code must be compiled with the build
flag ``SPM_MM=1``, along with ``EL3_EXCEPTION_HANDLING=1`` and ``ENABLE_SVE_FOR_NS=0``.
On Arm platforms the build option ``ARM_BL31_IN_DRAM`` must be set to 1. Also, the
location of the binary that contains the BL32 image
(``BL32=path/to/image.bin``) must be specified.
First, build the Standalone MM Secure Partition. To build it, refer to the
`instructions in the EDK2 repository`_.
Then build TF-A with SPM support and include the Standalone MM Secure Partition
image in the FIP:
.. code:: shell
BL32=path/to/standalone/mm/sp BL33=path/to/bl33.bin \
make PLAT=fvp SPM_MM=1 EL3_EXCEPTION_HANDLING=1 ENABLE_SVE_FOR_NS=0 ARM_BL31_IN_DRAM=1 all fip
Describing Secure Partition resources
-------------------------------------
TF-A exports a porting interface that enables a platform to specify the system
resources required by the Secure Partition. Some instructions are given below.
However, this interface is under development and it may change as new features
are implemented.
- A Secure Partition is considered a BL32 image, so the same defines that apply
to BL32 images apply to a Secure Partition: ``BL32_BASE`` and ``BL32_LIMIT``.
- The following defines are needed to allocate space for the translation tables
used by the Secure Partition: ``PLAT_SP_IMAGE_MMAP_REGIONS`` and
``PLAT_SP_IMAGE_MAX_XLAT_TABLES``.
- The functions ``plat_get_secure_partition_mmap()`` and
``plat_get_secure_partition_boot_info()`` have to be implemented. The file
``plat/arm/board/fvp/fvp_common.c`` can be used as an example. It uses the
defines in ``include/plat/arm/common/arm_spm_def.h``.
- ``plat_get_secure_partition_mmap()`` returns an array of mmap regions that
describe the memory regions that the SPM needs to allocate for a Secure
Partition.
- ``plat_get_secure_partition_boot_info()`` returns a
``spm_mm_boot_info_t`` struct that is populated by the platform
with information about the memory map of the Secure Partition.
For an example of all the changes in context, you may refer to commit
``e29efeb1b4``, in which the port for FVP was introduced.
Accessing Secure Partition services
-----------------------------------
The `SMC Calling Convention`_ (*Arm DEN 0028B*) describes SMCs as a conduit for
accessing services implemented in the Secure world. The ``MM_COMMUNICATE``
interface defined in the `Management Mode Interface Specification`_ (*Arm DEN
0060A*) is used to invoke a Secure Partition service as a Fast Call.
The mechanism used to identify a service within the partition depends on the
service implementation. It is assumed that the caller of the service will be
able to discover this mechanism through standard platform discovery mechanisms
like ACPI and Device Trees. For example, *Volume 4: Platform Initialisation
Specification v1.6. Management Mode Core Interface* specifies that a GUID is
used to identify a management mode service. A client populates the GUID in the
``EFI_MM_COMMUNICATE_HEADER``. The header is populated in the communication
buffer shared with the Secure Partition.
A Fast Call appears to be atomic from the perspective of the caller and returns
when the requested operation has completed. A service invoked through the
``MM_COMMUNICATE`` SMC will run to completion in the partition on a given CPU.
The SPM is responsible for guaranteeing this behaviour. This means that there
can only be a single outstanding Fast Call in a partition on a given CPU.
Exchanging data with the Secure Partition
-----------------------------------------
The exchange of data between the Non-secure world and the partition takes place
through a shared memory region. The location of data in the shared memory area
is passed as a parameter to the ``MM_COMMUNICATE`` SMC. The shared memory area
is statically allocated by the SPM and is expected to be either implicitly known
to the Non-secure world or discovered through a platform discovery mechanism
e.g. ACPI table or device tree. It is possible for the Non-secure world to
exchange data with a partition only if it has been populated in this shared
memory area. The shared memory area is implemented as per the guidelines
specified in Section 3.2.3 of the `Management Mode Interface Specification`_
(*Arm DEN 0060A*).
The format of data structures used to encapsulate data in the shared memory is
agreed between the Non-secure world and the Secure Partition. For example, in
the `Management Mode Interface specification`_ (*Arm DEN 0060A*), Section 4
describes that the communication buffer shared between the Non-secure world and
the Management Mode (MM) in the Secure world must be of the type
``EFI_MM_COMMUNICATE_HEADER``. This data structure is defined in *Volume 4:
Platform Initialisation Specification v1.6. Management Mode Core Interface*.
Any caller of a MM service will have to use the ``EFI_MM_COMMUNICATE_HEADER``
data structure.
Runtime model of the Secure Partition
=====================================
This section describes how the Secure Partition interfaces with the SPM.
Interface with SPM
------------------
In order to instantiate one or more secure services in the Secure Partition in
S-EL0, the SPM should define the following types of interfaces:
- Interfaces that enable access to privileged operations from S-EL0. These
operations typically require access to system resources that are either shared
amongst multiple software components in the Secure world or cannot be directly
accessed from an unprivileged Exception Level.
- Interfaces that establish the control path between the SPM and the Secure
Partition.
This section describes the APIs currently exported by the SPM that enable a
Secure Partition to initialise itself and export its services in S-EL0. These
interfaces are not accessible from the Non-secure world.
Conduit
^^^^^^^
The `SMC Calling Convention`_ (*Arm DEN 0028B*) specification describes the SMC
and HVC conduits for accessing firmware services and their availability
depending on the implemented Exception levels. In S-EL0, the Supervisor Call
exception (SVC) is the only architectural mechanism available for unprivileged
software to make a request for an operation implemented in privileged software.
Hence, the SVC conduit must be used by the Secure Partition to access interfaces
implemented by the SPM.
A SVC causes an exception to be taken to S-EL1. TF-A assumes ownership of S-EL1
and installs a simple exception vector table in S-EL1 that relays a SVC request
from a Secure Partition as a SMC request to the SPM in EL3. Upon servicing the
SMC request, Trusted Firmware-A returns control directly to S-EL0 through an
ERET instruction.
Calling conventions
^^^^^^^^^^^^^^^^^^^
The `SMC Calling Convention`_ (*Arm DEN 0028B*) specification describes the
32-bit and 64-bit calling conventions for the SMC and HVC conduits. The SVC
conduit introduces the concept of SVC32 and SVC64 calling conventions. The SVC32
and SVC64 calling conventions are equivalent to the 32-bit (SMC32) and the
64-bit (SMC64) calling conventions respectively.
Communication initiated by SPM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A service request is initiated from the SPM through an exception return
instruction (ERET) to S-EL0. Later, the Secure Partition issues an SVC
instruction to signal completion of the request. Some example use cases are
given below:
- A request to initialise the Secure Partition during system boot.
- A request to handle a runtime service request.
Communication initiated by Secure Partition
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A request is initiated from the Secure Partition by executing a SVC instruction.
An ERET instruction is used by TF-A to return to S-EL0 with the result of the
request.
For instance, a request to perform privileged operations on behalf of a
partition (e.g. management of memory attributes in the translation tables for
the Secure EL1&0 translation regime).
Interfaces
^^^^^^^^^^
The current implementation reserves function IDs for Fast Calls in the Standard
Secure Service calls range (see `SMC Calling Convention`_ (*Arm DEN 0028B*)
specification) for each API exported by the SPM. This section defines the
function prototypes for each function ID. The function IDs specify whether one
or both of the SVC32 and SVC64 calling conventions can be used to invoke the
corresponding interface.
Secure Partition Event Management
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The Secure Partition provides an Event Management interface that is used by the
SPM to delegate service requests to the Secure Partition. The interface also
allows the Secure Partition to:
- Register with the SPM a service that it provides.
- Indicate completion of a service request delegated by the SPM
Miscellaneous interfaces
------------------------
``SPM_MM_VERSION_AARCH32``
^^^^^^^^^^^^^^^^^^^^^^^^^^
- Description
Returns the version of the interface exported by SPM.
- Parameters
- **uint32** - Function ID
- SVC32 Version: **0x84000060**
- Return parameters
- **int32** - Status
On success, the format of the value is as follows:
- Bit [31]: Must be 0
- Bits [30:16]: Major Version. Must be 0 for this revision of the SPM
interface.
- Bits [15:0]: Minor Version. Must be 1 for this revision of the SPM
interface.
On error, the format of the value is as follows:
- ``NOT_SUPPORTED``: SPM interface is not supported or not available for the
client.
- Usage
This function returns the version of the Secure Partition Manager
implementation. The major version is 0 and the minor version is 1. The version
number is a 31-bit unsigned integer, with the upper 15 bits denoting the major
revision, and the lower 16 bits denoting the minor revision. The following
rules apply to the version numbering:
- Different major revision values indicate possibly incompatible functions.
- For two revisions, A and B, for which the major revision values are
identical, if the minor revision value of revision B is greater than the
minor revision value of revision A, then every function in revision A must
work in a compatible way with revision B. However, it is possible for
revision B to have a higher function count than revision A.
- Implementation responsibilities
If this function returns a valid version number, all the functions that are
described subsequently must be implemented, unless it is explicitly stated
that a function is optional.
See `Error Codes`_ for integer values that are associated with each return
code.
Secure Partition Initialisation
-------------------------------
The SPM is responsible for initialising the architectural execution context to
enable initialisation of a service in S-EL0. The responsibilities of the SPM are
listed below. At the end of initialisation, the partition issues a
``MM_SP_EVENT_COMPLETE_AARCH64`` call (described later) to signal readiness for
handling requests for services implemented by the Secure Partition. The
initialisation event is executed as a Fast Call.
Entry point invocation
^^^^^^^^^^^^^^^^^^^^^^
The entry point for service requests that should be handled as Fast Calls is
used as the target of the ERET instruction to start initialisation of the Secure
Partition.
Architectural Setup
^^^^^^^^^^^^^^^^^^^
At cold boot, system registers accessible from S-EL0 will be in their reset
state unless otherwise specified. The SPM will perform the following
architectural setup to enable execution in S-EL0
MMU setup
^^^^^^^^^
The platform port of a Secure Partition specifies to the SPM a list of regions
that it needs access to and their attributes. The SPM validates this resource
description and initialises the Secure EL1&0 translation regime as follows.
1. Device regions are mapped with nGnRE attributes and Execute Never
instruction access permissions.
2. Code memory regions are mapped with RO data and Executable instruction access
permissions.
3. Read Only data memory regions are mapped with RO data and Execute Never
instruction access permissions.
4. Read Write data memory regions are mapped with RW data and Execute Never
instruction access permissions.
5. If the resource description does not explicitly describe the type of memory
regions then all memory regions will be marked with Code memory region
attributes.
6. The ``UXN`` and ``PXN`` bits are set for regions that are not executable by
S-EL0 or S-EL1.
System Register Setup
^^^^^^^^^^^^^^^^^^^^^
System registers that influence software execution in S-EL0 are setup by the SPM
as follows:
1. ``SCTLR_EL1``
- ``UCI=1``
- ``EOE=0``
- ``WXN=1``
- ``nTWE=1``
- ``nTWI=1``
- ``UCT=1``
- ``DZE=1``
- ``I=1``
- ``UMA=0``
- ``SA0=1``
- ``C=1``
- ``A=1``
- ``M=1``
2. ``CPACR_EL1``
- ``FPEN=b'11``
3. ``PSTATE``
- ``D,A,I,F=1``
- ``CurrentEL=0`` (EL0)
- ``SpSel=0`` (Thread mode)
- ``NRW=0`` (AArch64)
General Purpose Register Setup
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
SPM will invoke the entry point of a service by executing an ERET instruction.
This transition into S-EL0 is special since it is not in response to a previous
request through a SVC instruction. This is the first entry into S-EL0. The
general purpose register usage at the time of entry will be as specified in the
"Return State" column of Table 3-1 in Section 3.1 "Register use in AArch64 SMC
calls" of the `SMC Calling Convention`_ (*Arm DEN 0028B*) specification. In
addition, certain other restrictions will be applied as described below.
1. ``SP_EL0``
A non-zero value will indicate that the SPM has initialised the stack pointer
for the current CPU.
The value will be 0 otherwise.
2. ``X4-X30``
The values of these registers will be 0.
3. ``X0-X3``
Parameters passed by the SPM.
- ``X0``: Virtual address of a buffer shared between EL3 and S-EL0. The
buffer will be mapped in the Secure EL1&0 translation regime with read-only
memory attributes described earlier.
- ``X1``: Size of the buffer in bytes.
- ``X2``: Cookie value (*IMPLEMENTATION DEFINED*).
- ``X3``: Cookie value (*IMPLEMENTATION DEFINED*).
Runtime Event Delegation
------------------------
The SPM receives requests for Secure Partition services through a synchronous
invocation (i.e. a SMC from the Non-secure world). These requests are delegated
to the partition by programming a return from the last
``MM_SP_EVENT_COMPLETE_AARCH64`` call received from the partition. The last call
was made to signal either completion of Secure Partition initialisation or
completion of a partition service request.
``MM_SP_EVENT_COMPLETE_AARCH64``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Description
Signal completion of the last SP service request.
- Parameters
- **uint32** - Function ID
- SVC64 Version: **0xC4000061**
- **int32** - Event Status Code
Zero or a positive value indicates that the event was handled successfully.
The values depend upon the original event that was delegated to the Secure
partition. They are described as follows.
- ``SUCCESS`` : Used to indicate that the Secure Partition was initialised
or a runtime request was handled successfully.
- Any other value greater than 0 is used to pass a specific Event Status
code in response to a runtime event.
A negative value indicates an error. The values of Event Status code depend
on the original event.
- Return parameters
- **int32** - Event ID/Return Code
Zero or a positive value specifies the unique ID of the event being
delegated to the partition by the SPM.
In the current implementation, this parameter contains the function ID of
the ``MM_COMMUNICATE`` SMC. This value indicates to the partition that an
event has been delegated to it in response to an ``MM_COMMUNICATE`` request
from the Non-secure world.
A negative value indicates an error. The format of the value is as follows:
- ``NOT_SUPPORTED``: Function was called from the Non-secure world.
See `Error Codes`_ for integer values that are associated with each return
code.
- **uint32** - Event Context Address
Address of a buffer shared between the SPM and Secure Partition to pass
event specific information. The format of the data populated in the buffer
is implementation defined.
The buffer is mapped in the Secure EL1&0 translation regime with read-only
memory attributes described earlier.
For the SVC64 version, this parameter is a 64-bit Virtual Address (VA).
For the SVC32 version, this parameter is a 32-bit Virtual Address (VA).
- **uint32** - Event context size
Size of the memory starting at Event Address.
- **uint32/uint64** - Event Cookie
This is an optional parameter. If unused its value is SBZ.
- Usage
This function signals to the SPM that the handling of the last event delegated
to a partition has completed. The partition is ready to handle its next event.
A return from this function is in response to the next event that will be
delegated to the partition. The return parameters describe the next event.
- Caller responsibilities
A Secure Partition must only call ``MM_SP_EVENT_COMPLETE_AARCH64`` to signal
completion of a request that was delegated to it by the SPM.
- Callee responsibilities
When the SPM receives this call from a Secure Partition, the corresponding
syndrome information can be used to return control through an ERET
instruction, to the instruction immediately after the call in the Secure
Partition context. This syndrome information comprises of general purpose and
system register values when the call was made.
The SPM must save this syndrome information and use it to delegate the next
event to the Secure Partition. The return parameters of this interface must
specify the properties of the event and be populated in ``X0-X3/W0-W3``
registers.
Secure Partition Memory Management
----------------------------------
A Secure Partition executes at S-EL0, which is an unprivileged Exception Level.
The SPM is responsible for enabling access to regions of memory in the system
address map from a Secure Partition. This is done by mapping these regions in
the Secure EL1&0 Translation regime with appropriate memory attributes.
Attributes refer to memory type, permission, cacheability and shareability
attributes used in the Translation tables. The definitions of these attributes
and their usage can be found in the `Armv8-A ARM`_ (*Arm DDI 0487*).
All memory required by the Secure Partition is allocated upfront in the SPM,
even before handing over to the Secure Partition for the first time. The initial
access permissions of the memory regions are statically provided by the platform
port and should allow the Secure Partition to run its initialisation code.
However, they might not suit the final needs of the Secure Partition because its
final memory layout might not be known until the Secure Partition initialises
itself. As the Secure Partition initialises its runtime environment it might,
for example, load dynamically some modules. For instance, a Secure Partition
could implement a loader for a standard executable file format (e.g. an PE-COFF
loader for loading executable files at runtime). These executable files will be
a part of the Secure Partition image. The location of various sections in an
executable file and their permission attributes (e.g. read-write data, read-only
data and code) will be known only when the file is loaded into memory.
In this case, the Secure Partition needs a way to change the access permissions
of its memory regions. The SPM provides this feature through the
``MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64`` SVC interface. This interface is
available to the Secure Partition during a specific time window: from the first
entry into the Secure Partition up to the first ``SP_EVENT_COMPLETE`` call that
signals the Secure Partition has finished its initialisation. Once the
initialisation is complete, the SPM does not allow changes to the memory
attributes.
This section describes the standard SVC interface that is implemented by the SPM
to determine and change permission attributes of memory regions that belong to a
Secure Partition.
``MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Description
Request the permission attributes of a memory region from S-EL0.
- Parameters
- **uint32** Function ID
- SVC64 Version: **0xC4000064**
- **uint64** Base Address
This parameter is a 64-bit Virtual Address (VA).
There are no alignment restrictions on the Base Address. The permission
attributes of the translation granule it lies in are returned.
- Return parameters
- **int32** - Memory Attributes/Return Code
On success the format of the Return Code is as follows:
- Bits[1:0] : Data access permission
- b'00 : No access
- b'01 : Read-Write access
- b'10 : Reserved
- b'11 : Read-only access
- Bit[2]: Instruction access permission
- b'0 : Executable
- b'1 : Non-executable
- Bit[30:3] : Reserved. SBZ.
- Bit[31] : Must be 0
On failure the following error codes are returned:
- ``INVALID_PARAMETERS``: The Secure Partition is not allowed to access the
memory region the Base Address lies in.
- ``NOT_SUPPORTED`` : The SPM does not support retrieval of attributes of
any memory page that is accessible by the Secure Partition, or the
function was called from the Non-secure world. Also returned if it is
used after ``MM_SP_EVENT_COMPLETE_AARCH64``.
See `Error Codes`_ for integer values that are associated with each return
code.
- Usage
This function is used to request the permission attributes for S-EL0 on a
memory region accessible from a Secure Partition. The size of the memory
region is equal to the Translation Granule size used in the Secure EL1&0
translation regime. Requests to retrieve other memory region attributes are
not currently supported.
- Caller responsibilities
The caller must obtain the Translation Granule Size of the Secure EL1&0
translation regime from the SPM through an implementation defined method.
- Callee responsibilities
The SPM must not return the memory access controls for a page of memory that
is not accessible from a Secure Partition.
``MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Description
Set the permission attributes of a memory region from S-EL0.
- Parameters
- **uint32** - Function ID
- SVC64 Version: **0xC4000065**
- **uint64** - Base Address
This parameter is a 64-bit Virtual Address (VA).
The alignment of the Base Address must be greater than or equal to the size
of the Translation Granule Size used in the Secure EL1&0 translation
regime.
- **uint32** - Page count
Number of pages starting from the Base Address whose memory attributes
should be changed. The page size is equal to the Translation Granule Size.
- **uint32** - Memory Access Controls
- Bits[1:0] : Data access permission
- b'00 : No access
- b'01 : Read-Write access
- b'10 : Reserved
- b'11 : Read-only access
- Bit[2] : Instruction access permission
- b'0 : Executable
- b'1 : Non-executable
- Bits[31:3] : Reserved. SBZ.
A combination of attributes that mark the region with RW and Executable
permissions is prohibited. A request to mark a device memory region with
Executable permissions is prohibited.
- Return parameters
- **int32** - Return Code
- ``SUCCESS``: The Memory Access Controls were changed successfully.
- ``DENIED``: The SPM is servicing a request to change the attributes of a
memory region that overlaps with the region specified in this request.
- ``INVALID_PARAMETER``:An invalid combination of Memory Access Controls
has been specified. The Base Address is not correctly aligned. The Secure
Partition is not allowed to access part or all of the memory region
specified in the call.
- ``NO_MEMORY``: The SPM does not have memory resources to change the
attributes of the memory region in the translation tables.
- ``NOT_SUPPORTED``: The SPM does not permit change of attributes of any
memory region that is accessible by the Secure Partition. Function was
called from the Non-secure world. Also returned if it is used after
``MM_SP_EVENT_COMPLETE_AARCH64``.
See `Error Codes`_ for integer values that are associated with each return
code.
- Usage
This function is used to change the permission attributes for S-EL0 on a
memory region accessible from a Secure Partition. The size of the memory
region is equal to the Translation Granule size used in the Secure EL1&0
translation regime. Requests to change other memory region attributes are not
currently supported.
This function is only available at boot time. This interface is revoked after
the Secure Partition sends the first ``MM_SP_EVENT_COMPLETE_AARCH64`` to
signal that it is initialised and ready to receive run-time requests.
- Caller responsibilities
The caller must obtain the Translation Granule Size of the Secure EL1&0
translation regime from the SPM through an implementation defined method.
- Callee responsibilities
The SPM must preserve the original memory access controls of the region of
memory in case of an unsuccessful call. The SPM must preserve the consistency
of the S-EL1 translation regime if this function is called on different PEs
concurrently and the memory regions specified overlap.
Error Codes
-----------
.. csv-table::
:header: "Name", "Value"
``SUCCESS``,0
``NOT_SUPPORTED``,-1
``INVALID_PARAMETER``,-2
``DENIED``,-3
``NO_MEMORY``,-5
``NOT_PRESENT``,-7
--------------
*Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.*
.. _Armv8-A ARM: https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
.. _instructions in the EDK2 repository: https://github.com/tianocore/edk2-staging/blob/AArch64StandaloneMm/HowtoBuild.MD
.. _Management Mode Interface Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0060a/DEN0060A_ARM_MM_Interface_Specification.pdf
.. _SDEI Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest
.. |Image 1| image:: ../resources/diagrams/secure_sw_stack_tos.png
.. |Image 2| image:: ../resources/diagrams/secure_sw_stack_sp.png

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,10 @@
Secure Payload Dispatcher (SPD)
===============================
.. toctree::
:maxdepth: 1
:caption: Contents
optee-dispatcher
tlk-dispatcher
trusty-dispatcher

View File

@@ -0,0 +1,14 @@
OP-TEE Dispatcher
=================
`OP-TEE OS`_ is a Trusted OS running as Secure EL1.
To build and execute OP-TEE follow the instructions at
`OP-TEE build.git`_
--------------
*Copyright (c) 2014-2018, Arm Limited and Contributors. All rights reserved.*
.. _OP-TEE OS: https://github.com/OP-TEE/build
.. _OP-TEE build.git: https://github.com/OP-TEE/build

View File

@@ -0,0 +1,76 @@
Trusted Little Kernel (TLK) Dispatcher
======================================
TLK dispatcher (TLK-D) adds support for NVIDIA's Trusted Little Kernel (TLK)
to work with Trusted Firmware-A (TF-A). TLK-D can be compiled by including it
in the platform's makefile. TLK is primarily meant to work with Tegra SoCs,
so while TF-A only supports TLK on Tegra, the dispatcher code can only be
compiled for other platforms.
In order to compile TLK-D, we need a BL32 image to be present. Since, TLKD
just needs to compile, any BL32 image would do. To use TLK as the BL32, please
refer to the "Build TLK" section.
Once a BL32 is ready, TLKD can be included in the image by adding "SPD=tlkd"
to the build command.
Trusted Little Kernel (TLK)
---------------------------
TLK is a Trusted OS running as Secure EL1. It is a Free Open Source Software
(FOSS) release of the NVIDIA® Trusted Little Kernel (TLK) technology, which
extends technology made available with the development of the Little Kernel (LK).
You can download the LK modular embedded preemptive kernel for use on Arm,
x86, and AVR32 systems from https://github.com/travisg/lk
NVIDIA implemented its Trusted Little Kernel (TLK) technology, designed as a
free and open-source trusted execution environment (OTE).
TLK features include:
• Small, pre-emptive kernel
• Supports multi-threading, IPCs, and thread scheduling
• Added TrustZone features
• Added Secure Storage
• Under MIT/FreeBSD license
NVIDIA extensions to Little Kernel (LK) include:
• User mode
• Address-space separation for TAs
• TLK Client Application (CA) library
• TLK TA library
• Crypto library (encrypt/decrypt, key handling) via OpenSSL
• Linux kernel driver
• Cortex A9/A15 support
• Power Management
• TrustZone memory carve-out (reconfigurable)
• Page table management
• Debugging support over UART (USB planned)
TLK is hosted by NVIDIA on http://nv-tegra.nvidia.com under the
3rdparty/ote\_partner/tlk.git repository. Detailed information about
TLK and OTE can be found in the Tegra\_BSP\_for\_Android\_TLK\_FOSS\_Reference.pdf
manual located under the "documentation" directory\_.
Build TLK
---------
To build and execute TLK, follow the instructions from "Building a TLK Device"
section from Tegra\_BSP\_for\_Android\_TLK\_FOSS\_Reference.pdf manual.
Input parameters to TLK
-----------------------
TLK expects the TZDRAM size and a structure containing the boot arguments. BL2
passes this information to the EL3 software as members of the bl32\_ep\_info
struct, where bl32\_ep\_info is part of bl31\_params\_t (passed by BL2 in X0)
Example
~~~~~~~
::
bl32_ep_info->args.arg0 = TZDRAM size available for BL32
bl32_ep_info->args.arg1 = unused (used only on Armv7-A)
bl32_ep_info->args.arg2 = pointer to boot args

View File

@@ -0,0 +1,32 @@
Trusty Dispatcher
=================
Trusty is a a set of software components, supporting a Trusted Execution
Environment (TEE) on mobile devices, published and maintained by Google.
Detailed information and build instructions can be found on the Android
Open Source Project (AOSP) webpage for Trusty hosted at
https://source.android.com/security/trusty
Boot parameters
---------------
Custom boot parameters can be passed to Trusty by providing a platform
specific function:
.. code:: c
void plat_trusty_set_boot_args(aapcs64_params_t *args)
If this function is provided ``args->arg0`` must be set to the memory
size allocated to trusty. If the platform does not provide this
function, but defines ``TSP_SEC_MEM_SIZE``, a default implementation
will pass the memory size from ``TSP_SEC_MEM_SIZE``. ``args->arg1``
can be set to a platform specific parameter block, and ``args->arg2``
should then be set to the size of that block.
Supported platforms
-------------------
Out of all the platforms supported by Trusted Firmware-A, Trusty is only
verified and supported by NVIDIA's Tegra SoCs.

View File

@@ -0,0 +1,442 @@
Translation (XLAT) Tables Library
=================================
This document describes the design of the translation tables library (version 2)
used by Trusted Firmware-A (TF-A). This library provides APIs to create page
tables based on a description of the memory layout, as well as setting up system
registers related to the Memory Management Unit (MMU) and performing the
required Translation Lookaside Buffer (TLB) maintenance operations.
More specifically, some use cases that this library aims to support are:
#. Statically allocate translation tables and populate them (at run-time) based
upon a description of the memory layout. The memory layout is typically
provided by the platform port as a list of memory regions;
#. Support for generating translation tables pertaining to a different
translation regime than the exception level the library code is executing at;
#. Support for dynamic mapping and unmapping of regions, even while the MMU is
on. This can be used to temporarily map some memory regions and unmap them
later on when no longer needed;
#. Support for non-identity virtual to physical mappings to compress the virtual
address space;
#. Support for changing memory attributes of memory regions at run-time.
About version 1, version 2 and MPU libraries
--------------------------------------------
This document focuses on version 2 of the library, whose sources are available
in the ``lib/xlat_tables_v2`` directory. Version 1 of the library can still be
found in ``lib/xlat_tables`` directory but it is less flexible and doesn't
support dynamic mapping. ``lib/xlat_mpu``, which configures Arm's MPU
equivalently, is also addressed here. The ``lib/xlat_mpu`` is experimental,
meaning that its API may change. It currently strives for consistency and
code-reuse with xlat_tables_v2. Future versions may be more MPU-specific (e.g.,
removing all mentions of virtual addresses). Although potential bug fixes will
be applied to all versions of the xlat_* libs, future feature enhancements will
focus on version 2 and might not be back-ported to version 1 and MPU versions.
Therefore, it is recommended to use version 2, especially for new platform
ports (unless the platform uses an MPU).
However, please note that version 2 and the MPU version are still in active
development and is not considered stable yet. Hence, compatibility breaks might
be introduced.
From this point onwards, this document will implicitly refer to version 2 of the
library, unless stated otherwise.
Design concepts and interfaces
------------------------------
This section presents some of the key concepts and data structures used in the
translation tables library.
`mmap` regions
~~~~~~~~~~~~~~
An ``mmap_region`` is an abstract, concise way to represent a memory region to
map. It is one of the key interfaces to the library. It is identified by:
- its physical base address;
- its virtual base address;
- its size;
- its attributes;
- its mapping granularity (optional).
See the ``struct mmap_region`` type in ``xlat_tables_v2.h``.
The user usually provides a list of such mmap regions to map and lets the
library transpose that in a set of translation tables. As a result, the library
might create new translation tables, update or split existing ones.
The region attributes specify the type of memory (for example device or cached
normal memory) as well as the memory access permissions (read-only or
read-write, executable or not, secure or non-secure, and so on). In the case of
the EL1&0 translation regime, the attributes also specify whether the region is
a User region (EL0) or Privileged region (EL1). See the ``MT_xxx`` definitions
in ``xlat_tables_v2.h``. Note that for the EL1&0 translation regime the Execute
Never attribute is set simultaneously for both EL1 and EL0.
The granularity controls the translation table level to go down to when mapping
the region. For example, assuming the MMU has been configured to use a 4KB
granule size, the library might map a 2MB memory region using either of the two
following options:
- using a single level-2 translation table entry;
- using a level-2 intermediate entry to a level-3 translation table (which
contains 512 entries, each mapping 4KB).
The first solution potentially requires less translation tables, hence
potentially less memory. However, if part of this 2MB region is later remapped
with different memory attributes, the library might need to split the existing
page tables to refine the mappings. If a single level-2 entry has been used
here, a level-3 table will need to be allocated on the fly and the level-2
modified to point to this new level-3 table. This has a performance cost at
run-time.
If the user knows upfront that such a remapping operation is likely to happen
then they might enforce a 4KB mapping granularity for this 2MB region from the
beginning; remapping some of these 4KB pages on the fly then becomes a
lightweight operation.
The region's granularity is an optional field; if it is not specified the
library will choose the mapping granularity for this region as it sees fit (more
details can be found in `The memory mapping algorithm`_ section below).
The MPU library also uses ``struct mmap_region`` to specify translations, but
the MPU's translations are limited to specification of valid addresses and
access permissions. If the requested virtual and physical addresses mismatch
the system will panic. Being register-based for deterministic memory-reference
timing, the MPU hardware does not involve memory-resident translation tables.
Currently, the MPU library is also limited to MPU translation at EL2 with no
MMU translation at other ELs. These limitations, however, are expected to be
overcome in future library versions.
Translation Context
~~~~~~~~~~~~~~~~~~~
The library can create or modify translation tables pertaining to a different
translation regime than the exception level the library code is executing at.
For example, the library might be used by EL3 software (for instance BL31) to
create translation tables pertaining to the S-EL1&0 translation regime.
This flexibility comes from the use of *translation contexts*. A *translation
context* constitutes the superset of information used by the library to track
the status of a set of translation tables for a given translation regime.
The library internally allocates a default translation context, which pertains
to the translation regime of the current exception level. Additional contexts
may be explicitly allocated and initialized using the
``REGISTER_XLAT_CONTEXT()`` macro. Separate APIs are provided to act either on
the default translation context or on an alternative one.
To register a translation context, the user must provide the library with the
following information:
* A name.
The resulting translation context variable will be called after this name, to
which ``_xlat_ctx`` is appended. For example, if the macro name parameter is
``foo``, the context variable name will be ``foo_xlat_ctx``.
* The maximum number of `mmap` regions to map.
Should account for both static and dynamic regions, if applicable.
* The number of sub-translation tables to allocate.
Number of translation tables to statically allocate for this context,
excluding the initial lookup level translation table, which is always
allocated. For example, if the initial lookup level is 1, this parameter would
specify the number of level-2 and level-3 translation tables to pre-allocate
for this context.
* The size of the virtual address space.
Size in bytes of the virtual address space to map using this context. This
will incidentally determine the number of entries in the initial lookup level
translation table : the library will allocate as many entries as is required
to map the entire virtual address space.
* The size of the physical address space.
Size in bytes of the physical address space to map using this context.
The default translation context is internally initialized using information
coming (for the most part) from platform-specific defines:
- name: hard-coded to ``tf`` ; hence the name of the default context variable is
``tf_xlat_ctx``;
- number of `mmap` regions: ``MAX_MMAP_REGIONS``;
- number of sub-translation tables: ``MAX_XLAT_TABLES``;
- size of the virtual address space: ``PLAT_VIRT_ADDR_SPACE_SIZE``;
- size of the physical address space: ``PLAT_PHY_ADDR_SPACE_SIZE``.
Please refer to the :ref:`Porting Guide` for more details about these macros.
Static and dynamic memory regions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The library optionally supports dynamic memory mapping. This feature may be
enabled using the ``PLAT_XLAT_TABLES_DYNAMIC`` platform build flag.
When dynamic memory mapping is enabled, the library categorises mmap regions as
*static* or *dynamic*.
- *Static regions* are fixed for the lifetime of the system. They can only be
added early on, before the translation tables are created and populated. They
cannot be removed afterwards.
- *Dynamic regions* can be added or removed any time.
When the dynamic memory mapping feature is disabled, only static regions exist.
The dynamic memory mapping feature may be used to map and unmap transient memory
areas. This is useful when the user needs to access some memory for a fixed
period of time, after which the memory may be discarded and reclaimed. For
example, a memory region that is only required at boot time while the system is
initializing, or to temporarily share a memory buffer between the normal world
and trusted world. Note that it is up to the caller to ensure that these regions
are not accessed concurrently while the regions are being added or removed.
Although this feature provides some level of dynamic memory allocation, this
does not allow dynamically allocating an arbitrary amount of memory at an
arbitrary memory location. The user is still required to declare at compile-time
the limits of these allocations ; the library will deny any mapping request that
does not fit within this pre-allocated pool of memory.
Library APIs
------------
The external APIs exposed by this library are declared and documented in the
``xlat_tables_v2.h`` header file. This should be the reference point for
getting information about the usage of the different APIs this library
provides. This section just provides some extra details and clarifications.
Although the ``mmap_region`` structure is a publicly visible type, it is not
recommended to populate these structures by hand. Instead, wherever APIs expect
function arguments of type ``mmap_region_t``, these should be constructed using
the ``MAP_REGION*()`` family of helper macros. This is to limit the risk of
compatibility breaks, should the ``mmap_region`` structure type evolve in the
future.
The ``MAP_REGION()`` and ``MAP_REGION_FLAT()`` macros do not allow specifying a
mapping granularity, which leaves the library implementation free to choose
it. However, in cases where a specific granularity is required, the
``MAP_REGION2()`` macro might be used instead. Using ``MAP_REGION_FLAT()`` only
to define regions for the MPU library is strongly recommended.
As explained earlier in this document, when the dynamic mapping feature is
disabled, there is no notion of dynamic regions. Conceptually, there are only
static regions. For this reason (and to retain backward compatibility with the
version 1 of the library), the APIs that map static regions do not embed the
word *static* in their functions names (for example ``mmap_add_region()``), in
contrast with the dynamic regions APIs (for example
``mmap_add_dynamic_region()``).
Although the definition of static and dynamic regions is not based on the state
of the MMU, the two are still related in some way. Static regions can only be
added before ``init_xlat_tables()`` is called and ``init_xlat_tables()`` must be
called while the MMU is still off. As a result, static regions cannot be added
once the MMU has been enabled. Dynamic regions can be added with the MMU on or
off. In practice, the usual call flow would look like this:
#. The MMU is initially off.
#. Add some static regions, add some dynamic regions.
#. Initialize translation tables based on the list of mmap regions (using one of
the ``init_xlat_tables*()`` APIs).
#. At this point, it is no longer possible to add static regions. Dynamic
regions can still be added or removed.
#. Enable the MMU.
#. Dynamic regions can continue to be added or removed.
Because static regions are added early on at boot time and are all in the
control of the platform initialization code, the ``mmap_add*()`` family of APIs
are not expected to fail. They do not return any error code.
Nonetheless, these APIs will check upfront whether the region can be
successfully added before updating the translation context structure. If the
library detects that there is insufficient memory to meet the request, or that
the new region will overlap another one in an invalid way, or if any other
unexpected error is encountered, they will print an error message on the UART.
Additionally, when asserts are enabled (typically in debug builds), an assertion
will be triggered. Otherwise, the function call will just return straight away,
without adding the offending memory region.
Library limitations
-------------------
Dynamic regions are not allowed to overlap each other. Static regions are
allowed to overlap as long as one of them is fully contained inside the other
one. This is allowed for backwards compatibility with the previous behaviour in
the version 1 of the library.
Implementation details
----------------------
Code structure
~~~~~~~~~~~~~~
The library is divided into 4 modules:
- **Core module**
Provides the main functionality of the library, such as the initialization of
translation tables contexts and mapping/unmapping memory regions. This module
provides functions such as ``mmap_add_region_ctx`` that let the caller specify
the translation tables context affected by them.
See ``xlat_tables_core.c``.
- **Active context module**
Instantiates the context that is used by the current BL image and provides
helpers to manipulate it, abstracting it from the rest of the code.
This module provides functions such as ``mmap_add_region``, that directly
affect the BL image using them.
See ``xlat_tables_context.c``.
- **Utilities module**
Provides additional functionality like debug print of the current state of the
translation tables and helpers to query memory attributes and to modify them.
See ``xlat_tables_utils.c``.
- **Architectural module**
Provides functions that are dependent on the current execution state
(AArch32/AArch64), such as the functions used for TLB invalidation, setup the
MMU, or calculate the Physical Address Space size. They do not need a
translation context to work on.
See ``aarch32/xlat_tables_arch.c`` and ``aarch64/xlat_tables_arch.c``.
From mmap regions to translation tables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A translation context contains a list of ``mmap_region_t``, which holds the
information of all the regions that are mapped at any given time. Whenever there
is a request to map (resp. unmap) a memory region, it is added to (resp. removed
from) the ``mmap_region_t`` list.
The mmap regions list is a conceptual way to represent the memory layout. At
some point, the library has to convert this information into actual translation
tables to program into the MMU.
Before the ``init_xlat_tables()`` API is called, the library only acts on the
mmap regions list. Adding a static or dynamic region at this point through one
of the ``mmap_add*()`` APIs does not affect the translation tables in any way,
they only get registered in the internal mmap region list. It is only when the
user calls the ``init_xlat_tables()`` that the translation tables are populated
in memory based on the list of mmap regions registered so far. This is an
optimization that allows creation of the initial set of translation tables in
one go, rather than having to edit them every time while the MMU is disabled.
After the ``init_xlat_tables()`` API has been called, only dynamic regions can
be added. Changes to the translation tables (as well as the mmap regions list)
will take effect immediately.
The memory mapping algorithm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The mapping function is implemented as a recursive algorithm. It is however
bound by the level of depth of the translation tables (the Armv8-A architecture
allows up to 4 lookup levels).
By default [#granularity]_, the algorithm will attempt to minimize the
number of translation tables created to satisfy the user's request. It will
favour mapping a region using the biggest possible blocks, only creating a
sub-table if it is strictly necessary. This is to reduce the memory footprint of
the firmware.
The most common reason for needing a sub-table is when a specific mapping
requires a finer granularity. Misaligned regions also require a finer
granularity than what the user may had originally expected, using a lot more
memory than expected. The reason is that all levels of translation are
restricted to address translations of the same granularity as the size of the
blocks of that level. For example, for a 4 KiB page size, a level 2 block entry
can only translate up to a granularity of 2 MiB. If the Physical Address is not
aligned to 2 MiB then additional level 3 tables are also needed.
Note that not every translation level allows any type of descriptor. Depending
on the page size, levels 0 and 1 of translation may only allow table
descriptors. If a block entry could be able to describe a translation, but that
level does not allow block descriptors, a table descriptor will have to be used
instead, as well as additional tables at the next level.
|Alignment Example|
The mmap regions are sorted in a way that simplifies the code that maps
them. Even though this ordering is only strictly needed for overlapping static
regions, it must also be applied for dynamic regions to maintain a consistent
order of all regions at all times. As each new region is mapped, existing
entries in the translation tables are checked to ensure consistency. Please
refer to the comments in the source code of the core module for more details
about the sorting algorithm in use.
This mapping algorithm does not apply to the MPU library, since the MPU hardware
directly maps regions by "base" and "limit" (bottom and top) addresses.
TLB maintenance operations
~~~~~~~~~~~~~~~~~~~~~~~~~~
The library takes care of performing TLB maintenance operations when required.
For example, when the user requests removing a dynamic region, the library
invalidates all TLB entries associated to that region to ensure that these
changes are visible to subsequent execution, including speculative execution,
that uses the changed translation table entries.
A counter-example is the initialization of translation tables. In this case,
explicit TLB maintenance is not required. The Armv8-A architecture guarantees
that all TLBs are disabled from reset and their contents have no effect on
address translation at reset [#tlb-reset-ref]_. Therefore, the TLBs invalidation
is deferred to the ``enable_mmu*()`` family of functions, just before the MMU is
turned on.
Regarding enabling and disabling memory management, for the MPU library, to
reduce confusion, calls to enable or disable the MPU use ``mpu`` in their names
in place of ``mmu``. For example, the ``enable_mmu_el2()`` call is changed to
``enable_mpu_el2()``.
TLB invalidation is not required when adding dynamic regions either. Dynamic
regions are not allowed to overlap existing memory region. Therefore, if the
dynamic mapping request is deemed legitimate, it automatically concerns memory
that was not mapped in this translation regime and the library will have
initialized its corresponding translation table entry to an invalid
descriptor. Given that the TLBs are not architecturally permitted to hold any
invalid translation table entry [#tlb-no-invalid-entry]_, this means that this
mapping cannot be cached in the TLBs.
.. rubric:: Footnotes
.. [#granularity] That is, when mmap regions do not enforce their mapping
granularity.
.. [#tlb-reset-ref] See section D4.9 ``Translation Lookaside Buffers (TLBs)``,
subsection ``TLB behavior at reset`` in Armv8-A, rev C.a.
.. [#tlb-no-invalid-entry] See section D4.10.1 ``General TLB maintenance
requirements`` in Armv8-A, rev C.a.
--------------
*Copyright (c) 2017-2021, Arm Limited and Contributors. All rights reserved.*
.. |Alignment Example| image:: ../resources/diagrams/xlat_align.png

View File

@@ -0,0 +1,94 @@
# -*- coding: utf-8 -*-
#
# Copyright (c) 2019-2021, Arm Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
#
# Configuration file for the Sphinx documentation builder.
#
# See the options documentation at http://www.sphinx-doc.org/en/master/config
import os
# -- Project information -----------------------------------------------------
project = 'Trusted Firmware-A'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['myst_parser', 'sphinx.ext.autosectionlabel', 'sphinxcontrib.plantuml']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
source_suffix = ['.md', '.rst']
# The master toctree document.
master_doc = 'index'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path .
exclude_patterns = []
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# Load the contents of the global substitutions file into the 'rst_prolog'
# variable. This ensures that the substitutions are all inserted into each page.
with open('global_substitutions.txt', 'r') as subs:
rst_prolog = subs.read()
# Minimum version of sphinx required
needs_sphinx = '2.0'
# -- Options for HTML output -------------------------------------------------
# Don't show the "Built with Sphinx" footer
html_show_sphinx = False
# Don't show copyright info in the footer (we have this content in the page)
html_show_copyright = False
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = "sphinx_rtd_theme"
# The logo to display in the sidebar
html_logo = 'resources/TrustedFirmware-Logo_standard-white.png'
# Options for the "sphinx-rtd-theme" theme
html_theme_options = {
'collapse_navigation': False, # Can expand and collapse sidebar entries
'prev_next_buttons_location': 'both', # Top and bottom of the page
'style_external_links': True # Display an icon next to external links
}
# Path to _static directory
html_static_path = ['_static']
# Path to css file relative to html_static_path
html_css_files = [
'css/custom.css',
]
# -- Options for autosectionlabel --------------------------------------------
# Only generate automatic section labels for document titles
autosectionlabel_maxdepth = 1
# -- Options for plantuml ----------------------------------------------------
plantuml_output_format = 'svg_img'

View File

@@ -0,0 +1,84 @@
Alternative Boot Flows
======================
EL3 payloads alternative boot flow
----------------------------------
On a pre-production system, the ability to execute arbitrary, bare-metal code at
the highest exception level is required. It allows full, direct access to the
hardware, for example to run silicon soak tests.
Although it is possible to implement some baremetal secure firmware from
scratch, this is a complex task on some platforms, depending on the level of
configuration required to put the system in the expected state.
Rather than booting a baremetal application, a possible compromise is to boot
``EL3 payloads`` through TF-A instead. This is implemented as an alternative
boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
other BL images and passing control to BL31. It reduces the complexity of
developing EL3 baremetal code by:
- putting the system into a known architectural state;
- taking care of platform secure world initialization;
- loading the SCP_BL2 image if required by the platform.
When booting an EL3 payload on Arm standard platforms, the configuration of the
TrustZone controller is simplified such that only region 0 is enabled and is
configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.
The system is left in the same state as when entering BL31 in the default boot
flow. In particular:
- Running in EL3;
- Current state is AArch64;
- Little-endian data access;
- All exceptions disabled;
- MMU disabled;
- Caches disabled.
.. _alt_boot_flows_el3_payload:
Booting an EL3 payload
~~~~~~~~~~~~~~~~~~~~~~
The EL3 payload image is a standalone image and is not part of the FIP. It is
not loaded by TF-A. Therefore, there are 2 possible scenarios:
- The EL3 payload may reside in non-volatile memory (NVM) and execute in
place. In this case, booting it is just a matter of specifying the right
address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
run-time.
To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
used. The infinite loop that it introduces in BL1 stops execution at the right
moment for a debugger to take control of the target and load the payload (for
example, over JTAG).
It is expected that this loading method will work in most cases, as a debugger
connection is usually available in a pre-production system. The user is free to
use any other platform-specific mechanism to load the EL3 payload, though.
Preloaded BL33 alternative boot flow
------------------------------------
Some platforms have the ability to preload BL33 into memory instead of relying
on TF-A to load it. This may simplify packaging of the normal world code and
improve performance in a development environment. When secure world cold boot
is complete, TF-A simply jumps to a BL33 base address provided at build time.
For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
used when compiling TF-A. For example, the following command will create a FIP
without a BL33 and prepare to jump to a BL33 image loaded at address
0x80000000:
.. code:: shell
make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,980 @@
Authentication Framework & Chain of Trust
=========================================
The aim of this document is to describe the authentication framework
implemented in Trusted Firmware-A (TF-A). This framework fulfills the
following requirements:
#. It should be possible for a platform port to specify the Chain of Trust in
terms of certificate hierarchy and the mechanisms used to verify a
particular image/certificate.
#. The framework should distinguish between:
- The mechanism used to encode and transport information, e.g. DER encoded
X.509v3 certificates to ferry Subject Public Keys, hashes and non-volatile
counters.
- The mechanism used to verify the transported information i.e. the
cryptographic libraries.
The framework has been designed following a modular approach illustrated in the
next diagram:
::
+---------------+---------------+------------+
| Trusted | Trusted | Trusted |
| Firmware | Firmware | Firmware |
| Generic | IO Framework | Platform |
| Code i.e. | (IO) | Port |
| BL1/BL2 (GEN) | | (PP) |
+---------------+---------------+------------+
^ ^ ^
| | |
v v v
+-----------+ +-----------+ +-----------+
| | | | | Image |
| Crypto | | Auth | | Parser |
| Module |<->| Module |<->| Module |
| (CM) | | (AM) | | (IPM) |
| | | | | |
+-----------+ +-----------+ +-----------+
^ ^
| |
v v
+----------------+ +-----------------+
| Cryptographic | | Image Parser |
| Libraries (CL) | | Libraries (IPL) |
+----------------+ +-----------------+
| |
| |
| |
v v
+-----------------+
| Misc. Libs e.g. |
| ASN.1 decoder |
| |
+-----------------+
DIAGRAM 1.
This document describes the inner details of the authentication framework and
the abstraction mechanisms available to specify a Chain of Trust.
Framework design
----------------
This section describes some aspects of the framework design and the rationale
behind them. These aspects are key to verify a Chain of Trust.
Chain of Trust
~~~~~~~~~~~~~~
A CoT is basically a sequence of authentication images which usually starts with
a root of trust and culminates in a single data image. The following diagram
illustrates how this maps to a CoT for the BL31 image described in the
`TBBR-Client specification`_.
::
+------------------+ +-------------------+
| ROTPK/ROTPK Hash |------>| Trusted Key |
+------------------+ | Certificate |
| (Auth Image) |
/+-------------------+
/ |
/ |
/ |
/ |
L v
+------------------+ +-------------------+
| Trusted World |------>| BL31 Key |
| Public Key | | Certificate |
+------------------+ | (Auth Image) |
+-------------------+
/ |
/ |
/ |
/ |
/ v
+------------------+ L +-------------------+
| BL31 Content |------>| BL31 Content |
| Certificate PK | | Certificate |
+------------------+ | (Auth Image) |
+-------------------+
/ |
/ |
/ |
/ |
/ v
+------------------+ L +-------------------+
| BL31 Hash |------>| BL31 Image |
| | | (Data Image) |
+------------------+ | |
+-------------------+
DIAGRAM 2.
The root of trust is usually a public key (ROTPK) that has been burnt in the
platform and cannot be modified.
Image types
~~~~~~~~~~~
Images in a CoT are categorised as authentication and data images. An
authentication image contains information to authenticate a data image or
another authentication image. A data image is usually a boot loader binary, but
it could be any other data that requires authentication.
Component responsibilities
~~~~~~~~~~~~~~~~~~~~~~~~~~
For every image in a Chain of Trust, the following high level operations are
performed to verify it:
#. Allocate memory for the image either statically or at runtime.
#. Identify the image and load it in the allocated memory.
#. Check the integrity of the image as per its type.
#. Authenticate the image as per the cryptographic algorithms used.
#. If the image is an authentication image, extract the information that will
be used to authenticate the next image in the CoT.
In Diagram 1, each component is responsible for one or more of these operations.
The responsibilities are briefly described below.
TF-A Generic code and IO framework (GEN/IO)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
These components are responsible for initiating the authentication process for a
particular image in BL1 or BL2. For each BL image that requires authentication,
the Generic code asks recursively the Authentication module what is the parent
image until either an authenticated image or the ROT is reached. Then the
Generic code calls the IO framework to load the image and calls the
Authentication module to authenticate it, following the CoT from ROT to Image.
TF-A Platform Port (PP)
^^^^^^^^^^^^^^^^^^^^^^^
The platform is responsible for:
#. Specifying the CoT for each image that needs to be authenticated. Details of
how a CoT can be specified by the platform are explained later. The platform
also specifies the authentication methods and the parsing method used for
each image.
#. Statically allocating memory for each parameter in each image which is
used for verifying the CoT, e.g. memory for public keys, hashes etc.
#. Providing the ROTPK or a hash of it.
#. Providing additional information to the IPM to enable it to identify and
extract authentication parameters contained in an image, e.g. if the
parameters are stored as X509v3 extensions, the corresponding OID must be
provided.
#. Fulfill any other memory requirements of the IPM and the CM (not currently
described in this document).
#. Export functions to verify an image which uses an authentication method that
cannot be interpreted by the CM, e.g. if an image has to be verified using a
NV counter, then the value of the counter to compare with can only be
provided by the platform.
#. Export a custom IPM if a proprietary image format is being used (described
later).
Authentication Module (AM)
^^^^^^^^^^^^^^^^^^^^^^^^^^
It is responsible for:
#. Providing the necessary abstraction mechanisms to describe a CoT. Amongst
other things, the authentication and image parsing methods must be specified
by the PP in the CoT.
#. Verifying the CoT passed by GEN by utilising functionality exported by the
PP, IPM and CM.
#. Tracking which images have been verified. In case an image is a part of
multiple CoTs then it should be verified only once e.g. the Trusted World
Key Certificate in the TBBR-Client spec. contains information to verify
SCP_BL2, BL31, BL32 each of which have a separate CoT. (This
responsibility has not been described in this document but should be
trivial to implement).
#. Reusing memory meant for a data image to verify authentication images e.g.
in the CoT described in Diagram 2, each certificate can be loaded and
verified in the memory reserved by the platform for the BL31 image. By the
time BL31 (the data image) is loaded, all information to authenticate it
will have been extracted from the parent image i.e. BL31 content
certificate. It is assumed that the size of an authentication image will
never exceed the size of a data image. It should be possible to verify this
at build time using asserts.
Cryptographic Module (CM)
^^^^^^^^^^^^^^^^^^^^^^^^^
The CM is responsible for providing an API to:
#. Verify a digital signature.
#. Verify a hash.
The CM does not include any cryptography related code, but it relies on an
external library to perform the cryptographic operations. A Crypto-Library (CL)
linking the CM and the external library must be implemented. The following
functions must be provided by the CL:
.. code:: c
void (*init)(void);
int (*verify_signature)(void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len);
int (*verify_hash)(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len);
These functions are registered in the CM using the macro:
.. code:: c
REGISTER_CRYPTO_LIB(_name, _init, _verify_signature, _verify_hash);
``_name`` must be a string containing the name of the CL. This name is used for
debugging purposes.
Image Parser Module (IPM)
^^^^^^^^^^^^^^^^^^^^^^^^^
The IPM is responsible for:
#. Checking the integrity of each image loaded by the IO framework.
#. Extracting parameters used for authenticating an image based upon a
description provided by the platform in the CoT descriptor.
Images may have different formats (for example, authentication images could be
x509v3 certificates, signed ELF files or any other platform specific format).
The IPM allows to register an Image Parser Library (IPL) for every image format
used in the CoT. This library must implement the specific methods to parse the
image. The IPM obtains the image format from the CoT and calls the right IPL to
check the image integrity and extract the authentication parameters.
See Section "Describing the image parsing methods" for more details about the
mechanism the IPM provides to define and register IPLs.
Authentication methods
~~~~~~~~~~~~~~~~~~~~~~
The AM supports the following authentication methods:
#. Hash
#. Digital signature
The platform may specify these methods in the CoT in case it decides to define
a custom CoT instead of reusing a predefined one.
If a data image uses multiple methods, then all the methods must be a part of
the same CoT. The number and type of parameters are method specific. These
parameters should be obtained from the parent image using the IPM.
#. Hash
Parameters:
#. A pointer to data to hash
#. Length of the data
#. A pointer to the hash
#. Length of the hash
The hash will be represented by the DER encoding of the following ASN.1
type:
::
DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithmIdentifier,
digest Digest
}
This ASN.1 structure makes it possible to remove any assumption about the
type of hash algorithm used as this information accompanies the hash. This
should allow the Cryptography Library (CL) to support multiple hash
algorithm implementations.
#. Digital Signature
Parameters:
#. A pointer to data to sign
#. Length of the data
#. Public Key Algorithm
#. Public Key value
#. Digital Signature Algorithm
#. Digital Signature value
The Public Key parameters will be represented by the DER encoding of the
following ASN.1 type:
::
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier{PUBLIC-KEY,{PublicKeyAlgorithms}},
subjectPublicKey BIT STRING }
The Digital Signature Algorithm will be represented by the DER encoding of
the following ASN.1 types.
::
AlgorithmIdentifier {ALGORITHM:IOSet } ::= SEQUENCE {
algorithm ALGORITHM.&id({IOSet}),
parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
}
The digital signature will be represented by:
::
signature ::= BIT STRING
The authentication framework will use the image descriptor to extract all the
information related to authentication.
Specifying a Chain of Trust
---------------------------
A CoT can be described as a set of image descriptors linked together in a
particular order. The order dictates the sequence in which they must be
verified. Each image has a set of properties which allow the AM to verify it.
These properties are described below.
The PP is responsible for defining a single or multiple CoTs for a data image.
Unless otherwise specified, the data structures described in the following
sections are populated by the PP statically.
Describing the image parsing methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The parsing method refers to the format of a particular image. For example, an
authentication image that represents a certificate could be in the X.509v3
format. A data image that represents a boot loader stage could be in raw binary
or ELF format. The IPM supports three parsing methods. An image has to use one
of the three methods described below. An IPL is responsible for interpreting a
single parsing method. There has to be one IPL for every method used by the
platform.
#. Raw format: This format is effectively a nop as an image using this method
is treated as being in raw binary format e.g. boot loader images used by
TF-A. This method should only be used by data images.
#. X509V3 method: This method uses industry standards like X.509 to represent
PKI certificates (authentication images). It is expected that open source
libraries will be available which can be used to parse an image represented
by this method. Such libraries can be used to write the corresponding IPL
e.g. the X.509 parsing library code in mbed TLS.
#. Platform defined method: This method caters for platform specific
proprietary standards to represent authentication or data images. For
example, The signature of a data image could be appended to the data image
raw binary. A header could be prepended to the combined blob to specify the
extents of each component. The platform will have to implement the
corresponding IPL to interpret such a format.
The following enum can be used to define these three methods.
.. code:: c
typedef enum img_type_enum {
IMG_RAW, /* Binary image */
IMG_PLAT, /* Platform specific format */
IMG_CERT, /* X509v3 certificate */
IMG_MAX_TYPES,
} img_type_t;
An IPL must provide functions with the following prototypes:
.. code:: c
void init(void);
int check_integrity(void *img, unsigned int img_len);
int get_auth_param(const auth_param_type_desc_t *type_desc,
void *img, unsigned int img_len,
void **param, unsigned int *param_len);
An IPL for each type must be registered using the following macro:
.. code:: c
REGISTER_IMG_PARSER_LIB(_type, _name, _init, _check_int, _get_param)
- ``_type``: one of the types described above.
- ``_name``: a string containing the IPL name for debugging purposes.
- ``_init``: initialization function pointer.
- ``_check_int``: check image integrity function pointer.
- ``_get_param``: extract authentication parameter function pointer.
The ``init()`` function will be used to initialize the IPL.
The ``check_integrity()`` function is passed a pointer to the memory where the
image has been loaded by the IO framework and the image length. It should ensure
that the image is in the format corresponding to the parsing method and has not
been tampered with. For example, RFC-2459 describes a validation sequence for an
X.509 certificate.
The ``get_auth_param()`` function is passed a parameter descriptor containing
information about the parameter (``type_desc`` and ``cookie``) to identify and
extract the data corresponding to that parameter from an image. This data will
be used to verify either the current or the next image in the CoT sequence.
Each image in the CoT will specify the parsing method it uses. This information
will be used by the IPM to find the right parser descriptor for the image.
Describing the authentication method(s)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As part of the CoT, each image has to specify one or more authentication methods
which will be used to verify it. As described in the Section "Authentication
methods", there are three methods supported by the AM.
.. code:: c
typedef enum {
AUTH_METHOD_NONE,
AUTH_METHOD_HASH,
AUTH_METHOD_SIG,
AUTH_METHOD_NUM
} auth_method_type_t;
The AM defines the type of each parameter used by an authentication method. It
uses this information to:
#. Specify to the ``get_auth_param()`` function exported by the IPM, which
parameter should be extracted from an image.
#. Correctly marshall the parameters while calling the verification function
exported by the CM and PP.
#. Extract authentication parameters from a parent image in order to verify a
child image e.g. to verify the certificate image, the public key has to be
obtained from the parent image.
.. code:: c
typedef enum {
AUTH_PARAM_NONE,
AUTH_PARAM_RAW_DATA, /* Raw image data */
AUTH_PARAM_SIG, /* The image signature */
AUTH_PARAM_SIG_ALG, /* The image signature algorithm */
AUTH_PARAM_HASH, /* A hash (including the algorithm) */
AUTH_PARAM_PUB_KEY, /* A public key */
} auth_param_type_t;
The AM defines the following structure to identify an authentication parameter
required to verify an image.
.. code:: c
typedef struct auth_param_type_desc_s {
auth_param_type_t type;
void *cookie;
} auth_param_type_desc_t;
``cookie`` is used by the platform to specify additional information to the IPM
which enables it to uniquely identify the parameter that should be extracted
from an image. For example, the hash of a BL3x image in its corresponding
content certificate is stored in an X509v3 custom extension field. An extension
field can only be identified using an OID. In this case, the ``cookie`` could
contain the pointer to the OID defined by the platform for the hash extension
field while the ``type`` field could be set to ``AUTH_PARAM_HASH``. A value of 0 for
the ``cookie`` field means that it is not used.
For each method, the AM defines a structure with the parameters required to
verify the image.
.. code:: c
/*
* Parameters for authentication by hash matching
*/
typedef struct auth_method_param_hash_s {
auth_param_type_desc_t *data; /* Data to hash */
auth_param_type_desc_t *hash; /* Hash to match with */
} auth_method_param_hash_t;
/*
* Parameters for authentication by signature
*/
typedef struct auth_method_param_sig_s {
auth_param_type_desc_t *pk; /* Public key */
auth_param_type_desc_t *sig; /* Signature to check */
auth_param_type_desc_t *alg; /* Signature algorithm */
auth_param_type_desc_t *tbs; /* Data signed */
} auth_method_param_sig_t;
The AM defines the following structure to describe an authentication method for
verifying an image
.. code:: c
/*
* Authentication method descriptor
*/
typedef struct auth_method_desc_s {
auth_method_type_t type;
union {
auth_method_param_hash_t hash;
auth_method_param_sig_t sig;
} param;
} auth_method_desc_t;
Using the method type specified in the ``type`` field, the AM finds out what field
needs to access within the ``param`` union.
Storing Authentication parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A parameter described by ``auth_param_type_desc_t`` to verify an image could be
obtained from either the image itself or its parent image. The memory allocated
for loading the parent image will be reused for loading the child image. Hence
parameters which are obtained from the parent for verifying a child image need
to have memory allocated for them separately where they can be stored. This
memory must be statically allocated by the platform port.
The AM defines the following structure to store the data corresponding to an
authentication parameter.
.. code:: c
typedef struct auth_param_data_desc_s {
void *auth_param_ptr;
unsigned int auth_param_len;
} auth_param_data_desc_t;
The ``auth_param_ptr`` field is initialized by the platform. The ``auth_param_len``
field is used to specify the length of the data in the memory.
For parameters that can be obtained from the child image itself, the IPM is
responsible for populating the ``auth_param_ptr`` and ``auth_param_len`` fields
while executing the ``img_get_auth_param()`` function.
The AM defines the following structure to enable an image to describe the
parameters that should be extracted from it and used to verify the next image
(child) in a CoT.
.. code:: c
typedef struct auth_param_desc_s {
auth_param_type_desc_t type_desc;
auth_param_data_desc_t data;
} auth_param_desc_t;
Describing an image in a CoT
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An image in a CoT is a consolidation of the following aspects of a CoT described
above.
#. A unique identifier specified by the platform which allows the IO framework
to locate the image in a FIP and load it in the memory reserved for the data
image in the CoT.
#. A parsing method which is used by the AM to find the appropriate IPM.
#. Authentication methods and their parameters as described in the previous
section. These are used to verify the current image.
#. Parameters which are used to verify the next image in the current CoT. These
parameters are specified only by authentication images and can be extracted
from the current image once it has been verified.
The following data structure describes an image in a CoT.
.. code:: c
typedef struct auth_img_desc_s {
unsigned int img_id;
const struct auth_img_desc_s *parent;
img_type_t img_type;
const auth_method_desc_t *const img_auth_methods;
const auth_param_desc_t *const authenticated_data;
} auth_img_desc_t;
A CoT is defined as an array of pointers to ``auth_image_desc_t`` structures
linked together by the ``parent`` field. Those nodes with no parent must be
authenticated using the ROTPK stored in the platform.
Implementation example
----------------------
This section is a detailed guide explaining a trusted boot implementation using
the authentication framework. This example corresponds to the Applicative
Functional Mode (AFM) as specified in the TBBR-Client document. It is
recommended to read this guide along with the source code.
The TBBR CoT
~~~~~~~~~~~~
CoT specific to BL1 and BL2 can be found in ``drivers/auth/tbbr/tbbr_cot_bl1.c``
and ``drivers/auth/tbbr/tbbr_cot_bl2.c`` respectively. The common CoT used across
BL1 and BL2 can be found in ``drivers/auth/tbbr/tbbr_cot_common.c``.
This CoT consists of an array of pointers to image descriptors and it is
registered in the framework using the macro ``REGISTER_COT(cot_desc)``, where
``cot_desc`` must be the name of the array (passing a pointer or any other
type of indirection will cause the registration process to fail).
The number of images participating in the boot process depends on the CoT.
There is, however, a minimum set of images that are mandatory in TF-A and thus
all CoTs must present:
- ``BL2``
- ``SCP_BL2`` (platform specific)
- ``BL31``
- ``BL32`` (optional)
- ``BL33``
The TBBR specifies the additional certificates that must accompany these images
for a proper authentication. Details about the TBBR CoT may be found in the
:ref:`Trusted Board Boot` document.
Following the :ref:`Porting Guide`, a platform must provide unique
identifiers for all the images and certificates that will be loaded during the
boot process. If a platform is using the TBBR as a reference for trusted boot,
these identifiers can be obtained from ``include/common/tbbr/tbbr_img_def.h``.
Arm platforms include this file in ``include/plat/arm/common/arm_def.h``. Other
platforms may also include this file or provide their own identifiers.
**Important**: the authentication module uses these identifiers to index the
CoT array, so the descriptors location in the array must match the identifiers.
Each image descriptor must specify:
- ``img_id``: the corresponding image unique identifier defined by the platform.
- ``img_type``: the image parser module uses the image type to call the proper
parsing library to check the image integrity and extract the required
authentication parameters. Three types of images are currently supported:
- ``IMG_RAW``: image is a raw binary. No parsing functions are available,
other than reading the whole image.
- ``IMG_PLAT``: image format is platform specific. The platform may use this
type for custom images not directly supported by the authentication
framework.
- ``IMG_CERT``: image is an x509v3 certificate.
- ``parent``: pointer to the parent image descriptor. The parent will contain
the information required to authenticate the current image. If the parent
is NULL, the authentication parameters will be obtained from the platform
(i.e. the BL2 and Trusted Key certificates are signed with the ROT private
key, whose public part is stored in the platform).
- ``img_auth_methods``: this points to an array which defines the
authentication methods that must be checked to consider an image
authenticated. Each method consists of a type and a list of parameter
descriptors. A parameter descriptor consists of a type and a cookie which
will point to specific information required to extract that parameter from
the image (i.e. if the parameter is stored in an x509v3 extension, the
cookie will point to the extension OID). Depending on the method type, a
different number of parameters must be specified. This pointer should not be
NULL.
Supported methods are:
- ``AUTH_METHOD_HASH``: the hash of the image must match the hash extracted
from the parent image. The following parameter descriptors must be
specified:
- ``data``: data to be hashed (obtained from current image)
- ``hash``: reference hash (obtained from parent image)
- ``AUTH_METHOD_SIG``: the image (usually a certificate) must be signed with
the private key whose public part is extracted from the parent image (or
the platform if the parent is NULL). The following parameter descriptors
must be specified:
- ``pk``: the public key (obtained from parent image)
- ``sig``: the digital signature (obtained from current image)
- ``alg``: the signature algorithm used (obtained from current image)
- ``data``: the data to be signed (obtained from current image)
- ``authenticated_data``: this array pointer indicates what authentication
parameters must be extracted from an image once it has been authenticated.
Each parameter consists of a parameter descriptor and the buffer
address/size to store the parameter. The CoT is responsible for allocating
the required memory to store the parameters. This pointer may be NULL.
In the ``tbbr_cot*.c`` file, a set of buffers are allocated to store the parameters
extracted from the certificates. In the case of the TBBR CoT, these parameters
are hashes and public keys. In DER format, an RSA-4096 public key requires 550
bytes, and a hash requires 51 bytes. Depending on the CoT and the authentication
process, some of the buffers may be reused at different stages during the boot.
Next in that file, the parameter descriptors are defined. These descriptors will
be used to extract the parameter data from the corresponding image.
Example: the BL31 Chain of Trust
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Four image descriptors form the BL31 Chain of Trust:
.. code:: c
static const auth_img_desc_t trusted_key_cert = {
.img_id = TRUSTED_KEY_CERT_ID,
.img_type = IMG_CERT,
.parent = NULL,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[0] = {
.type = AUTH_METHOD_SIG,
.param.sig = {
.pk = &subject_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data
}
},
[1] = {
.type = AUTH_METHOD_NV_CTR,
.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr
}
}
},
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
[0] = {
.type_desc = &trusted_world_pk,
.data = {
.ptr = (void *)trusted_world_pk_buf,
.len = (unsigned int)PK_DER_LEN
}
},
[1] = {
.type_desc = &non_trusted_world_pk,
.data = {
.ptr = (void *)non_trusted_world_pk_buf,
.len = (unsigned int)PK_DER_LEN
}
}
}
};
static const auth_img_desc_t soc_fw_key_cert = {
.img_id = SOC_FW_KEY_CERT_ID,
.img_type = IMG_CERT,
.parent = &trusted_key_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[0] = {
.type = AUTH_METHOD_SIG,
.param.sig = {
.pk = &trusted_world_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data
}
},
[1] = {
.type = AUTH_METHOD_NV_CTR,
.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr
}
}
},
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
[0] = {
.type_desc = &soc_fw_content_pk,
.data = {
.ptr = (void *)content_pk_buf,
.len = (unsigned int)PK_DER_LEN
}
}
}
};
static const auth_img_desc_t soc_fw_content_cert = {
.img_id = SOC_FW_CONTENT_CERT_ID,
.img_type = IMG_CERT,
.parent = &soc_fw_key_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[0] = {
.type = AUTH_METHOD_SIG,
.param.sig = {
.pk = &soc_fw_content_pk,
.sig = &sig,
.alg = &sig_alg,
.data = &raw_data
}
},
[1] = {
.type = AUTH_METHOD_NV_CTR,
.param.nv_ctr = {
.cert_nv_ctr = &trusted_nv_ctr,
.plat_nv_ctr = &trusted_nv_ctr
}
}
},
.authenticated_data = (const auth_param_desc_t[COT_MAX_VERIFIED_PARAMS]) {
[0] = {
.type_desc = &soc_fw_hash,
.data = {
.ptr = (void *)soc_fw_hash_buf,
.len = (unsigned int)HASH_DER_LEN
}
},
[1] = {
.type_desc = &soc_fw_config_hash,
.data = {
.ptr = (void *)soc_fw_config_hash_buf,
.len = (unsigned int)HASH_DER_LEN
}
}
}
};
static const auth_img_desc_t bl31_image = {
.img_id = BL31_IMAGE_ID,
.img_type = IMG_RAW,
.parent = &soc_fw_content_cert,
.img_auth_methods = (const auth_method_desc_t[AUTH_METHOD_NUM]) {
[0] = {
.type = AUTH_METHOD_HASH,
.param.hash = {
.data = &raw_data,
.hash = &soc_fw_hash
}
}
}
};
The **Trusted Key certificate** is signed with the ROT private key and contains
the Trusted World public key and the Non-Trusted World public key as x509v3
extensions. This must be specified in the image descriptor using the
``img_auth_methods`` and ``authenticated_data`` arrays, respectively.
The Trusted Key certificate is authenticated by checking its digital signature
using the ROTPK. Four parameters are required to check a signature: the public
key, the algorithm, the signature and the data that has been signed. Therefore,
four parameter descriptors must be specified with the authentication method:
- ``subject_pk``: parameter descriptor of type ``AUTH_PARAM_PUB_KEY``. This type
is used to extract a public key from the parent image. If the cookie is an
OID, the key is extracted from the corresponding x509v3 extension. If the
cookie is NULL, the subject public key is retrieved. In this case, because
the parent image is NULL, the public key is obtained from the platform
(this key will be the ROTPK).
- ``sig``: parameter descriptor of type ``AUTH_PARAM_SIG``. It is used to extract
the signature from the certificate.
- ``sig_alg``: parameter descriptor of type ``AUTH_PARAM_SIG``. It is used to
extract the signature algorithm from the certificate.
- ``raw_data``: parameter descriptor of type ``AUTH_PARAM_RAW_DATA``. It is used
to extract the data to be signed from the certificate.
Once the signature has been checked and the certificate authenticated, the
Trusted World public key needs to be extracted from the certificate. A new entry
is created in the ``authenticated_data`` array for that purpose. In that entry,
the corresponding parameter descriptor must be specified along with the buffer
address to store the parameter value. In this case, the ``trusted_world_pk``
descriptor is used to extract the public key from an x509v3 extension with OID
``TRUSTED_WORLD_PK_OID``. The BL31 key certificate will use this descriptor as
parameter in the signature authentication method. The key is stored in the
``trusted_world_pk_buf`` buffer.
The **BL31 Key certificate** is authenticated by checking its digital signature
using the Trusted World public key obtained previously from the Trusted Key
certificate. In the image descriptor, we specify a single authentication method
by signature whose public key is the ``trusted_world_pk``. Once this certificate
has been authenticated, we have to extract the BL31 public key, stored in the
extension specified by ``soc_fw_content_pk``. This key will be copied to the
``content_pk_buf`` buffer.
The **BL31 certificate** is authenticated by checking its digital signature
using the BL31 public key obtained previously from the BL31 Key certificate.
We specify the authentication method using ``soc_fw_content_pk`` as public key.
After authentication, we need to extract the BL31 hash, stored in the extension
specified by ``soc_fw_hash``. This hash will be copied to the
``soc_fw_hash_buf`` buffer.
The **BL31 image** is authenticated by calculating its hash and matching it
with the hash obtained from the BL31 certificate. The image descriptor contains
a single authentication method by hash. The parameters to the hash method are
the reference hash, ``soc_fw_hash``, and the data to be hashed. In this case,
it is the whole image, so we specify ``raw_data``.
The image parser library
~~~~~~~~~~~~~~~~~~~~~~~~
The image parser module relies on libraries to check the image integrity and
extract the authentication parameters. The number and type of parser libraries
depend on the images used in the CoT. Raw images do not need a library, so
only an x509v3 library is required for the TBBR CoT.
Arm platforms will use an x509v3 library based on mbed TLS. This library may be
found in ``drivers/auth/mbedtls/mbedtls_x509_parser.c``. It exports three
functions:
.. code:: c
void init(void);
int check_integrity(void *img, unsigned int img_len);
int get_auth_param(const auth_param_type_desc_t *type_desc,
void *img, unsigned int img_len,
void **param, unsigned int *param_len);
The library is registered in the framework using the macro
``REGISTER_IMG_PARSER_LIB()``. Each time the image parser module needs to access
an image of type ``IMG_CERT``, it will call the corresponding function exported
in this file.
The build system must be updated to include the corresponding library and
mbed TLS sources. Arm platforms use the ``arm_common.mk`` file to pull the
sources.
The cryptographic library
~~~~~~~~~~~~~~~~~~~~~~~~~
The cryptographic module relies on a library to perform the required operations,
i.e. verify a hash or a digital signature. Arm platforms will use a library
based on mbed TLS, which can be found in
``drivers/auth/mbedtls/mbedtls_crypto.c``. This library is registered in the
authentication framework using the macro ``REGISTER_CRYPTO_LIB()`` and exports
four functions:
.. code:: c
void init(void);
int verify_signature(void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len);
int verify_hash(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len);
int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
size_t len, const void *key, unsigned int key_len,
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
The mbedTLS library algorithm support is configured by both the
``TF_MBEDTLS_KEY_ALG`` and ``TF_MBEDTLS_KEY_SIZE`` variables.
- ``TF_MBEDTLS_KEY_ALG`` can take in 3 values: `rsa`, `ecdsa` or `rsa+ecdsa`.
This variable allows the Makefile to include the corresponding sources in
the build for the various algorithms. Setting the variable to `rsa+ecdsa`
enables support for both rsa and ecdsa algorithms in the mbedTLS library.
- ``TF_MBEDTLS_KEY_SIZE`` sets the supported RSA key size for TFA. Valid values
include 1024, 2048, 3072 and 4096.
- ``TF_MBEDTLS_USE_AES_GCM`` enables the authenticated decryption support based
on AES-GCM algorithm. Valid values are 0 and 1.
.. note::
If code size is a concern, the build option ``MBEDTLS_SHA256_SMALLER`` can
be defined in the platform Makefile. It will make mbed TLS use an
implementation of SHA-256 with smaller memory footprint (~1.5 KB less) but
slower (~30%).
--------------
*Copyright (c) 2017-2020, Arm Limited and Contributors. All rights reserved.*
.. _TBBR-Client specification: https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

View File

@@ -0,0 +1,631 @@
Arm CPU Specific Build Macros
=============================
This document describes the various build options present in the CPU specific
operations framework to enable errata workarounds and to enable optimizations
for a specific CPU on a platform.
Security Vulnerability Workarounds
----------------------------------
TF-A exports a series of build flags which control which security
vulnerability workarounds should be applied at runtime.
- ``WORKAROUND_CVE_2017_5715``: Enables the security workaround for
`CVE-2017-5715`_. This flag can be set to 0 by the platform if none
of the PEs in the system need the workaround. Setting this flag to 0 provides
no performance benefit for non-affected platforms, it just helps to comply
with the recommendation in the spec regarding workaround discovery.
Defaults to 1.
- ``WORKAROUND_CVE_2018_3639``: Enables the security workaround for
`CVE-2018-3639`_. Defaults to 1. The TF-A project recommends to keep
the default value of 1 even on platforms that are unaffected by
CVE-2018-3639, in order to comply with the recommendation in the spec
regarding workaround discovery.
- ``DYNAMIC_WORKAROUND_CVE_2018_3639``: Enables dynamic mitigation for
`CVE-2018-3639`_. This build option should be set to 1 if the target
platform contains at least 1 CPU that requires dynamic mitigation.
Defaults to 0.
- ``WORKAROUND_CVE_2022_23960``: Enables mitigation for `CVE-2022-23960`_.
This build option should be set to 1 if the target platform contains at
least 1 CPU that requires this mitigation. Defaults to 1.
.. _arm_cpu_macros_errata_workarounds:
CPU Errata Workarounds
----------------------
TF-A exports a series of build flags which control the errata workarounds that
are applied to each CPU by the reset handler. The errata details can be found
in the CPU specific errata documents published by Arm:
- `Cortex-A53 MPCore Software Developers Errata Notice`_
- `Cortex-A57 MPCore Software Developers Errata Notice`_
- `Cortex-A72 MPCore Software Developers Errata Notice`_
The errata workarounds are implemented for a particular revision or a set of
processor revisions. This is checked by the reset handler at runtime. Each
errata workaround is identified by its ``ID`` as specified in the processor's
errata notice document. The format of the define used to enable/disable the
errata workaround is ``ERRATA_<Processor name>_<ID>``, where the ``Processor name``
is for example ``A57`` for the ``Cortex_A57`` CPU.
Refer to :ref:`firmware_design_cpu_errata_reporting` for information on how to
write errata workaround functions.
All workarounds are disabled by default. The platform is responsible for
enabling these workarounds according to its requirement by defining the
errata workaround build flags in the platform specific makefile. In case
these workarounds are enabled for the wrong CPU revision then the errata
workaround is not applied. In the DEBUG build, this is indicated by
printing a warning to the crash console.
In the current implementation, a platform which has more than 1 variant
with different revisions of a processor has no runtime mechanism available
for it to specify which errata workarounds should be enabled or not.
The value of the build flags is 0 by default, that is, disabled. A value of 1
will enable it.
For Cortex-A9, the following errata build flags are defined :
- ``ERRATA_A9_794073``: This applies errata 794073 workaround to Cortex-A9
CPU. This needs to be enabled for all revisions of the CPU.
For Cortex-A15, the following errata build flags are defined :
- ``ERRATA_A15_816470``: This applies errata 816470 workaround to Cortex-A15
CPU. This needs to be enabled only for revision >= r3p0 of the CPU.
- ``ERRATA_A15_827671``: This applies errata 827671 workaround to Cortex-A15
CPU. This needs to be enabled only for revision >= r3p0 of the CPU.
For Cortex-A17, the following errata build flags are defined :
- ``ERRATA_A17_852421``: This applies errata 852421 workaround to Cortex-A17
CPU. This needs to be enabled only for revision <= r1p2 of the CPU.
- ``ERRATA_A17_852423``: This applies errata 852423 workaround to Cortex-A17
CPU. This needs to be enabled only for revision <= r1p2 of the CPU.
For Cortex-A35, the following errata build flags are defined :
- ``ERRATA_A35_855472``: This applies errata 855472 workaround to Cortex-A35
CPUs. This needs to be enabled only for revision r0p0 of Cortex-A35.
For Cortex-A53, the following errata build flags are defined :
- ``ERRATA_A53_819472``: This applies errata 819472 workaround to all
CPUs. This needs to be enabled only for revision <= r0p1 of Cortex-A53.
- ``ERRATA_A53_824069``: This applies errata 824069 workaround to all
CPUs. This needs to be enabled only for revision <= r0p2 of Cortex-A53.
- ``ERRATA_A53_826319``: This applies errata 826319 workaround to Cortex-A53
CPU. This needs to be enabled only for revision <= r0p2 of the CPU.
- ``ERRATA_A53_827319``: This applies errata 827319 workaround to all
CPUs. This needs to be enabled only for revision <= r0p2 of Cortex-A53.
- ``ERRATA_A53_835769``: This applies erratum 835769 workaround at compile and
link time to Cortex-A53 CPU. This needs to be enabled for some variants of
revision <= r0p4. This workaround can lead the linker to create ``*.stub``
sections.
- ``ERRATA_A53_836870``: This applies errata 836870 workaround to Cortex-A53
CPU. This needs to be enabled only for revision <= r0p3 of the CPU. From
r0p4 and onwards, this errata is enabled by default in hardware.
- ``ERRATA_A53_843419``: This applies erratum 843419 workaround at link time
to Cortex-A53 CPU. This needs to be enabled for some variants of revision
<= r0p4. This workaround can lead the linker to emit ``*.stub`` sections
which are 4kB aligned.
- ``ERRATA_A53_855873``: This applies errata 855873 workaround to Cortex-A53
CPUs. Though the erratum is present in every revision of the CPU,
this workaround is only applied to CPUs from r0p3 onwards, which feature
a chicken bit in CPUACTLR_EL1 to enable a hardware workaround.
Earlier revisions of the CPU have other errata which require the same
workaround in software, so they should be covered anyway.
- ``ERRATA_A53_1530924``: This applies errata 1530924 workaround to all
revisions of Cortex-A53 CPU.
For Cortex-A55, the following errata build flags are defined :
- ``ERRATA_A55_768277``: This applies errata 768277 workaround to Cortex-A55
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A55_778703``: This applies errata 778703 workaround to Cortex-A55
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A55_798797``: This applies errata 798797 workaround to Cortex-A55
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A55_846532``: This applies errata 846532 workaround to Cortex-A55
CPU. This needs to be enabled only for revision <= r0p1 of the CPU.
- ``ERRATA_A55_903758``: This applies errata 903758 workaround to Cortex-A55
CPU. This needs to be enabled only for revision <= r0p1 of the CPU.
- ``ERRATA_A55_1221012``: This applies errata 1221012 workaround to Cortex-A55
CPU. This needs to be enabled only for revision <= r1p0 of the CPU.
- ``ERRATA_A55_1530923``: This applies errata 1530923 workaround to all
revisions of Cortex-A55 CPU.
For Cortex-A57, the following errata build flags are defined :
- ``ERRATA_A57_806969``: This applies errata 806969 workaround to Cortex-A57
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A57_813419``: This applies errata 813419 workaround to Cortex-A57
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A57_813420``: This applies errata 813420 workaround to Cortex-A57
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A57_814670``: This applies errata 814670 workaround to Cortex-A57
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A57_817169``: This applies errata 817169 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r0p1 of the CPU.
- ``ERRATA_A57_826974``: This applies errata 826974 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r1p1 of the CPU.
- ``ERRATA_A57_826977``: This applies errata 826977 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r1p1 of the CPU.
- ``ERRATA_A57_828024``: This applies errata 828024 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r1p1 of the CPU.
- ``ERRATA_A57_829520``: This applies errata 829520 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r1p2 of the CPU.
- ``ERRATA_A57_833471``: This applies errata 833471 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r1p2 of the CPU.
- ``ERRATA_A57_859972``: This applies errata 859972 workaround to Cortex-A57
CPU. This needs to be enabled only for revision <= r1p3 of the CPU.
- ``ERRATA_A57_1319537``: This applies errata 1319537 workaround to all
revisions of Cortex-A57 CPU.
For Cortex-A72, the following errata build flags are defined :
- ``ERRATA_A72_859971``: This applies errata 859971 workaround to Cortex-A72
CPU. This needs to be enabled only for revision <= r0p3 of the CPU.
- ``ERRATA_A72_1319367``: This applies errata 1319367 workaround to all
revisions of Cortex-A72 CPU.
For Cortex-A73, the following errata build flags are defined :
- ``ERRATA_A73_852427``: This applies errata 852427 workaround to Cortex-A73
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A73_855423``: This applies errata 855423 workaround to Cortex-A73
CPU. This needs to be enabled only for revision <= r0p1 of the CPU.
For Cortex-A75, the following errata build flags are defined :
- ``ERRATA_A75_764081``: This applies errata 764081 workaround to Cortex-A75
CPU. This needs to be enabled only for revision r0p0 of the CPU.
- ``ERRATA_A75_790748``: This applies errata 790748 workaround to Cortex-A75
CPU. This needs to be enabled only for revision r0p0 of the CPU.
For Cortex-A76, the following errata build flags are defined :
- ``ERRATA_A76_1073348``: This applies errata 1073348 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r1p0 of the CPU.
- ``ERRATA_A76_1130799``: This applies errata 1130799 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r2p0 of the CPU.
- ``ERRATA_A76_1220197``: This applies errata 1220197 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r2p0 of the CPU.
- ``ERRATA_A76_1257314``: This applies errata 1257314 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_A76_1262606``: This applies errata 1262606 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_A76_1262888``: This applies errata 1262888 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_A76_1275112``: This applies errata 1275112 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_A76_1791580``: This applies errata 1791580 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r4p0 of the CPU.
- ``ERRATA_A76_1165522``: This applies errata 1165522 workaround to all
revisions of Cortex-A76 CPU. This errata is fixed in r3p0 but due to
limitation of errata framework this errata is applied to all revisions
of Cortex-A76 CPU.
- ``ERRATA_A76_1868343``: This applies errata 1868343 workaround to Cortex-A76
CPU. This needs to be enabled only for revision <= r4p0 of the CPU.
- ``ERRATA_A76_1946160``: This applies errata 1946160 workaround to Cortex-A76
CPU. This needs to be enabled only for revisions r3p0 - r4p1 of the CPU.
For Cortex-A77, the following errata build flags are defined :
- ``ERRATA_A77_1508412``: This applies errata 1508412 workaround to Cortex-A77
CPU. This needs to be enabled only for revision <= r1p0 of the CPU.
- ``ERRATA_A77_1925769``: This applies errata 1925769 workaround to Cortex-A77
CPU. This needs to be enabled only for revision <= r1p1 of the CPU.
- ``ERRATA_A77_1946167``: This applies errata 1946167 workaround to Cortex-A77
CPU. This needs to be enabled only for revision <= r1p1 of the CPU.
- ``ERRATA_A77_1791578``: This applies errata 1791578 workaround to Cortex-A77
CPU. This needs to be enabled for r0p0, r1p0, and r1p1, it is still open.
For Cortex-A78, the following errata build flags are defined :
- ``ERRATA_A78_1688305``: This applies errata 1688305 workaround to Cortex-A78
CPU. This needs to be enabled only for revision r0p0 - r1p0 of the CPU.
- ``ERRATA_A78_1941498``: This applies errata 1941498 workaround to Cortex-A78
CPU. This needs to be enabled for revisions r0p0, r1p0, and r1p1 of the CPU.
- ``ERRATA_A78_1951500``: This applies errata 1951500 workaround to Cortex-A78
CPU. This needs to be enabled for revisions r1p0 and r1p1, r0p0 has the same
issue but there is no workaround for that revision.
- ``ERRATA_A78_1821534``: This applies errata 1821534 workaround to Cortex-A78
CPU. This needs to be enabled for revisions r0p0 and r1p0.
- ``ERRATA_A78_1952683``: This applies errata 1952683 workaround to Cortex-A78
CPU. This needs to be enabled for revision r0p0, it is fixed in r1p0.
- ``ERRATA_A78_2132060``: This applies errata 2132060 workaround to Cortex-A78
CPU. This needs to be enabled for revisions r0p0, r1p0, r1p1, and r1p2. It
is still open.
- ``ERRATA_A78_2242635``: This applies errata 2242635 workaround to Cortex-A78
CPU. This needs to be enabled for revisions r1p0, r1p1, and r1p2. The issue
is present in r0p0 but there is no workaround. It is still open.
For Cortex-A78 AE, the following errata build flags are defined :
- ``ERRATA_A78_AE_1941500`` : This applies errata 1941500 workaround to
Cortex-A78 AE CPU. This needs to be enabled for revisions r0p0 and r0p1.
This erratum is still open.
- ``ERRATA_A78_AE_1951502`` : This applies errata 1951502 workaround to
Cortex-A78 AE CPU. This needs to be enabled for revisions r0p0 and r0p1. This
erratum is still open.
- ``ERRATA_A78_AE_2376748`` : This applies errata 2376748 workaround to
Cortex-A78 AE CPU. This needs to be enabled for revisions r0p0 and r0p1. This
erratum is still open.
- ``ERRATA_A78_AE_2395408`` : This applies errata 2395408 workaround to
Cortex-A78 AE CPU. This needs to be enabled for revisions r0p0 and r0p1. This
erratum is still open.
- ``ERRATA_A78_AE_2743093``: This applies errata 2743093 workaround to Cortex-A78 AE
CPU. This needs to be enabled for revisions r0p0, r0p1 and r0p2.
- ``ERRATA_A78_AE_2743229`` : This applies errata 2743229 workaround to
Cortex-A78 AE CPU. This needs to be enabled for revisions <= r0p2.
For Neoverse N1, the following errata build flags are defined :
- ``ERRATA_N1_1073348``: This applies errata 1073348 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision r0p0 and r1p0 of the CPU.
- ``ERRATA_N1_1130799``: This applies errata 1130799 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r2p0 of the CPU.
- ``ERRATA_N1_1165347``: This applies errata 1165347 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r2p0 of the CPU.
- ``ERRATA_N1_1207823``: This applies errata 1207823 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r2p0 of the CPU.
- ``ERRATA_N1_1220197``: This applies errata 1220197 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r2p0 of the CPU.
- ``ERRATA_N1_1257314``: This applies errata 1257314 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_N1_1262606``: This applies errata 1262606 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_N1_1262888``: This applies errata 1262888 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_N1_1275112``: This applies errata 1275112 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_N1_1315703``: This applies errata 1315703 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r3p0 of the CPU.
- ``ERRATA_N1_1542419``: This applies errata 1542419 workaround to Neoverse-N1
CPU. This needs to be enabled only for revisions r3p0 - r4p0 of the CPU.
- ``ERRATA_N1_1868343``: This applies errata 1868343 workaround to Neoverse-N1
CPU. This needs to be enabled only for revision <= r4p0 of the CPU.
- ``ERRATA_N1_1946160``: This applies errata 1946160 workaround to Neoverse-N1
CPU. This needs to be enabled for revisions r3p0, r3p1, r4p0, and r4p1, for
revisions r0p0, r1p0, and r2p0 there is no workaround.
For Neoverse V1, the following errata build flags are defined :
- ``ERRATA_V1_1774420``: This applies errata 1774420 workaround to Neoverse-V1
CPU. This needs to be enabled only for revisions r0p0 and r1p0, it is fixed
in r1p1.
- ``ERRATA_V1_1791573``: This applies errata 1791573 workaround to Neoverse-V1
CPU. This needs to be enabled only for revisions r0p0 and r1p0, it is fixed
in r1p1.
- ``ERRATA_V1_1852267``: This applies errata 1852267 workaround to Neoverse-V1
CPU. This needs to be enabled only for revisions r0p0 and r1p0, it is fixed
in r1p1.
- ``ERRATA_V1_1925756``: This applies errata 1925756 workaround to Neoverse-V1
CPU. This needs to be enabled for r0p0, r1p0, and r1p1, it is still open.
- ``ERRATA_V1_1940577``: This applies errata 1940577 workaround to Neoverse-V1
CPU. This needs to be enabled only for revision r1p0 and r1p1 of the
CPU.
- ``ERRATA_V1_1966096``: This applies errata 1966096 workaround to Neoverse-V1
CPU. This needs to be enabled for revisions r1p0 and r1p1 of the CPU, the
issue is present in r0p0 as well but there is no workaround for that
revision. It is still open.
- ``ERRATA_V1_2139242``: This applies errata 2139242 workaround to Neoverse-V1
CPU. This needs to be enabled for revisions r0p0, r1p0, and r1p1 of the
CPU. It is still open.
- ``ERRATA_V1_2108267``: This applies errata 2108267 workaround to Neoverse-V1
CPU. This needs to be enabled for revisions r0p0, r1p0, and r1p1 of the CPU.
It is still open.
- ``ERRATA_V1_2216392``: This applies errata 2216392 workaround to Neoverse-V1
CPU. This needs to be enabled for revisions r1p0 and r1p1 of the CPU, the
issue is present in r0p0 as well but there is no workaround for that
revision. It is still open.
For Cortex-A710, the following errata build flags are defined :
- ``ERRATA_A710_1987031``: This applies errata 1987031 workaround to
Cortex-A710 CPU. This needs to be enabled only for revisions r0p0, r1p0 and
r2p0 of the CPU. It is still open.
- ``ERRATA_A710_2081180``: This applies errata 2081180 workaround to
Cortex-A710 CPU. This needs to be enabled only for revisions r0p0, r1p0 and
r2p0 of the CPU. It is still open.
- ``ERRATA_A710_2055002``: This applies errata 2055002 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r1p0, r2p0 of the CPU
and is still open.
- ``ERRATA_A710_2017096``: This applies errata 2017096 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r0p0, r1p0 and r2p0
of the CPU and is still open.
- ``ERRATA_A710_2083908``: This applies errata 2083908 workaround to
Cortex-A710 CPU. This needs to be enabled for revision r2p0 of the CPU and
is still open.
- ``ERRATA_A710_2058056``: This applies errata 2058056 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r0p0, r1p0 and r2p0
of the CPU and is still open.
- ``ERRATA_A710_2267065``: This applies errata 2267065 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r0p0, r1p0 and r2p0
of the CPU and is fixed in r2p1.
- ``ERRATA_A710_2136059``: This applies errata 2136059 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r0p0, r1p0 and r2p0
of the CPU and is fixed in r2p1.
- ``ERRATA_A710_2282622``: This applies errata 2282622 workaround to
Cortex-A710 CPU. This needs to be enabled for revisions r0p0, r1p0 and r2p0
of the CPU and is fixed in r2p1.
For Neoverse N2, the following errata build flags are defined :
- ``ERRATA_N2_2002655``: This applies errata 2002655 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU, it is still open.
- ``ERRATA_N2_2067956``: This applies errata 2067956 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2025414``: This applies errata 2025414 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2189731``: This applies errata 2189731 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2138956``: This applies errata 2138956 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2138953``: This applies errata 2138953 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2242415``: This applies errata 2242415 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2138958``: This applies errata 2138958 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2242400``: This applies errata 2242400 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
- ``ERRATA_N2_2280757``: This applies errata 2280757 workaround to Neoverse-N2
CPU. This needs to be enabled for revision r0p0 of the CPU and is still open.
For Cortex-X2, the following errata build flags are defined :
- ``ERRATA_X2_2002765``: This applies errata 2002765 workaround to Cortex-X2
CPU. This needs to be enabled for revisions r0p0, r1p0, and r2p0 of the CPU,
it is still open.
- ``ERRATA_X2_2058056``: This applies errata 2058056 workaround to Cortex-X2
CPU. This needs to be enabled for revisions r0p0, r1p0, and r2p0 of the CPU,
it is still open.
- ``ERRATA_X2_2083908``: This applies errata 2083908 workaround to Cortex-X2
CPU. This needs to be enabled for revision r2p0 of the CPU, it is still open.
- ``ERRATA_X2_2017096``: This applies errata 2017096 workaround to
Cortex-X2 CPU. This needs to be enabled only for revisions r0p0, r1p0 and
r2p0 of the CPU, it is fixed in r2p1.
- ``ERRATA_X2_2081180``: This applies errata 2081180 workaround to
Cortex-X2 CPU. This needs to be enabled only for revisions r0p0, r1p0 and
r2p0 of the CPU, it is fixed in r2p1.
- ``ERRATA_X2_2216384``: This applies errata 2216384 workaround to
Cortex-X2 CPU. This needs to be enabled only for revisions r0p0, r1p0 and
r2p0 of the CPU, it is fixed in r2p1.
For Cortex-A510, the following errata build flags are defined :
- ``ERRATA_A510_1922240``: This applies errata 1922240 workaround to
Cortex-A510 CPU. This needs to be enabled only for revision r0p0, it is
fixed in r0p1.
- ``ERRATA_A510_2288014``: This applies errata 2288014 workaround to
Cortex-A510 CPU. This needs to be enabled only for revisions r0p0, r0p1,
r0p2, r0p3 and r1p0, it is fixed in r1p1.
- ``ERRATA_A510_2042739``: This applies errata 2042739 workaround to
Cortex-A510 CPU. This needs to be enabled only for revisions r0p0, r0p1 and
r0p2, it is fixed in r0p3.
- ``ERRATA_A510_2041909``: This applies errata 2041909 workaround to
Cortex-A510 CPU. This needs to be enabled only for revision r0p2 and is fixed
in r0p3. The issue is also present in r0p0 and r0p1 but there is no
workaround for those revisions.
- ``ERRATA_A510_2250311``: This applies errata 2250311 workaround to
Cortex-A510 CPU. This needs to be enabled for revisions r0p0, r0p1, r0p2,
r0p3 and r1p0, it is fixed in r1p1. This workaround disables MPMM even if
ENABLE_MPMM=1.
- ``ERRATA_A510_2218950``: This applies errata 2218950 workaround to
Cortex-A510 CPU. This needs to be enabled for revisions r0p0, r0p1, r0p2,
r0p3 and r1p0, it is fixed in r1p1.
- ``ERRATA_A510_2172148``: This applies errata 2172148 workaround to
Cortex-A510 CPU. This needs to be enabled for revisions r0p0, r0p1, r0p2,
r0p3 and r1p0, it is fixed in r1p1.
DSU Errata Workarounds
----------------------
Similar to CPU errata, TF-A also implements workarounds for DSU (DynamIQ
Shared Unit) errata. The DSU errata details can be found in the respective Arm
documentation:
- `Arm DSU Software Developers Errata Notice`_.
Each erratum is identified by an ``ID``, as defined in the DSU errata notice
document. Thus, the build flags which enable/disable the errata workarounds
have the format ``ERRATA_DSU_<ID>``. The implementation and application logic
of DSU errata workarounds are similar to `CPU errata workarounds`_.
For DSU errata, the following build flags are defined:
- ``ERRATA_DSU_798953``: This applies errata 798953 workaround for the
affected DSU configurations. This errata applies only for those DSUs that
revision is r0p0 (on r0p1 it is fixed). However, please note that this
workaround results in increased DSU power consumption on idle.
- ``ERRATA_DSU_936184``: This applies errata 936184 workaround for the
affected DSU configurations. This errata applies only for those DSUs that
contain the ACP interface **and** the DSU revision is older than r2p0 (on
r2p0 it is fixed). However, please note that this workaround results in
increased DSU power consumption on idle.
CPU Specific optimizations
--------------------------
This section describes some of the optimizations allowed by the CPU micro
architecture that can be enabled by the platform as desired.
- ``SKIP_A57_L1_FLUSH_PWR_DWN``: This flag enables an optimization in the
Cortex-A57 cluster power down sequence by not flushing the Level 1 data
cache. The L1 data cache and the L2 unified cache are inclusive. A flush
of the L2 by set/way flushes any dirty lines from the L1 as well. This
is a known safe deviation from the Cortex-A57 TRM defined power down
sequence. Each Cortex-A57 based platform must make its own decision on
whether to use the optimization.
- ``A53_DISABLE_NON_TEMPORAL_HINT``: This flag disables the cache non-temporal
hint. The LDNP/STNP instructions as implemented on Cortex-A53 do not behave
in a way most programmers expect, and will most probably result in a
significant speed degradation to any code that employs them. The Armv8-A
architecture (see Arm DDI 0487A.h, section D3.4.3) allows cores to ignore
the non-temporal hint and treat LDNP/STNP as LDP/STP instead. Enabling this
flag enforces this behaviour. This needs to be enabled only for revisions
<= r0p3 of the CPU and is enabled by default.
- ``A57_DISABLE_NON_TEMPORAL_HINT``: This flag has the same behaviour as
``A53_DISABLE_NON_TEMPORAL_HINT`` but for Cortex-A57. This needs to be
enabled only for revisions <= r1p2 of the CPU and is enabled by default,
as recommended in section "4.7 Non-Temporal Loads/Stores" of the
`Cortex-A57 Software Optimization Guide`_.
- ''A57_ENABLE_NON_CACHEABLE_LOAD_FWD'': This flag enables non-cacheable
streaming enhancement feature for Cortex-A57 CPUs. Platforms can set
this bit only if their memory system meets the requirement that cache
line fill requests from the Cortex-A57 processor are atomic. Each
Cortex-A57 based platform must make its own decision on whether to use
the optimization. This flag is disabled by default.
- ``NEOVERSE_Nx_EXTERNAL_LLC``: This flag indicates that an external last
level cache(LLC) is present in the system, and that the DataSource field
on the master CHI interface indicates when data is returned from the LLC.
This is used to control how the LL_CACHE* PMU events count.
Default value is 0 (Disabled).
GIC Errata Workarounds
----------------------
- ``GIC600_ERRATA_WA_2384374``: This flag applies part 2 of errata 2384374
workaround for the affected GIC600 and GIC600-AE implementations. It applies
to implementations of GIC600 and GIC600-AE with revisions less than or equal
to r1p6 and r0p2 respectively. If the platform sets GICV3_SUPPORT_GIC600,
then this flag is enabled; otherwise, it is 0 (Disabled).
- ``GIC600AE_ERRATA_WA_1568841``: This flag applies errata 1568841 workaround
for the affected GIC600-AE implementations. It applies to implementations of
GIC600-AE with revisions less than or equal to r0p2. If the platform sets
GICV3_SUPPORT_GIC600, then this flag is enabled; otherwise, it is 0
(Disabled).
- ''GIC600AE_ERRATA_WA_2079287'': This flag applies errata 2079287 workaround
for the affected GIC600-AE implementations. It applies to implementations of
GIC600-AE with revisions less than or equal to r0p2. If the platform sets
GICV3_SUPPORT_GIC600, then this flag is enabled; otherwise, it is 0
(Disabled).
--------------
*Copyright (c) 2014-2022, Arm Limited and Contributors. All rights reserved.*
.. _CVE-2017-5715: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5715
.. _CVE-2018-3639: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
.. _CVE-2022-23960: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23960
.. _Cortex-A53 MPCore Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm048406/index.html
.. _Cortex-A57 MPCore Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm049219/index.html
.. _Cortex-A72 MPCore Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm012079/index.html
.. _Cortex-A57 Software Optimization Guide: http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
.. _Arm DSU Software Developers Errata Notice: http://infocenter.arm.com/help/topic/com.arm.doc.epm138168/index.html

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,21 @@
System Design
=============
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
alt-boot-flows
auth-framework
cpu-specific-build-macros
firmware-design
interrupt-framework-design
psci-pd-tree
reset-design
trusted-board-boot
trusted-board-boot-build
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,304 @@
PSCI Power Domain Tree Structure
================================
Requirements
------------
#. A platform must export the ``plat_get_aff_count()`` and
``plat_get_aff_state()`` APIs to enable the generic PSCI code to
populate a tree that describes the hierarchy of power domains in the
system. This approach is inflexible because a change to the topology
requires a change in the code.
It would be much simpler for the platform to describe its power domain tree
in a data structure.
#. The generic PSCI code generates MPIDRs in order to populate the power domain
tree. It also uses an MPIDR to find a node in the tree. The assumption that
a platform will use exactly the same MPIDRs as generated by the generic PSCI
code is not scalable. The use of an MPIDR also restricts the number of
levels in the power domain tree to four.
Therefore, there is a need to decouple allocation of MPIDRs from the
mechanism used to populate the power domain topology tree.
#. The current arrangement of the power domain tree requires a binary search
over the sibling nodes at a particular level to find a specified power
domain node. During a power management operation, the tree is traversed from
a 'start' to an 'end' power level. The binary search is required to find the
node at each level. The natural way to perform this traversal is to
start from a leaf node and follow the parent node pointer to reach the end
level.
Therefore, there is a need to define data structures that implement the tree in
a way which facilitates such a traversal.
#. The attributes of a core power domain differ from the attributes of power
domains at higher levels. For example, only a core power domain can be identified
using an MPIDR. There is no requirement to perform state coordination while
performing a power management operation on the core power domain.
Therefore, there is a need to implement the tree in a way which facilitates this
distinction between a leaf and non-leaf node and any associated
optimizations.
--------------
Design
------
Describing a power domain tree
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To fulfill requirement 1., the existing platform APIs
``plat_get_aff_count()`` and ``plat_get_aff_state()`` have been
removed. A platform must define an array of unsigned chars such that:
#. The first entry in the array specifies the number of power domains at the
highest power level implemented in the platform. This caters for platforms
where the power domain tree does not have a single root node, for example,
the FVP has two cluster power domains at the highest level (1).
#. Each subsequent entry corresponds to a power domain and contains the number
of power domains that are its direct children.
#. The size of the array minus the first entry will be equal to the number of
non-leaf power domains.
#. The value in each entry in the array is used to find the number of entries
to consider at the next level. The sum of the values (number of children) of
all the entries at a level specifies the number of entries in the array for
the next level.
The following example power domain topology tree will be used to describe the
above text further. The leaf and non-leaf nodes in this tree have been numbered
separately.
::
+-+
|0|
+-+
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
+-+ +-+
|1| |2|
+-+ +-+
/ \ / \
/ \ / \
/ \ / \
/ \ / \
+-+ +-+ +-+ +-+
|3| |4| |5| |6|
+-+ +-+ +-+ +-+
+---+-----+ +----+----| +----+----+ +----+-----+-----+
| | | | | | | | | | | | |
| | | | | | | | | | | | |
v v v v v v v v v v v v v
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +--+ +--+ +--+
|0| |1| |2| |3| |4| |5| |6| |7| |8| |9| |10| |11| |12|
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +--+ +--+ +--+
This tree is defined by the platform as the array described above as follows:
.. code:: c
#define PLAT_NUM_POWER_DOMAINS 20
#define PLATFORM_CORE_COUNT 13
#define PSCI_NUM_NON_CPU_PWR_DOMAINS \
(PLAT_NUM_POWER_DOMAINS - PLATFORM_CORE_COUNT)
unsigned char plat_power_domain_tree_desc[] = { 1, 2, 2, 2, 3, 3, 3, 4};
Removing assumptions about MPIDRs used in a platform
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To fulfill requirement 2., it is assumed that the platform assigns a
unique number (core index) between ``0`` and ``PLAT_CORE_COUNT - 1`` to each core
power domain. MPIDRs could be allocated in any manner and will not be used to
populate the tree.
``plat_core_pos_by_mpidr(mpidr)`` will return the core index for the core
corresponding to the MPIDR. It will return an error (-1) if an MPIDR is passed
which is not allocated or corresponds to an absent core. The semantics of this
platform API have changed since it is required to validate the passed MPIDR. It
has been made a mandatory API as a result.
Another mandatory API, ``plat_my_core_pos()`` has been added to return the core
index for the calling core. This API provides a more lightweight mechanism to get
the index since there is no need to validate the MPIDR of the calling core.
The platform should assign the core indices (as illustrated in the diagram above)
such that, if the core nodes are numbered from left to right, then the index
for a core domain will be the same as the index returned by
``plat_core_pos_by_mpidr()`` or ``plat_my_core_pos()`` for that core. This
relationship allows the core nodes to be allocated in a separate array
(requirement 4.) during ``psci_setup()`` in such an order that the index of the
core in the array is the same as the return value from these APIs.
Dealing with holes in MPIDR allocation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For platforms where the number of allocated MPIDRs is equal to the number of
core power domains, for example, Juno and FVPs, the logic to convert an MPIDR to
a core index should remain unchanged. Both Juno and FVP use a simple collision
proof hash function to do this.
It is possible that on some platforms, the allocation of MPIDRs is not
contiguous or certain cores have been disabled. This essentially means that the
MPIDRs have been sparsely allocated, that is, the size of the range of MPIDRs
used by the platform is not equal to the number of core power domains.
The platform could adopt one of the following approaches to deal with this
scenario:
#. Implement more complex logic to convert a valid MPIDR to a core index while
maintaining the relationship described earlier. This means that the power
domain tree descriptor will not describe any core power domains which are
disabled or absent. Entries will not be allocated in the tree for these
domains.
#. Treat unallocated MPIDRs and disabled cores as absent but still describe them
in the power domain descriptor, that is, the number of core nodes described
is equal to the size of the range of MPIDRs allocated. This approach will
lead to memory wastage since entries will be allocated in the tree but will
allow use of a simpler logic to convert an MPIDR to a core index.
Traversing through and distinguishing between core and non-core power domains
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To fulfill requirement 3 and 4, separate data structures have been defined
to represent leaf and non-leaf power domain nodes in the tree.
.. code:: c
/*******************************************************************************
* The following two data structures implement the power domain tree. The tree
* is used to track the state of all the nodes i.e. power domain instances
* described by the platform. The tree consists of nodes that describe CPU power
* domains i.e. leaf nodes and all other power domains which are parents of a
* CPU power domain i.e. non-leaf nodes.
******************************************************************************/
typedef struct non_cpu_pwr_domain_node {
/*
* Index of the first CPU power domain node level 0 which has this node
* as its parent.
*/
unsigned int cpu_start_idx;
/*
* Number of CPU power domains which are siblings of the domain indexed
* by 'cpu_start_idx' i.e. all the domains in the range 'cpu_start_idx
* -> cpu_start_idx + ncpus' have this node as their parent.
*/
unsigned int ncpus;
/* Index of the parent power domain node */
unsigned int parent_node;
-----
} non_cpu_pd_node_t;
typedef struct cpu_pwr_domain_node {
u_register_t mpidr;
/* Index of the parent power domain node */
unsigned int parent_node;
-----
} cpu_pd_node_t;
The power domain tree is implemented as a combination of the following data
structures.
.. code:: c
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS];
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
Populating the power domain tree
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``populate_power_domain_tree()`` function in ``psci_setup.c`` implements the
algorithm to parse the power domain descriptor exported by the platform to
populate the two arrays. It is essentially a breadth-first-search. The nodes for
each level starting from the root are laid out one after another in the
``psci_non_cpu_pd_nodes`` and ``psci_cpu_pd_nodes`` arrays as follows:
::
psci_non_cpu_pd_nodes -> [[Level 3 nodes][Level 2 nodes][Level 1 nodes]]
psci_cpu_pd_nodes -> [Level 0 nodes]
For the example power domain tree illustrated above, the ``psci_cpu_pd_nodes``
will be populated as follows. The value in each entry is the index of the parent
node. Other fields have been ignored for simplicity.
::
+-------------+ ^
CPU0 | 3 | |
+-------------+ |
CPU1 | 3 | |
+-------------+ |
CPU2 | 3 | |
+-------------+ |
CPU3 | 4 | |
+-------------+ |
CPU4 | 4 | |
+-------------+ |
CPU5 | 4 | | PLATFORM_CORE_COUNT
+-------------+ |
CPU6 | 5 | |
+-------------+ |
CPU7 | 5 | |
+-------------+ |
CPU8 | 5 | |
+-------------+ |
CPU9 | 6 | |
+-------------+ |
CPU10 | 6 | |
+-------------+ |
CPU11 | 6 | |
+-------------+ |
CPU12 | 6 | v
+-------------+
The ``psci_non_cpu_pd_nodes`` array will be populated as follows. The value in
each entry is the index of the parent node.
::
+-------------+ ^
PD0 | -1 | |
+-------------+ |
PD1 | 0 | |
+-------------+ |
PD2 | 0 | |
+-------------+ |
PD3 | 1 | | PLAT_NUM_POWER_DOMAINS -
+-------------+ | PLATFORM_CORE_COUNT
PD4 | 1 | |
+-------------+ |
PD5 | 2 | |
+-------------+ |
PD6 | 2 | |
+-------------+ v
Each core can find its node in the ``psci_cpu_pd_nodes`` array using the
``plat_my_core_pos()`` function. When a core is turned on, the normal world
provides an MPIDR. The ``plat_core_pos_by_mpidr()`` function is used to validate
the MPIDR before using it to find the corresponding core node. The non-core power
domain nodes do not need to be identified.
--------------
*Copyright (c) 2017-2018, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,161 @@
CPU Reset
=========
This document describes the high-level design of the framework to handle CPU
resets in Trusted Firmware-A (TF-A). It also describes how the platform
integrator can tailor this code to the system configuration to some extent,
resulting in a simplified and more optimised boot flow.
This document should be used in conjunction with the :ref:`Firmware Design`
document which provides greater implementation details around the reset code,
specifically for the cold boot path.
General reset code flow
-----------------------
The TF-A reset code is implemented in BL1 by default. The following high-level
diagram illustrates this:
|Default reset code flow|
This diagram shows the default, unoptimised reset flow. Depending on the system
configuration, some of these steps might be unnecessary. The following sections
guide the platform integrator by indicating which build options exclude which
steps, depending on the capability of the platform.
.. note::
If BL31 is used as the TF-A entry point instead of BL1, the diagram
above is still relevant, as all these operations will occur in BL31 in
this case. Please refer to section 6 "Using BL31 entrypoint as the reset
address" for more information.
Programmable CPU reset address
------------------------------
By default, TF-A assumes that the CPU reset address is not programmable.
Therefore, all CPUs start at the same address (typically address 0) whenever
they reset. Further logic is then required to identify whether it is a cold or
warm boot to direct CPUs to the right execution path.
If the reset vector address (reflected in the reset vector base address register
``RVBAR_EL3``) is programmable then it is possible to make each CPU start directly
at the right address, both on a cold and warm reset. Therefore, the boot type
detection can be skipped, resulting in the following boot flow:
|Reset code flow with programmable reset address|
To enable this boot flow, compile TF-A with ``PROGRAMMABLE_RESET_ADDRESS=1``.
This option only affects the TF-A reset image, which is BL1 by default or BL31 if
``RESET_TO_BL31=1``.
On both the FVP and Juno platforms, the reset vector address is not programmable
so both ports use ``PROGRAMMABLE_RESET_ADDRESS=0``.
Cold boot on a single CPU
-------------------------
By default, TF-A assumes that several CPUs may be released out of reset.
Therefore, the cold boot code has to arbitrate access to hardware resources
shared amongst CPUs. This is done by nominating one of the CPUs as the primary,
which is responsible for initialising shared hardware and coordinating the boot
flow with the other CPUs.
If the platform guarantees that only a single CPU will ever be brought up then
no arbitration is required. The notion of primary/secondary CPU itself no longer
applies. This results in the following boot flow:
|Reset code flow with single CPU released out of reset|
To enable this boot flow, compile TF-A with ``COLD_BOOT_SINGLE_CPU=1``. This
option only affects the TF-A reset image, which is BL1 by default or BL31 if
``RESET_TO_BL31=1``.
On both the FVP and Juno platforms, although only one core is powered up by
default, there are platform-specific ways to release any number of cores out of
reset. Therefore, both platform ports use ``COLD_BOOT_SINGLE_CPU=0``.
Programmable CPU reset address, Cold boot on a single CPU
---------------------------------------------------------
It is obviously possible to combine both optimisations on platforms that have
a programmable CPU reset address and which release a single CPU out of reset.
This results in the following boot flow:
|Reset code flow with programmable reset address and single CPU released out of reset|
To enable this boot flow, compile TF-A with both ``COLD_BOOT_SINGLE_CPU=1``
and ``PROGRAMMABLE_RESET_ADDRESS=1``. These options only affect the TF-A reset
image, which is BL1 by default or BL31 if ``RESET_TO_BL31=1``.
Using BL31 entrypoint as the reset address
------------------------------------------
On some platforms the runtime firmware (BL3x images) for the application
processors are loaded by some firmware running on a secure system processor
on the SoC, rather than by BL1 and BL2 running on the primary application
processor. For this type of SoC it is desirable for the application processor
to always reset to BL31 which eliminates the need for BL1 and BL2.
TF-A provides a build-time option ``RESET_TO_BL31`` that includes some additional
logic in the BL31 entry point to support this use case.
In this configuration, the platform's Trusted Boot Firmware must ensure that
BL31 is loaded to its runtime address, which must match the CPU's ``RVBAR_EL3``
reset vector base address, before the application processor is powered on.
Additionally, platform software is responsible for loading the other BL3x images
required and providing entry point information for them to BL31. Loading these
images might be done by the Trusted Boot Firmware or by platform code in BL31.
Although the Arm FVP platform does not support programming the reset base
address dynamically at run-time, it is possible to set the initial value of the
``RVBAR_EL3`` register at start-up. This feature is provided on the Base FVP
only.
It allows the Arm FVP port to support the ``RESET_TO_BL31`` configuration, in
which case the ``bl31.bin`` image must be loaded to its run address in Trusted
SRAM and all CPU reset vectors be changed from the default ``0x0`` to this run
address. See the :ref:`Arm Fixed Virtual Platforms (FVP)` for details of running
the FVP models in this way.
Although technically it would be possible to program the reset base address with
the right support in the SCP firmware, this is currently not implemented so the
Juno port doesn't support the ``RESET_TO_BL31`` configuration.
The ``RESET_TO_BL31`` configuration requires some additions and changes in the
BL31 functionality:
Determination of boot path
~~~~~~~~~~~~~~~~~~~~~~~~~~
In this configuration, BL31 uses the same reset framework and code as the one
described for BL1 above. Therefore, it is affected by the
``PROGRAMMABLE_RESET_ADDRESS`` and ``COLD_BOOT_SINGLE_CPU`` build options in the
same way.
In the default, unoptimised BL31 reset flow, on a warm boot a CPU is directed
to the PSCI implementation via a platform defined mechanism. On a cold boot,
the platform must place any secondary CPUs into a safe state while the primary
CPU executes a modified BL31 initialization, as described below.
Platform initialization
~~~~~~~~~~~~~~~~~~~~~~~
In this configuration, when the CPU resets to BL31 there are no parameters that
can be passed in registers by previous boot stages. Instead, the platform code
in BL31 needs to know, or be able to determine, the location of the BL32 (if
required) and BL33 images and provide this information in response to the
``bl31_plat_get_next_image_ep_info()`` function.
Additionally, platform software is responsible for carrying out any security
initialisation, for example programming a TrustZone address space controller.
This might be done by the Trusted Boot Firmware or by platform code in BL31.
--------------
*Copyright (c) 2015-2019, Arm Limited and Contributors. All rights reserved.*
.. |Default reset code flow| image:: ../resources/diagrams/default_reset_code.png
.. |Reset code flow with programmable reset address| image:: ../resources/diagrams/reset_code_no_boot_type_check.png
.. |Reset code flow with single CPU released out of reset| image:: ../resources/diagrams/reset_code_no_cpu_check.png
.. |Reset code flow with programmable reset address and single CPU released out of reset| image:: ../resources/diagrams/reset_code_no_checks.png

View File

@@ -0,0 +1,115 @@
Building FIP images with support for Trusted Board Boot
=======================================================
Trusted Board Boot primarily consists of the following two features:
- Image Authentication, described in :ref:`Trusted Board Boot`, and
- Firmware Update, described in :ref:`Firmware Update (FWU)`
The following steps should be followed to build FIP and (optionally) FWU_FIP
images with support for these features:
#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
modules by checking out a recent version of the `mbed TLS Repository`_. It
is important to use a version that is compatible with TF-A and fixes any
known security vulnerabilities. See `mbed TLS Security Center`_ for more
information. See the :ref:`Prerequisites` document for the appropriate
version of mbed TLS to use.
The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
source files the modules depend upon.
``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
options required to build the mbed TLS sources.
Note that the mbed TLS library is licensed under the Apache version 2.0
license. Using mbed TLS source code will affect the licensing of TF-A
binaries that are built using this library.
#. To build the FIP image, ensure the following command line variables are set
while invoking ``make`` to build TF-A:
- ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
- ``TRUSTED_BOARD_BOOT=1``
- ``GENERATE_COT=1``
By default, this will use the Chain of Trust described in the TBBR-client
document. To select a different one, use the ``COT`` build option.
In the case of Arm platforms, the location of the ROTPK hash must also be
specified at build time. The following locations are currently supported (see
``ARM_ROTPK_LOCATION`` build option):
- ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
root-key storage registers present in the platform. On Juno, these
registers are read-only. On FVP Base and Cortex models, the registers
are also read-only, but the value can be specified using the command line
option ``bp.trusted_key_storage.public_key`` when launching the model.
On Juno board, the default value corresponds to an ECDSA-SECP256R1 public
key hash, whose private part is not currently available.
- ``ARM_ROTPK_LOCATION=devel_rsa``: use the default hash located in
``plat/arm/board/common/rotpk/arm_rotpk_rsa_sha256.bin``. Enforce
generation of the new hash if ``ROT_KEY`` is specified.
- ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the default hash located in
``plat/arm/board/common/rotpk/arm_rotpk_ecdsa_sha256.bin``. Enforce
generation of the new hash if ``ROT_KEY`` is specified.
Example of command line using RSA development keys:
.. code:: shell
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> \
all fip
The result of this build will be the bl1.bin and the fip.bin binaries. This
FIP will include the certificates corresponding to the selected Chain of
Trust. These certificates can also be found in the output build directory.
#. The optional FWU_FIP contains any additional images to be loaded from
Non-Volatile storage during the :ref:`Firmware Update (FWU)` process. To build the
FWU_FIP, any FWU images required by the platform must be specified on the
command line. On Arm development platforms like Juno, these are:
- NS_BL2U. The AP non-secure Firmware Updater image.
- SCP_BL2U. The SCP Firmware Update Configuration image.
Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
targets using RSA development:
::
MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL33=<path-to>/<bl33_image> \
SCP_BL2=<path-to>/<scp_bl2_image> \
SCP_BL2U=<path-to>/<scp_bl2u_image> \
NS_BL2U=<path-to>/<ns_bl2u_image> \
all fip fwu_fip
.. note::
The BL2U image will be built by default and added to the FWU_FIP.
The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
to the command line above.
.. note::
Building and installing the non-secure and SCP FWU images (NS_BL1U,
NS_BL2U and SCP_BL2U) is outside the scope of this document.
The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries.
Both the FIP and FWU_FIP will include the certificates corresponding to the
selected Chain of Trust. These certificates can also be found in the output
build directory.
--------------
*Copyright (c) 2019-2020, Arm Limited. All rights reserved.*
.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
.. _mbed TLS Security Center: https://tls.mbed.org/security

View File

@@ -0,0 +1,263 @@
Trusted Board Boot
==================
The Trusted Board Boot (TBB) feature prevents malicious firmware from running on
the platform by authenticating all firmware images up to and including the
normal world bootloader. It does this by establishing a Chain of Trust using
Public-Key-Cryptography Standards (PKCS).
This document describes the design of Trusted Firmware-A (TF-A) TBB, which is an
implementation of the `Trusted Board Boot Requirements (TBBR)`_ specification,
Arm DEN0006D. It should be used in conjunction with the
:ref:`Firmware Update (FWU)` design document, which implements a specific aspect
of the TBBR.
Chain of Trust
--------------
A Chain of Trust (CoT) starts with a set of implicitly trusted components. On
the Arm development platforms, these components are:
- A SHA-256 hash of the Root of Trust Public Key (ROTPK). It is stored in the
trusted root-key storage registers. Alternatively, a development ROTPK might
be used and its hash embedded into the BL1 and BL2 images (only for
development purposes).
- The BL1 image, on the assumption that it resides in ROM so cannot be
tampered with.
The remaining components in the CoT are either certificates or boot loader
images. The certificates follow the `X.509 v3`_ standard. This standard
enables adding custom extensions to the certificates, which are used to store
essential information to establish the CoT.
In the TBB CoT all certificates are self-signed. There is no need for a
Certificate Authority (CA) because the CoT is not established by verifying the
validity of a certificate's issuer but by the content of the certificate
extensions. To sign the certificates, different signature schemes are available,
please refer to the :ref:`Build Options` for more details.
The certificates are categorised as "Key" and "Content" certificates. Key
certificates are used to verify public keys which have been used to sign content
certificates. Content certificates are used to store the hash of a boot loader
image. An image can be authenticated by calculating its hash and matching it
with the hash extracted from the content certificate. Various hash algorithms
are supported to calculate all hashes, please refer to the :ref:`Build Options`
for more details.. The public keys and hashes are included as non-standard
extension fields in the `X.509 v3`_ certificates.
The keys used to establish the CoT are:
- **Root of trust key**
The private part of this key is used to sign the BL2 content certificate and
the trusted key certificate. The public part is the ROTPK.
- **Trusted world key**
The private part is used to sign the key certificates corresponding to the
secure world images (SCP_BL2, BL31 and BL32). The public part is stored in
one of the extension fields in the trusted world certificate.
- **Non-trusted world key**
The private part is used to sign the key certificate corresponding to the
non secure world image (BL33). The public part is stored in one of the
extension fields in the trusted world certificate.
- **BL3X keys**
For each of SCP_BL2, BL31, BL32 and BL33, the private part is used to
sign the content certificate for the BL3X image. The public part is stored
in one of the extension fields in the corresponding key certificate.
The following images are included in the CoT:
- BL1
- BL2
- SCP_BL2 (optional)
- BL31
- BL33
- BL32 (optional)
The following certificates are used to authenticate the images.
- **BL2 content certificate**
It is self-signed with the private part of the ROT key. It contains a hash
of the BL2 image.
- **Trusted key certificate**
It is self-signed with the private part of the ROT key. It contains the
public part of the trusted world key and the public part of the non-trusted
world key.
- **SCP_BL2 key certificate**
It is self-signed with the trusted world key. It contains the public part of
the SCP_BL2 key.
- **SCP_BL2 content certificate**
It is self-signed with the SCP_BL2 key. It contains a hash of the SCP_BL2
image.
- **BL31 key certificate**
It is self-signed with the trusted world key. It contains the public part of
the BL31 key.
- **BL31 content certificate**
It is self-signed with the BL31 key. It contains a hash of the BL31 image.
- **BL32 key certificate**
It is self-signed with the trusted world key. It contains the public part of
the BL32 key.
- **BL32 content certificate**
It is self-signed with the BL32 key. It contains a hash of the BL32 image.
- **BL33 key certificate**
It is self-signed with the non-trusted world key. It contains the public
part of the BL33 key.
- **BL33 content certificate**
It is self-signed with the BL33 key. It contains a hash of the BL33 image.
The SCP_BL2 and BL32 certificates are optional, but they must be present if the
corresponding SCP_BL2 or BL32 images are present.
Trusted Board Boot Sequence
---------------------------
The CoT is verified through the following sequence of steps. The system panics
if any of the steps fail.
- BL1 loads and verifies the BL2 content certificate. The issuer public key is
read from the verified certificate. A hash of that key is calculated and
compared with the hash of the ROTPK read from the trusted root-key storage
registers. If they match, the BL2 hash is read from the certificate.
.. note::
The matching operation is platform specific and is currently
unimplemented on the Arm development platforms.
- BL1 loads the BL2 image. Its hash is calculated and compared with the hash
read from the certificate. Control is transferred to the BL2 image if all
the comparisons succeed.
- BL2 loads and verifies the trusted key certificate. The issuer public key is
read from the verified certificate. A hash of that key is calculated and
compared with the hash of the ROTPK read from the trusted root-key storage
registers. If the comparison succeeds, BL2 reads and saves the trusted and
non-trusted world public keys from the verified certificate.
The next two steps are executed for each of the SCP_BL2, BL31 & BL32 images.
The steps for the optional SCP_BL2 and BL32 images are skipped if these images
are not present.
- BL2 loads and verifies the BL3x key certificate. The certificate signature
is verified using the trusted world public key. If the signature
verification succeeds, BL2 reads and saves the BL3x public key from the
certificate.
- BL2 loads and verifies the BL3x content certificate. The signature is
verified using the BL3x public key. If the signature verification succeeds,
BL2 reads and saves the BL3x image hash from the certificate.
The next two steps are executed only for the BL33 image.
- BL2 loads and verifies the BL33 key certificate. If the signature
verification succeeds, BL2 reads and saves the BL33 public key from the
certificate.
- BL2 loads and verifies the BL33 content certificate. If the signature
verification succeeds, BL2 reads and saves the BL33 image hash from the
certificate.
The next step is executed for all the boot loader images.
- BL2 calculates the hash of each image. It compares it with the hash obtained
from the corresponding content certificate. The image authentication succeeds
if the hashes match.
The Trusted Board Boot implementation spans both generic and platform-specific
BL1 and BL2 code, and in tool code on the host build machine. The feature is
enabled through use of specific build flags as described in
:ref:`Build Options`.
On the host machine, a tool generates the certificates, which are included in
the FIP along with the boot loader images. These certificates are loaded in
Trusted SRAM using the IO storage framework. They are then verified by an
Authentication module included in TF-A.
The mechanism used for generating the FIP and the Authentication module are
described in the following sections.
Authentication Framework
------------------------
The authentication framework included in TF-A provides support to implement
the desired trusted boot sequence. Arm platforms use this framework to
implement the boot requirements specified in the
`Trusted Board Boot Requirements (TBBR)`_ document.
More information about the authentication framework can be found in the
:ref:`Authentication Framework & Chain of Trust` document.
Certificate Generation Tool
---------------------------
The ``cert_create`` tool is built and runs on the host machine as part of the
TF-A build process when ``GENERATE_COT=1``. It takes the boot loader images
and keys as inputs (keys must be in PEM format) and generates the
certificates (in DER format) required to establish the CoT. New keys can be
generated by the tool in case they are not provided. The certificates are then
passed as inputs to the ``fiptool`` utility for creating the FIP.
The certificates are also stored individually in the output build directory.
The tool resides in the ``tools/cert_create`` directory. It uses the OpenSSL SSL
library version to generate the X.509 certificates. The specific version of the
library that is required is given in the :ref:`Prerequisites` document.
Instructions for building and using the tool can be found at
:ref:`tools_build_cert_create`.
Authenticated Encryption Framework
----------------------------------
The authenticated encryption framework included in TF-A provides support to
implement the optional firmware encryption feature. This feature can be
optionally enabled on platforms to implement the optional requirement:
R060_TBBR_FUNCTION as specified in the `Trusted Board Boot Requirements (TBBR)`_
document.
Firmware Encryption Tool
------------------------
The ``encrypt_fw`` tool is built and runs on the host machine as part of the
TF-A build process when ``DECRYPTION_SUPPORT != none``. It takes the plain
firmware image as input and generates the encrypted firmware image which can
then be passed as input to the ``fiptool`` utility for creating the FIP.
The encrypted firmwares are also stored individually in the output build
directory.
The tool resides in the ``tools/encrypt_fw`` directory. It uses OpenSSL SSL
library version 1.0.1 or later to do authenticated encryption operation.
Instructions for building and using the tool can be found in the
:ref:`tools_build_enctool`.
--------------
*Copyright (c) 2015-2020, Arm Limited and Contributors. All rights reserved.*
.. _X.509 v3: https://tools.ietf.org/rfc/rfc5280.txt
.. _Trusted Board Boot Requirements (TBBR): https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

View File

@@ -0,0 +1,165 @@
TF-A CMake buildsystem
======================
:Author: Balint Dobszay
:Organization: Arm Limited
:Contact: Balint Dobszay <balint.dobszay@arm.com>
:Status: Accepted
.. contents:: Table of Contents
Abstract
--------
This document presents a proposal for a new buildsystem for TF-A using CMake,
and as part of this a reusable CMake framework for embedded projects. For a
summary about the proposal, please see the `Phabricator wiki page
<https://developer.trustedfirmware.org/w/tf_a/cmake-buildsystem-proposal/>`_. As
mentioned there, the proposal consists of two phases. The subject of this
document is the first phase only.
Introduction
------------
The current Makefile based buildsystem of TF-A has become complicated and hard
to maintain, there is a need for a new, more flexible solution. The proposal is
to use CMake language for the new buildsystem. The main reasons of this decision
are the following:
* It is a well-established, mature tool, widely accepted by open-source
projects.
* TF-M is already using CMake, reducing fragmentation for tf.org projects can be
beneficial.
* CMake has various advantages over Make, e.g.:
* Host and target system agnostic project.
* CMake project is scalable, supports project modularization.
* Supports software integration.
* Out-of-the-box support for integration with several tools (e.g. project
generation for various IDEs, integration with cppcheck, etc).
Of course there are drawbacks too:
* Language is problematic (e.g. variable scope).
* Not embedded approach.
To overcome these and other problems, we need to create workarounds for some
tasks, wrap CMake functions, etc. Since this functionality can be useful in
other embedded projects too, it is beneficial to collect the new code into a
reusable framework and store this in a separate repository. The following
diagram provides an overview of the framework structure:
|Framework structure|
Main features
-------------
Structured configuration description
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In the current Makefile system the build configuration description, validation,
processing, and the target creation, source file description are mixed and
spread across several files. One of the goals of the framework is to organize
this.
The framework provides a solution to describe the input build parameters, flags,
macros, etc. in a structured way. It contains two utilities for this purpose:
* Map: simple key-value pair implementation.
* Group: collection of related maps.
The related parameters shall be packed into a group (or "setting group"). The
setting groups shall be defined and filled with content in config files.
Currently the config files are created and edited manually, but later a
configuration management tool (e.g. Kconfig) shall be used to generate these
files. Therefore, the framework does not contain parameter validation and
conflict checking, these shall be handled by the configuration tool.
Target description
^^^^^^^^^^^^^^^^^^
The framework provides an API called STGT ('simple target') to describe the
targets, i.e. what is the build output, what source files are used, what
libraries are linked, etc. The API wraps the CMake target functions, and also
extends the built-in functionality, it can use the setting groups described in
the previous section. A group can be applied onto a target, i.e. a collection of
macros, flags, etc. can be applied onto the given output executable/library.
This provides a more granular way than the current Makefile system where most of
these are global and applied onto each target.
Compiler abstraction
^^^^^^^^^^^^^^^^^^^^
Apart from the built-in CMake usage of the compiler, there are some common tasks
that CMake does not solve (e.g. preprocessing a file). For these tasks the
framework uses wrapper functions instead of direct calls to the compiler. This
way it is not tied to one specific compiler.
External tools
^^^^^^^^^^^^^^
In the TF-A buildsystem some external tools are used, e.g. fiptool for image
generation or dtc for device tree compilation. These tools have to be found
and/or built by the framework. For this, the CMake find_package functionality is
used, any other necessary tools can be added later.
Workflow
--------
The following diagram demonstrates the development workflow using the framework:
|Framework workflow|
The process can be split into two main phases:
In the provisioning phase, first we have to obtain the necessary resources, i.e.
clone the code repository and other dependencies. Next we have to do the
configuration, preferably using a config tool like KConfig.
In the development phase first we run CMake, which will generate the buildsystem
using the selected generator backend (currently only the Makefile generator is
supported). After this we run the selected build tool which in turn calls the
compiler, linker, packaging tool, etc. Finally we can run and debug the output
executables.
Usually during development only the steps in this second phase have to be
repeated, while the provisioning phase needs to be done only once (or rarely).
Example
-------
This is a short example for the basic framework usage.
First, we create a setting group called *mem_conf* and fill it with several
parameters. It is worth noting the difference between *CONFIG* and *DEFINE*
types: the former is only a CMake domain option, the latter is only a C language
macro.
Next, we create a target called *fw1* and add the *mem_conf* setting group to
it. This means that all source and header files used by the target will have all
the parameters declared in the setting group. Then we set the target type to
executable, and add some source files. Since the target has the parameters from
the settings group, we can use it for conditionally adding source files. E.g.
*dram_controller.c* will only be added if MEM_TYPE equals dram.
.. code-block:: cmake
group_new(NAME mem_conf)
group_add(NAME mem_conf TYPE DEFINE KEY MEM_SIZE VAL 1024)
group_add(NAME mem_conf TYPE CONFIG DEFINE KEY MEM_TYPE VAL dram)
group_add(NAME mem_conf TYPE CFLAG KEY -Os)
stgt_create(NAME fw1)
stgt_add_setting(NAME fw1 GROUPS mem_conf)
stgt_set_target(NAME fw1 TYPE exe)
stgt_add_src(NAME fw1 SRC
${CMAKE_SOURCE_DIR}/main.c
)
stgt_add_src_cond(NAME fw1 KEY MEM_TYPE VAL dram SRC
${CMAKE_SOURCE_DIR}/dram_controller.c
)
.. |Framework structure| image::
../resources/diagrams/cmake_framework_structure.png
:width: 75 %
.. |Framework workflow| image::
../resources/diagrams/cmake_framework_workflow.png
--------------
*Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,197 @@
Enhance Context Management library for EL3 firmware
===================================================
:Authors: Soby Mathew & Zelalem Aweke
:Organization: Arm Limited
:Contact: Soby Mathew <soby.mathew@arm.com> & Zelalem Aweke <zelalem.aweke@arm.com>
:Status: RFC
.. contents:: Table of Contents
Introduction
------------
The context management library in TF-A provides the basic CPU context
initialization and management routines for use by different components
in EL3 firmware. The original design of the library was done keeping in
mind the 2 world switch and hence this design pattern has been extended to
keep up with growing requirements of EL3 firmware. With the introduction
of a new Realm world and a separate Root world for EL3 firmware, it is clear
that this library needs to be refactored to cater for future enhancements and
reduce chances of introducing error in code. This also aligns with the overall
goal of reducing EL3 firmware complexity and footprint.
It is expected that the suggestions below could have legacy implications and
hence we are mainly targeting SPM/RMM based systems. It is expected that these
legacy issues will need to be sorted out as part of implementation on a case
by case basis.
Design Principles
-----------------
The below section lays down the design principles for re-factoring the context
management library :
(1) **Decentralized model for context mgmt**
Both the Secure and Realm worlds have associated dispatcher component in
EL3 firmware to allow management of their respective worlds. Allowing the
dispatcher to own the context for their respective world and moving away
from a centralized policy management by context management library will
remove the world differentiation code in the library. This also means that
the library will not be responsible for CPU feature enablement for
Secure and Realm worlds. See point 3 and 4 for more details.
The Non Secure world does not have a dispatcher component and hence EL3
firmware (BL31)/context management library needs to have routines to help
initialize the Non Secure world context.
(2) **EL3 should only initialize immediate used lower EL**
Due to the way TF-A evolved, from EL3 interacting with an S-EL1 payload to
SPM in S-EL2, there is some code initializing S-EL1 registers which is
probably redundant when SPM is present in S-EL2. As a principle, EL3
firmware should only initialize the next immediate lower EL in use.
If EL2 needs to be skipped and is not to be used at runtime, then
EL3 can do the bare minimal EL2 init and init EL1 to prepare for EL3 exit.
It is expected that this skip EL2 configuration is only needed for NS
world to support legacy Android deployments. It is worth removing this
`skip EL2 for Non Secure` config support if this is no longer used.
(3) **Maintain EL3 sysregs which affect lower EL within CPU context**
The CPU context contains some EL3 sysregs and gets applied on a per-world
basis (eg: cptr_el3, scr_el3, zcr_el3 is part of the context
because different settings need to be applied between each world).
But this design pattern is not enforced in TF-A. It is possible to directly
modify EL3 sysreg dynamically during the transition between NS and Secure
worlds. Having multiple ways of manipulating EL3 sysregs for different
values between the worlds is flaky and error prone. The proposal is to
enforce the rule that any EL3 sysreg which can be different between worlds
is maintained in the CPU Context. Once the context is initialized the
EL3 sysreg values corresponding to the world being entered will be restored.
(4) **Allow more flexibility for Dispatchers to select feature set to save and restore**
The current functions for EL2 CPU context save and restore is a single
function which takes care of saving and restoring all the registers for
EL2. This method is inflexible and it does not allow to dynamically detect
CPU features to select registers to save and restore. It also assumes that
both Realm and Secure world will have the same feature set enabled from
EL3 at runtime and makes it hard to enable different features for each
world. The framework should cater for selective save and restore of CPU
registers which can be controlled by the dispatcher.
For the implementation, this could mean that there is a separate assembly
save and restore routine corresponding to Arch feature. The memory allocation
within the CPU Context for each set of registers will be controlled by a
FEAT_xxx build option. It is a valid configuration to have
context memory allocated but not used at runtime based on feature detection
at runtime or the platform owner has decided not to enable the feature
for the particular world.
Context Allocation and Initialization
-------------------------------------
|context_mgmt_abs|
.. |context_mgmt_abs| image::
../resources/diagrams/context_management_abs.png
The above figure shows how the CPU context is allocated within TF-A. The
allocation for Secure and Realm world is by the respective dispatcher. In the case
of NS world, the context is allocated by the PSCI lib. This scheme allows TF-A
to be built in various configurations (with or without Secure/Realm worlds) and
will result in optimal memory footprint. The Secure and Realm world contexts are
initialized by invoking context management library APIs which then initialize
each world based on conditional evaluation of the security state of the
context. The proposal here is to move the conditional initialization
of context for Secure and Realm worlds to their respective dispatchers and
have the library do only the common init needed. The library can export
helpers to initialize registers corresponding to certain features but
should not try to do different initialization between the worlds. The library
can also export helpers for initialization of NS CPU Context since there is no
dispatcher for that world.
This implies that any world specific code in context mgmt lib should now be
migrated to the respective "owners". To maintain compatibility with legacy, the
current functions can be retained in the lib and perhaps define new ones for
use by SPMD and RMMD. The details of this can be worked out during
implementation.
Introducing Root Context
------------------------
Till now, we have been ignoring the fact that Root world (or EL3) itself could
have some settings which are distinct from NS/S/Realm worlds. In this case,
Root world itself would need to maintain some sysregs settings for its own
execution and would need to use sysregs of lower EL (eg: PAuth, pmcr) to enable
some functionalities in EL3. The current sequence for context save and restore
in TF-A is as given below:
|context_mgmt_existing|
.. |context_mgmt_existing| image::
../resources/diagrams/context_mgmt_existing.png
Note1: The EL3 CPU context is not a homogenous collection of EL3 sysregs but
a collection of EL3 and some other lower EL registers. The save and restore
is also not done homogenously but based on the objective of using the
particular register.
Note2: The EL1 context save and restore can possibly be removed when switching
to S-EL2 as SPM can take care of saving the incoming NS EL1 context.
It can be seen that the EL3 sysreg values applied while the execution is in Root
world corresponds to the world it came from (eg: if entering EL3 from NS world,
the sysregs correspond to the values in NS context). There is a case that EL3
itself may have some settings to apply for various reasons. A good example for
this is the cptr_el3 regsiter. Although FPU traps need to be disabled for
Non Secure, Secure and Realm worlds, the EL3 execution itself may keep the trap
enabled for the sake of robustness. Another example is, if the MTE feature
is enabled for a particular world, this feature will be enabled for Root world
as well when entering EL3 from that world. The firmware at EL3 may not
be expecting this feature to be enabled and may cause unwanted side-effects
which could be problematic. Thus it would be more robust if Root world is not
subject to EL3 sysreg values from other worlds but maintains its own values
which is stable and predictable throughout root world execution.
There is also the case that when EL3 would like to make use of some
Architectural feature(s) or do some security hardening, it might need
programming of some lower EL sysregs. For example, if EL3 needs to make
use of Pointer Authentication (PAuth) feature, it needs to program
its own PAuth Keys during execution at EL3. Hence EL3 needs its
own copy of PAuth registers which needs to be restored on every
entry to EL3. A similar case can be made for DIT bit in PSTATE,
or use of SP_EL0 for C Runtime Stack at EL3.
The proposal here is to maintain a separate root world CPU context
which gets applied for Root world execution. This is not the full
CPU_Context, but subset of EL3 sysregs (`el3_sysreg`) and lower EL
sysregs (`root_exc_context`) used by EL3. The save and restore
sequence for this Root context would need to be done in
an optimal way. The `el3_sysreg` does not need to be saved
on EL3 Exit and possibly only some registers in `root_exc_context`
of Root world context would need to be saved on EL3 exit (eg: SP_EL0).
The new sequence for world switch including Root world context would
be as given below :
|context_mgmt_proposed|
.. |context_mgmt_proposed| image::
../resources/diagrams/context_mgmt_proposed.png
Having this framework in place will allow Root world to make use of lower EL
registers easily for its own purposes and also have a fixed EL3 sysreg setting
which is not affected by the settings of other worlds. This will unify the
Root world register usage pattern for its own execution and remove some
of the adhoc usages in code.
Conclusion
----------
Of all the proposals, the introduction of Root world context would likely need
further prototyping to confirm the design and we will need to measure the
performance and memory impact of this change. Other changes are incremental
improvements which are thought to have negligible impact on EL3 performance.
--------------
*Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,15 @@
Design Documents
================
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
cmake_framework
context_mgmt_rework
measured_boot_poc
--------------
*Copyright (c) 2020, Arm Limited and Contributors. All rights reserved.*

View File

@@ -0,0 +1,507 @@
Interaction between Measured Boot and an fTPM (PoC)
===================================================
Measured Boot is the process of cryptographically measuring the code and
critical data used at boot time, for example using a TPM, so that the
security state can be attested later.
The current implementation of the driver included in Trusted Firmware-A
(TF-A) stores the measurements into a `TGC event log`_ in secure
memory. No other means of recording measurements (such as a discrete TPM) is
supported right now.
The driver also provides mechanisms to pass the Event Log to normal world if
needed.
This manual provides instructions to build a proof of concept (PoC) with the
sole intention of showing how Measured Boot can be used in conjunction with
a firmware TPM (fTPM) service implemented on top of OP-TEE.
.. note::
The instructions given in this document are meant to be used to build
a PoC to show how Measured Boot on TF-A can interact with a third
party (f)TPM service and they try to be as general as possible. Different
platforms might have different needs and configurations (e.g. different
SHA algorithms) and they might also use different types of TPM services
(or even a different type of service to provide the attestation)
and therefore the instuctions given here might not apply in such scenarios.
Components
~~~~~~~~~~
The PoC is built on top of the `OP-TEE Toolkit`_, which has support to build
TF-A with support for Measured Boot enabled (and run it on a Foundation Model)
since commit cf56848.
The aforementioned toolkit builds a set of images that contain all the components
needed to test that the Event Log was properly created. One of these images will
contain a third party fTPM service which in turn will be used to process the
Event Log.
The reason to choose OP-TEE Toolkit to build our PoC around it is mostly
for convenience. As the fTPM service used is an OP-TEE TA, it was easy to add
build support for it to the toolkit and then build the PoC around it.
The most relevant components installed in the image that are closely related to
Measured Boot/fTPM functionality are:
- **OP-TEE**: As stated earlier, the fTPM service used in this PoC is built as an
OP-TEE TA and therefore we need to include the OP-TEE OS image.
Support to interfacing with Measured Boot was added to version 3.9.0 of
OP-TEE by implementing the ``PTA_SYSTEM_GET_TPM_EVENT_LOG`` syscall, which
allows the former to pass a copy of the Event Log to any TA requesting it.
OP-TEE knows the location of the Event Log by reading the DTB bindings
received from TF-A. Visit :ref:`DTB binding for Event Log properties`
for more details on this.
- **fTPM Service**: We use a third party fTPM service in order to validate
the Measured Boot functionality. The chosen fTPM service is a sample
implementation for Aarch32 architecture included on the `ms-tpm-20-ref`_
reference implementation from Microsoft. The service was updated in order
to extend the Measured Boot Event Log at boot up and it uses the
aforementioned ``PTA_SYSTEM_GET_TPM_EVENT_LOG`` call to retrieve a copy
of the former.
.. note::
Arm does not provide an fTPM implementation. The fTPM service used here
is a third party one which has been updated to support Measured Boot
service as provided by TF-A. As such, it is beyond the scope of this
manual to test and verify the correctness of the output generated by the
fTPM service.
- **TPM Kernel module**: In order to interact with the fTPM service, we need
a kernel module to forward the request from user space to the secure world.
- `tpm2-tools`_: This is a set of tools that allow to interact with the
fTPM service. We use this in order to read the PCRs with the measurements.
Building the PoC for the Arm FVP platform
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As mentioned before, this PoC is based on the OP-TEE Toolkit with some
extensions to enable Measured Boot and an fTPM service. Therefore, we can rely
on the instructions to build the original OP-TEE Toolkit. As a general rule,
the following steps should suffice:
(1) Start by following the `Get and build the solution`_ instructions to build
the OP-TEE toolkit. On step 3, you need to get the manifest for FVP
platform from the main branch:
.. code:: shell
$ repo init -u https://github.com/OP-TEE/manifest.git -m fvp.xml
Then proceed synching the repos as stated in step 3. Continue following
the instructions and stop before step 5.
(2) Next you should obtain the `Armv8-A Foundation Platform (For Linux Hosts Only)`_.
The binary should be untar'ed to the root of the repo tree, i.e., like
this: ``<fvp-project>/Foundation_Platformpkg``. In the end, after cloning
all source code, getting the toolchains and "installing"
Foundation_Platformpkg, you should have a folder structure that looks like
this:
.. code:: shell
$ ls -la
total 80
drwxrwxr-x 20 tf-a_user tf-a_user 4096 Jul 1 12:16 .
drwxr-xr-x 23 tf-a_user tf-a_user 4096 Jul 1 10:40 ..
drwxrwxr-x 12 tf-a_user tf-a_user 4096 Jul 1 10:45 build
drwxrwxr-x 16 tf-a_user tf-a_user 4096 Jul 1 12:16 buildroot
drwxrwxr-x 51 tf-a_user tf-a_user 4096 Jul 1 10:45 edk2
drwxrwxr-x 6 tf-a_user tf-a_user 4096 Jul 1 12:14 edk2-platforms
drwxr-xr-x 7 tf-a_user tf-a_user 4096 Jul 1 10:52 Foundation_Platformpkg
drwxrwxr-x 17 tf-a_user tf-a_user 4096 Jul 2 10:40 grub
drwxrwxr-x 25 tf-a_user tf-a_user 4096 Jul 2 10:39 linux
drwxrwxr-x 15 tf-a_user tf-a_user 4096 Jul 1 10:45 mbedtls
drwxrwxr-x 6 tf-a_user tf-a_user 4096 Jul 1 10:45 ms-tpm-20-ref
drwxrwxr-x 8 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_client
drwxrwxr-x 10 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_examples
drwxrwxr-x 12 tf-a_user tf-a_user 4096 Jul 1 12:13 optee_os
drwxrwxr-x 8 tf-a_user tf-a_user 4096 Jul 1 10:45 optee_test
drwxrwxr-x 7 tf-a_user tf-a_user 4096 Jul 1 10:45 .repo
drwxrwxr-x 4 tf-a_user tf-a_user 4096 Jul 1 12:12 toolchains
drwxrwxr-x 21 tf-a_user tf-a_user 4096 Jul 1 12:15 trusted-firmware-a
(3) Now enter into ``ms-tpm-20-ref`` and get its dependencies:
.. code:: shell
$ cd ms-tpm-20-ref
$ git submodule init
$ git submodule update
Submodule path 'external/wolfssl': checked out '9c87f979a7f1d3a6d786b260653d566c1d31a1c4'
(4) Now, you should be able to continue with step 5 in "`Get and build the solution`_"
instructions. In order to enable support for Measured Boot, you need to
set the ``MEASURED_BOOT`` build option:
.. code:: shell
$ MEASURED_BOOT=y make -j `nproc`
.. note::
The build process will likely take a long time. It is strongly recommended to
pass the ``-j`` option to make to run the process faster.
After this step, you should be ready to run the image.
Running and using the PoC on the Armv8-A Foundation AEM FVP
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With everything built, you can now run the image:
.. code:: shell
$ make run-only
.. note::
Using ``make run`` will build and run the image and it can be used instead
of simply ``make``. However, once the image is built, it is recommended to
use ``make run-only`` to avoid re-running all the building rules, which
would take time.
When FVP is launched, two terminal windows will appear. ``FVP terminal_0``
is the userspace terminal whereas ``FVP terminal_1`` is the counterpart for
the secure world (where TAs will print their logs, for instance).
Log into the image shell with user ``root``, no password will be required.
Then we can issue the ``ftpm`` command, which is an alias that
(1) loads the ftpm kernel module and
(2) calls ``tpm2_pcrread``, which will access the fTPM service to read the
PCRs.
When loading the ftpm kernel module, the fTPM TA is loaded into the secure
world. This TA then requests a copy of the Event Log generated during the
booting process so it can retrieve all the entries on the log and record them
first thing.
.. note::
For this PoC, nothing loaded after BL33 and NT_FW_CONFIG is recorded
in the Event Log.
The secure world terminal should show the debug logs for the fTPM service,
including all the measurements available in the Event Log as they are being
processed:
.. code:: shell
M/TA: Preparing to extend the following TPM Event Log:
M/TA: TCG_EfiSpecIDEvent:
M/TA: PCRIndex : 0
M/TA: EventType : 3
M/TA: Digest : 00
M/TA: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
M/TA: : 00 00 00
M/TA: EventSize : 33
M/TA: Signature : Spec ID Event03
M/TA: PlatformClass : 0
M/TA: SpecVersion : 2.0.2
M/TA: UintnSize : 1
M/TA: NumberOfAlgorithms : 1
M/TA: DigestSizes :
M/TA: #0 AlgorithmId : SHA256
M/TA: DigestSize : 32
M/TA: VendorInfoSize : 0
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 3
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
M/TA: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
M/TA: EventSize : 17
M/TA: Signature : StartupLocality
M/TA: StartupLocality : 0
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 58 26 32 6e 64 45 64 da 45 de 35 db 96 fd ed 63
M/TA: : 2a 6a d4 0d aa 94 b0 b1 55 e4 72 e7 1f 0a e0 d5
M/TA: EventSize : 5
M/TA: Event : BL_2
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : cf f9 7d a3 5c 73 ac cb 7b a0 25 80 6a 6e 50 a5
M/TA: : 6b 2e d2 8c c9 36 92 7d 46 c5 b9 c3 a4 6c 51 7c
M/TA: EventSize : 6
M/TA: Event : BL_31
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 23 b0 a3 5d 54 d9 43 1a 5c b9 89 63 1c da 06 c2
M/TA: : e5 de e7 7e 99 17 52 12 7d f7 45 ca 4f 4a 39 c0
M/TA: EventSize : 10
M/TA: Event : HW_CONFIG
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 4e e4 8e 5a e6 50 ed e0 b5 a3 54 8a 1f d6 0e 8a
M/TA: : ea 0e 71 75 0e a4 3f 82 76 ce af cd 7c b0 91 e0
M/TA: EventSize : 14
M/TA: Event : SOC_FW_CONFIG
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 01 b0 80 47 a1 ce 86 cd df 89 d2 1f 2e fc 6c 22
M/TA: : f8 19 ec 6e 1e ec 73 ba 5a be d0 96 e3 5f 6d 75
M/TA: EventSize : 6
M/TA: Event : BL_32
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 5d c6 ef 35 5a 90 81 b4 37 e6 3b 52 da 92 ab 8e
M/TA: : d9 6e 93 98 2d 40 87 96 1b 5a a7 ee f1 f4 40 63
M/TA: EventSize : 18
M/TA: Event : BL32_EXTRA1_IMAGE
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 39 b7 13 b9 93 db 32 2f 1b 48 30 eb 2c f2 5c 25
M/TA: : 00 0f 38 dc 8e c8 02 cd 79 f2 48 d2 2c 25 ab e2
M/TA: EventSize : 6
M/TA: Event : BL_33
M/TA: PCR_Event2:
M/TA: PCRIndex : 0
M/TA: EventType : 1
M/TA: Digests Count : 1
M/TA: #0 AlgorithmId : SHA256
M/TA: Digest : 25 10 60 5d d4 bc 9d 82 7a 16 9f 8a cc 47 95 a6
M/TA: : fd ca a0 c1 2b c9 99 8f 51 20 ff c6 ed 74 68 5a
M/TA: EventSize : 13
M/TA: Event : NT_FW_CONFIG
These logs correspond to the measurements stored by TF-A during the measured
boot process and therefore, they should match the logs dumped by the former
during the boot up process. These can be seen on the terminal_0:
.. code:: shell
NOTICE: Booting Trusted Firmware
NOTICE: BL1: v2.5(release):v2.5
NOTICE: BL1: Built : 10:41:20, Jul 2 2021
NOTICE: BL1: Booting BL2
NOTICE: BL2: v2.5(release):v2.5
NOTICE: BL2: Built : 10:41:20, Jul 2 2021
NOTICE: TCG_EfiSpecIDEvent:
NOTICE: PCRIndex : 0
NOTICE: EventType : 3
NOTICE: Digest : 00
NOTICE: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
NOTICE: : 00 00 00
NOTICE: EventSize : 33
NOTICE: Signature : Spec ID Event03
NOTICE: PlatformClass : 0
NOTICE: SpecVersion : 2.0.2
NOTICE: UintnSize : 1
NOTICE: NumberOfAlgorithms : 1
NOTICE: DigestSizes :
NOTICE: #0 AlgorithmId : SHA256
NOTICE: DigestSize : 32
NOTICE: VendorInfoSize : 0
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 3
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
NOTICE: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
NOTICE: EventSize : 17
NOTICE: Signature : StartupLocality
NOTICE: StartupLocality : 0
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 58 26 32 6e 64 45 64 da 45 de 35 db 96 fd ed 63
NOTICE: : 2a 6a d4 0d aa 94 b0 b1 55 e4 72 e7 1f 0a e0 d5
NOTICE: EventSize : 5
NOTICE: Event : BL_2
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : cf f9 7d a3 5c 73 ac cb 7b a0 25 80 6a 6e 50 a5
NOTICE: : 6b 2e d2 8c c9 36 92 7d 46 c5 b9 c3 a4 6c 51 7c
NOTICE: EventSize : 6
NOTICE: Event : BL_31
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 23 b0 a3 5d 54 d9 43 1a 5c b9 89 63 1c da 06 c2
NOTICE: : e5 de e7 7e 99 17 52 12 7d f7 45 ca 4f 4a 39 c0
NOTICE: EventSize : 10
NOTICE: Event : HW_CONFIG
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 4e e4 8e 5a e6 50 ed e0 b5 a3 54 8a 1f d6 0e 8a
NOTICE: : ea 0e 71 75 0e a4 3f 82 76 ce af cd 7c b0 91 e0
NOTICE: EventSize : 14
NOTICE: Event : SOC_FW_CONFIG
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 01 b0 80 47 a1 ce 86 cd df 89 d2 1f 2e fc 6c 22
NOTICE: : f8 19 ec 6e 1e ec 73 ba 5a be d0 96 e3 5f 6d 75
NOTICE: EventSize : 6
NOTICE: Event : BL_32
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 5d c6 ef 35 5a 90 81 b4 37 e6 3b 52 da 92 ab 8e
NOTICE: : d9 6e 93 98 2d 40 87 96 1b 5a a7 ee f1 f4 40 63
NOTICE: EventSize : 18
NOTICE: Event : BL32_EXTRA1_IMAGE
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 39 b7 13 b9 93 db 32 2f 1b 48 30 eb 2c f2 5c 25
NOTICE: : 00 0f 38 dc 8e c8 02 cd 79 f2 48 d2 2c 25 ab e2
NOTICE: EventSize : 6
NOTICE: Event : BL_33
NOTICE: PCR_Event2:
NOTICE: PCRIndex : 0
NOTICE: EventType : 1
NOTICE: Digests Count : 1
NOTICE: #0 AlgorithmId : SHA256
NOTICE: Digest : 25 10 60 5d d4 bc 9d 82 7a 16 9f 8a cc 47 95 a6
NOTICE: : fd ca a0 c1 2b c9 99 8f 51 20 ff c6 ed 74 68 5a
NOTICE: EventSize : 13
NOTICE: Event : NT_FW_CONFIG
NOTICE: BL1: Booting BL31
NOTICE: BL31: v2.5(release):v2.5
NOTICE: BL31: Built : 10:41:20, Jul 2 2021
Following up with the fTPM startup process, we can see that all the
measurements in the Event Log are extended and recorded in the appropriate PCR:
.. code:: shell
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: TPM2_PCR_EXTEND_COMMAND returned value:
M/TA: ret_tag = 0x8002, size = 0x00000013, rc = 0x00000000
M/TA: 9 Event logs processed
After the fTPM TA is loaded, the call to ``insmod`` issued by the ``ftpm``
alias to load the ftpm kernel module returns, and then the TPM PCRs are read
by means of ``tpm_pcrread`` command. Note that we are only interested in the
SHA256 logs here, as this is the algorithm we used on TF-A for the measurements
(see the field ``AlgorithmId`` on the logs above):
.. code:: shell
sha256:
0 : 0xA6EB3A7417B8CFA9EBA2E7C22AD5A4C03CDB8F3FBDD7667F9C3EF2EA285A8C9F
1 : 0x0000000000000000000000000000000000000000000000000000000000000000
2 : 0x0000000000000000000000000000000000000000000000000000000000000000
3 : 0x0000000000000000000000000000000000000000000000000000000000000000
4 : 0x0000000000000000000000000000000000000000000000000000000000000000
5 : 0x0000000000000000000000000000000000000000000000000000000000000000
6 : 0x0000000000000000000000000000000000000000000000000000000000000000
7 : 0x0000000000000000000000000000000000000000000000000000000000000000
8 : 0x0000000000000000000000000000000000000000000000000000000000000000
9 : 0x0000000000000000000000000000000000000000000000000000000000000000
10: 0x0000000000000000000000000000000000000000000000000000000000000000
11: 0x0000000000000000000000000000000000000000000000000000000000000000
12: 0x0000000000000000000000000000000000000000000000000000000000000000
13: 0x0000000000000000000000000000000000000000000000000000000000000000
14: 0x0000000000000000000000000000000000000000000000000000000000000000
15: 0x0000000000000000000000000000000000000000000000000000000000000000
16: 0x0000000000000000000000000000000000000000000000000000000000000000
17: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
18: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
19: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
20: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
21: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
22: 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
23: 0x0000000000000000000000000000000000000000000000000000000000000000
In this PoC we are only interested in PCR0, which must be non-null. This is
because the boot process records all the images in this PCR (see field ``PCRIndex``
on the Event Log above). The rest of the records must be 0 at this point.
.. note::
The fTPM service used has support only for 16 PCRs, therefore the content
of PCRs above 15 can be ignored.
.. note::
As stated earlier, Arm does not provide an fTPM implementation and therefore
we do not validate here if the content of PCR0 is correct or not. For this
PoC, we are only focused on the fact that the event log could be passed to a third
party fTPM and its records were properly extended.
Fine-tuning the fTPM TA
~~~~~~~~~~~~~~~~~~~~~~~
As stated earlier, the OP-TEE Toolkit includes support to build a third party fTPM
service. The build options for this service are tailored for the PoC and defined in
the build environment variable ``FTPM_FLAGS`` (see ``<toolkit_home>/build/common.mk``)
but they can be modified if needed to better adapt it to a specific scenario.
The most relevant options for Measured Boot support are:
- **CFG_TA_DEBUG**: Enables debug logs in the Terminal_1 console.
- **CFG_TEE_TA_LOG_LEVEL**: Defines the log level used for the debug messages.
- **CFG_TA_MEASURED_BOOT**: Enables support for measured boot on the fTPM.
- **CFG_TA_EVENT_LOG_SIZE**: Defines the size, in bytes, of the larger event log that
the fTPM is able to store, as this buffer is allocated at build time. This must be at
least the same as the size of the event log generated by TF-A. If this build option
is not defined, the fTPM falls back to a default value of 1024 bytes, which is enough
for this PoC, so this variable is not defined in FTPM_FLAGS.
--------------
*Copyright (c) 2021, Arm Limited. All rights reserved.*
.. _OP-TEE Toolkit: https://github.com/OP-TEE/build
.. _ms-tpm-20-ref: https://github.com/microsoft/ms-tpm-20-ref
.. _Get and build the solution: https://optee.readthedocs.io/en/latest/building/gits/build.html#get-and-build-the-solution
.. _Armv8-A Foundation Platform (For Linux Hosts Only): https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms/arm-ecosystem-models
.. _tpm2-tools: https://github.com/tpm2-software/tpm2-tools
.. _TGC event log: https://trustedcomputinggroup.org/resource/tcg-efi-platform-specification/

View File

@@ -0,0 +1,974 @@
Build Options
=============
The TF-A build system supports the following build options. Unless mentioned
otherwise, these options are expected to be specified at the build command
line and are not to be modified in any component makefiles. Note that the
build system doesn't track dependency for build options. Therefore, if any of
the build options are changed from a previous build, a clean build must be
performed.
.. _build_options_common:
Common build options
--------------------
- ``AARCH32_INSTRUCTION_SET``: Choose the AArch32 instruction set that the
compiler should use. Valid values are T32 and A32. It defaults to T32 due to
code having a smaller resulting size.
- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
directory containing the SP source, relative to the ``bl32/``; the directory
is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
- ``AMU_RESTRICT_COUNTERS``: Register reads to the group 1 counters will return
zero at all but the highest implemented exception level. Reads from the
memory mapped view are unaffected by this control.
- ``ARCH`` : Choose the target build architecture for TF-A. It can take either
``aarch64`` or ``aarch32`` as values. By default, it is defined to
``aarch64``.
- ``ARM_ARCH_FEATURE``: Optional Arm Architecture build option which specifies
one or more feature modifiers. This option has the form ``[no]feature+...``
and defaults to ``none``. It translates into compiler option
``-march=armvX[.Y]-a+[no]feature+...``. See compiler's documentation for the
list of supported feature modifiers.
- ``ARM_ARCH_MAJOR``: The major version of Arm Architecture to target when
compiling TF-A. Its value must be numeric, and defaults to 8 . See also,
*Armv8 Architecture Extensions* and *Armv7 Architecture Extensions* in
:ref:`Firmware Design`.
- ``ARM_ARCH_MINOR``: The minor version of Arm Architecture to target when
compiling TF-A. Its value must be a numeric, and defaults to 0. See also,
*Armv8 Architecture Extensions* in :ref:`Firmware Design`.
- ``BL2``: This is an optional build option which specifies the path to BL2
image for the ``fip`` target. In this case, the BL2 in the TF-A will not be
built.
- ``BL2U``: This is an optional build option which specifies the path to
BL2U image. In this case, the BL2U in TF-A will not be built.
- ``BL2_AT_EL3``: This is an optional build option that enables the use of
BL2 at EL3 execution level.
- ``BL2_ENABLE_SP_LOAD``: Boolean option to enable loading SP packages from the
FIP. Automatically enabled if ``SP_LAYOUT_FILE`` is provided.
- ``BL2_IN_XIP_MEM``: In some use-cases BL2 will be stored in eXecute In Place
(XIP) memory, like BL1. In these use-cases, it is necessary to initialize
the RW sections in RAM, while leaving the RO sections in place. This option
enable this use-case. For now, this option is only supported when BL2_AT_EL3
is set to '1'.
- ``BL31``: This is an optional build option which specifies the path to
BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not
be built.
- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
this file name will be used to save the key.
- ``BL32``: This is an optional build option which specifies the path to
BL32 image for the ``fip`` target. In this case, the BL32 in TF-A will not
be built.
- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
Trusted OS Extra1 image for the ``fip`` target.
- ``BL32_EXTRA2``: This is an optional build option which specifies the path to
Trusted OS Extra2 image for the ``fip`` target.
- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
this file name will be used to save the key.
- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
``fip`` target in case TF-A BL2 is used.
- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
this file name will be used to save the key.
- ``BRANCH_PROTECTION``: Numeric value to enable ARMv8.3 Pointer Authentication
and ARMv8.5 Branch Target Identification support for TF-A BL images themselves.
If enabled, it is needed to use a compiler that supports the option
``-mbranch-protection``. Selects the branch protection features to use:
- 0: Default value turns off all types of branch protection
- 1: Enables all types of branch protection features
- 2: Return address signing to its standard level
- 3: Extend the signing to include leaf functions
- 4: Turn on branch target identification mechanism
The table below summarizes ``BRANCH_PROTECTION`` values, GCC compilation options
and resulting PAuth/BTI features.
+-------+--------------+-------+-----+
| Value | GCC option | PAuth | BTI |
+=======+==============+=======+=====+
| 0 | none | N | N |
+-------+--------------+-------+-----+
| 1 | standard | Y | Y |
+-------+--------------+-------+-----+
| 2 | pac-ret | Y | N |
+-------+--------------+-------+-----+
| 3 | pac-ret+leaf | Y | N |
+-------+--------------+-------+-----+
| 4 | bti | N | Y |
+-------+--------------+-------+-----+
This option defaults to 0.
Note that Pointer Authentication is enabled for Non-secure world
irrespective of the value of this option if the CPU supports it.
- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
compilation of each build. It must be set to a C string (including quotes
where applicable). Defaults to a string that contains the time and date of
the compilation.
- ``BUILD_STRING``: Input string for VERSION_STRING, which allows the TF-A
build to be uniquely identified. Defaults to the current git commit id.
- ``BUILD_BASE``: Output directory for the build. Defaults to ``./build``
- ``CFLAGS``: Extra user options appended on the compiler's command line in
addition to the options set by the build system.
- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
release several CPUs out of reset. It can take either 0 (several CPUs may be
brought up) or 1 (only one CPU will ever be brought up during cold reset).
Default is 0. If the platform always brings up a single CPU, there is no
need to distinguish between primary and secondary CPUs and the boot path can
be optimised. The ``plat_is_my_cpu_primary()`` and
``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
to be implemented in this case.
- ``COT``: When Trusted Boot is enabled, selects the desired chain of trust.
Defaults to ``tbbr``.
- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
register state when an unexpected exception occurs during execution of
BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
this is only enabled for a debug build of the firmware.
- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
certificate generation tool to create new keys in case no valid keys are
present or specified. Allowed options are '0' or '1'. Default is '1'.
- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
the AArch32 system registers to be included when saving and restoring the
CPU context. The option must be set to 0 for AArch64-only platforms (that
is on hardware that does not implement AArch32, or at least not at EL1 and
higher ELs). Default value is 1.
- ``CTX_INCLUDE_EL2_REGS`` : This boolean option provides context save/restore
operations when entering/exiting an EL2 execution context. This is of primary
interest when Armv8.4-SecEL2 extension is implemented. Default is 0 (disabled).
This option must be equal to 1 (enabled) when ``SPD=spmd`` and
``SPMD_SPM_AT_SEL2`` is set.
- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
registers to be included when saving and restoring the CPU context. Default
is 0.
- ``CTX_INCLUDE_NEVE_REGS``: Boolean option that, when set to 1, will cause the
Armv8.4-NV registers to be saved/restored when entering/exiting an EL2
execution context. Default value is 0.
- ``CTX_INCLUDE_PAUTH_REGS``: Boolean option that, when set to 1, enables
Pointer Authentication for Secure world. This will cause the ARMv8.3-PAuth
registers to be included when saving and restoring the CPU context as
part of world switch. Default value is 0.
Note that Pointer Authentication is enabled for Non-secure world irrespective
of the value of this flag if the CPU supports it.
- ``DEBUG``: Chooses between a debug and release build. It can take either 0
(release) or 1 (debug) as values. 0 is the default.
- ``DECRYPTION_SUPPORT``: This build flag enables the user to select the
authenticated decryption algorithm to be used to decrypt firmware/s during
boot. It accepts 2 values: ``aes_gcm`` and ``none``. The default value of
this flag is ``none`` to disable firmware decryption which is an optional
feature as per TBBR.
- ``DISABLE_BIN_GENERATION``: Boolean option to disable the generation
of the binary image. If set to 1, then only the ELF image is built.
0 is the default.
- ``DISABLE_MTPMU``: Boolean option to disable FEAT_MTPMU if implemented
(Armv8.6 onwards). Its default value is 0 to keep consistency with platforms
that do not implement FEAT_MTPMU. For more information on FEAT_MTPMU,
check the latest Arm ARM.
- ``DYN_DISABLE_AUTH``: Provides the capability to dynamically disable Trusted
Board Boot authentication at runtime. This option is meant to be enabled only
for development platforms. ``TRUSTED_BOARD_BOOT`` flag must be set if this
flag has to be enabled. 0 is the default.
- ``E``: Boolean option to make warnings into errors. Default is 1.
- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
the normal boot flow. It must specify the entry point address of the EL3
payload. Please refer to the "Booting an EL3 payload" section for more
details.
- ``ENABLE_AMU``: Boolean option to enable Activity Monitor Unit extensions.
This is an optional architectural feature available on v8.4 onwards. Some
v8.2 implementations also implement an AMU and this option can be used to
enable this feature on those systems as well. Default is 0.
- ``ENABLE_AMU_AUXILIARY_COUNTERS``: Enables support for AMU auxiliary counters
(also known as group 1 counters). These are implementation-defined counters,
and as such require additional platform configuration. Default is 0.
- ``ENABLE_AMU_FCONF``: Enables configuration of the AMU through FCONF, which
allows platforms with auxiliary counters to describe them via the
``HW_CONFIG`` device tree blob. Default is 0.
- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
are compiled out. For debug builds, this option defaults to 1, and calls to
``assert()`` are left in place. For release builds, this option defaults to 0
and calls to ``assert()`` function are compiled out. This option can be set
independently of ``DEBUG``. It can also be used to hide any auxiliary code
that is only required for the assertion and does not fit in the assertion
itself.
- ``ENABLE_BACKTRACE``: This option controls whether to enable backtrace
dumps or not. It is supported in both AArch64 and AArch32. However, in
AArch32 the format of the frame records are not defined in the AAPCS and they
are defined by the implementation. This implementation of backtrace only
supports the format used by GCC when T32 interworking is disabled. For this
reason enabling this option in AArch32 will force the compiler to only
generate A32 code. This option is enabled by default only in AArch64 debug
builds, but this behaviour can be overridden in each platform's Makefile or
in the build command line.
- ``ENABLE_FEAT_AMUv1``: Boolean option to enable access to the HAFGRTR_EL2
(Hypervisor Activity Monitors Fine-Grained Read Trap Register) during EL2
to EL3 context save/restore operations. It is an optional feature available
on v8.4 and onwards and must be set to 1 alongside ``ENABLE_FEAT_FGT``, to
access the HAFGRTR_EL2 register. Defaults to ``0``.
- ``ENABLE_FEAT_ECV``: Boolean option to enable support for the Enhanced Counter
Virtualization feature, allowing for access to the CNTPOFF_EL2 (Counter-timer
Physical Offset register) during EL2 to EL3 context save/restore operations.
Its a mandatory architectural feature in Armv8.6 and defaults to ``1`` for
v8.6 or later CPUs.
- ``ENABLE_FEAT_FGT``: Boolean option to enable support for FGT (Fine Grain Traps)
feature allowing for access to the HDFGRTR_EL2 (Hypervisor Debug Fine-Grained
Read Trap Register) during EL2 to EL3 context save/restore operations.
Its a mandatory architectural feature in Armv8.6 and defaults to ``1`` for
v8.6 or later CPUs.
- ``ENABLE_FEAT_HCX``: This option sets the bit SCR_EL3.HXEn in EL3 to allow
access to HCRX_EL2 (extended hypervisor control register) from EL2 as well as
adding HCRX_EL2 to the EL2 context save/restore operations.
- ``ENABLE_LTO``: Boolean option to enable Link Time Optimization (LTO)
support in GCC for TF-A. This option is currently only supported for
AArch64. Default is 0.
- ``ENABLE_MPAM_FOR_LOWER_ELS``: Boolean option to enable lower ELs to use MPAM
feature. MPAM is an optional Armv8.4 extension that enables various memory
system components and resources to define partitions; software running at
various ELs can assign themselves to desired partition to control their
performance aspects.
When this option is set to ``1``, EL3 allows lower ELs to access their own
MPAM registers without trapping into EL3. This option doesn't make use of
partitioning in EL3, however. Platform initialisation code should configure
and use partitions in EL3 as required. This option defaults to ``0``.
- ``ENABLE_MPMM``: Boolean option to enable support for the Maximum Power
Mitigation Mechanism supported by certain Arm cores, which allows the SoC
firmware to detect and limit high activity events to assist in SoC processor
power domain dynamic power budgeting and limit the triggering of whole-rail
(i.e. clock chopping) responses to overcurrent conditions. Defaults to ``0``.
- ``ENABLE_MPMM_FCONF``: Enables configuration of MPMM through FCONF, which
allows platforms with cores supporting MPMM to describe them via the
``HW_CONFIG`` device tree blob. Default is 0.
- ``ENABLE_PIE``: Boolean option to enable Position Independent Executable(PIE)
support within generic code in TF-A. This option is currently only supported
in BL2_AT_EL3, BL31, and BL32 (TSP) for AARCH64 binaries, and in BL32
(SP_min) for AARCH32. Default is 0.
- ``ENABLE_PMF``: Boolean option to enable support for optional Performance
Measurement Framework(PMF). Default is 0.
- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
software.
- ``ENABLE_RME``: Boolean option to enable support for the ARMv9 Realm
Management Extension. Default value is 0. This is currently an experimental
feature.
- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
instrumentation which injects timestamp collection points into TF-A to
allow runtime performance to be measured. Currently, only PSCI is
instrumented. Enabling this option enables the ``ENABLE_PMF`` build option
as well. Default is 0.
- ``ENABLE_SME_FOR_NS``: Boolean option to enable Scalable Matrix Extension
(SME), SVE, and FPU/SIMD for the non-secure world only. These features share
registers so are enabled together. Using this option without
ENABLE_SME_FOR_SWD=1 will cause SME, SVE, and FPU/SIMD instructions in secure
world to trap to EL3. SME is an optional architectural feature for AArch64
and TF-A support is experimental. At this time, this build option cannot be
used on systems that have SPD=spmd/SPM_MM or ENABLE_RME, and attempting to
build with these options will fail. Default is 0.
- ``ENABLE_SME_FOR_SWD``: Boolean option to enable the Scalable Matrix
Extension for secure world use along with SVE and FPU/SIMD, ENABLE_SME_FOR_NS
must also be set to use this. If enabling this, the secure world MUST
handle context switching for SME, SVE, and FPU/SIMD registers to ensure that
no data is leaked to non-secure world. This is experimental. Default is 0.
- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
extensions. This is an optional architectural feature for AArch64.
The default is 1 but is automatically disabled when the target architecture
is AArch32.
- ``ENABLE_SVE_FOR_NS``: Boolean option to enable Scalable Vector Extension
(SVE) for the Non-secure world only. SVE is an optional architectural feature
for AArch64. Note that when SVE is enabled for the Non-secure world, access
to SIMD and floating-point functionality from the Secure world is disabled by
default and controlled with ENABLE_SVE_FOR_SWD.
This is to avoid corruption of the Non-secure world data in the Z-registers
which are aliased by the SIMD and FP registers. The build option is not
compatible with the ``CTX_INCLUDE_FPREGS`` build option, and will raise an
assert on platforms where SVE is implemented and ``ENABLE_SVE_FOR_NS`` set to
1. The default is 1 but is automatically disabled when ENABLE_SME_FOR_NS=1
since SME encompasses SVE. At this time, this build option cannot be used on
systems that have SPM_MM enabled.
- ``ENABLE_SVE_FOR_SWD``: Boolean option to enable SVE for the Secure world.
SVE is an optional architectural feature for AArch64. Note that this option
requires ENABLE_SVE_FOR_NS to be enabled. The default is 0 and it is
automatically disabled when the target architecture is AArch32.
- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
checks in GCC. Allowed values are "all", "strong", "default" and "none". The
default value is set to "none". "strong" is the recommended stack protection
level if this feature is desired. "none" disables the stack protection. For
all values other than "none", the ``plat_get_stack_protector_canary()``
platform hook needs to be implemented. The value is passed as the last
component of the option ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
- ``ENCRYPT_BL31``: Binary flag to enable encryption of BL31 firmware. This
flag depends on ``DECRYPTION_SUPPORT`` build flag.
- ``ENCRYPT_BL32``: Binary flag to enable encryption of Secure BL32 payload.
This flag depends on ``DECRYPTION_SUPPORT`` build flag.
- ``ENC_KEY``: A 32-byte (256-bit) symmetric key in hex string format. It could
either be SSK or BSSK depending on ``FW_ENC_STATUS`` flag. This value depends
on ``DECRYPTION_SUPPORT`` build flag.
- ``ENC_NONCE``: A 12-byte (96-bit) encryption nonce or Initialization Vector
(IV) in hex string format. This value depends on ``DECRYPTION_SUPPORT``
build flag.
- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
deprecated platform APIs, helper functions or drivers within Trusted
Firmware as error. It can take the value 1 (flag the use of deprecated
APIs as error) or 0. The default is 0.
- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
targeted at EL3. When set ``0`` (default), no exceptions are expected or
handled at EL3, and a panic will result. This is supported only for AArch64
builds.
- ``EVENT_LOG_LEVEL``: Chooses the log level to use for Measured Boot when
``MEASURED_BOOT`` is enabled. For a list of valid values, see ``LOG_LEVEL``.
Default value is 40 (LOG_LEVEL_INFO).
- ``FAULT_INJECTION_SUPPORT``: ARMv8.4 extensions introduced support for fault
injection from lower ELs, and this build option enables lower ELs to use
Error Records accessed via System Registers to inject faults. This is
applicable only to AArch64 builds.
This feature is intended for testing purposes only, and is advisable to keep
disabled for production images.
- ``FIP_NAME``: This is an optional build option which specifies the FIP
filename for the ``fip`` target. Default is ``fip.bin``.
- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
- ``FW_ENC_STATUS``: Top level firmware's encryption numeric flag, values:
::
0: Encryption is done with Secret Symmetric Key (SSK) which is common
for a class of devices.
1: Encryption is done with Binding Secret Symmetric Key (BSSK) which is
unique per device.
This flag depends on ``DECRYPTION_SUPPORT`` build flag.
- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
tool to create certificates as per the Chain of Trust described in
:ref:`Trusted Board Boot`. The build system then calls ``fiptool`` to
include the certificates in the FIP and FWU_FIP. Default value is '0'.
Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
the corresponding certificates, and to include those certificates in the
FIP and FWU_FIP.
Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
images will not include support for Trusted Board Boot. The FIP will still
include the corresponding certificates. This FIP can be used to verify the
Chain of Trust on the host machine through other mechanisms.
Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
images will include support for Trusted Board Boot, but the FIP and FWU_FIP
will not include the corresponding certificates, causing a boot failure.
- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
inherent support for specific EL3 type interrupts. Setting this build option
to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
by :ref:`platform abstraction layer<platform Interrupt Controller API>` and
:ref:`Interrupt Management Framework<Interrupt Management Framework>`.
This allows GICv2 platforms to enable features requiring EL3 interrupt type.
This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
the Secure Payload interrupts needs to be synchronously handed over to Secure
EL1 for handling. The default value of this option is ``0``, which means the
Group 0 interrupts are assumed to be handled by Secure EL1.
- ``HANDLE_EA_EL3_FIRST``: When set to ``1``, External Aborts and SError
Interrupts will be always trapped in EL3 i.e. in BL31 at runtime. When set to
``0`` (default), these exceptions will be trapped in the current exception
level (or in EL1 if the current exception level is EL0).
- ``HW_ASSISTED_COHERENCY``: On most Arm systems to-date, platform-specific
software operations are required for CPUs to enter and exit coherency.
However, newer systems exist where CPUs' entry to and exit from coherency
is managed in hardware. Such systems require software to only initiate these
operations, and the rest is managed in hardware, minimizing active software
management. In such systems, this boolean option enables TF-A to carry out
build and run-time optimizations during boot and power management operations.
This option defaults to 0 and if it is enabled, then it implies
``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
If this flag is disabled while the platform which TF-A is compiled for
includes cores that manage coherency in hardware, then a compilation error is
generated. This is based on the fact that a system cannot have, at the same
time, cores that manage coherency in hardware and cores that don't. In other
words, a platform cannot have, at the same time, cores that require
``HW_ASSISTED_COHERENCY=1`` and cores that require
``HW_ASSISTED_COHERENCY=0``.
Note that, when ``HW_ASSISTED_COHERENCY`` is enabled, version 2 of
translation library (xlat tables v2) must be used; version 1 of translation
library is not supported.
- ``INVERTED_MEMMAP``: memmap tool print by default lower addresses at the
bottom, higher addresses at the top. This build flag can be set to '1' to
invert this behavior. Lower addresses will be printed at the top and higher
addresses at the bottom.
- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
runtime software in AArch32 mode, which is required to run AArch32 on Juno.
By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
images.
- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
used for generating the PKCS keys and subsequent signing of the certificate.
It accepts 3 values: ``rsa``, ``rsa_1_5`` and ``ecdsa``. The option
``rsa_1_5`` is the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR
compliant and is retained only for compatibility. The default value of this
flag is ``rsa`` which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
- ``KEY_SIZE``: This build flag enables the user to select the key size for
the algorithm specified by ``KEY_ALG``. The valid values for ``KEY_SIZE``
depend on the chosen algorithm and the cryptographic module.
+-----------+------------------------------------+
| KEY_ALG | Possible key sizes |
+===========+====================================+
| rsa | 1024 , 2048 (default), 3072, 4096* |
+-----------+------------------------------------+
| ecdsa | unavailable |
+-----------+------------------------------------+
* Only 2048 bits size is available with CryptoCell 712 SBROM release 1.
Only 3072 bits size is available with CryptoCell 712 SBROM release 2.
- ``HASH_ALG``: This build flag enables the user to select the secure hash
algorithm. It accepts 3 values: ``sha256``, ``sha384`` and ``sha512``.
The default value of this flag is ``sha256``.
- ``LDFLAGS``: Extra user options appended to the linkers' command line in
addition to the one set by the build system.
- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
output compiled into the build. This should be one of the following:
::
0 (LOG_LEVEL_NONE)
10 (LOG_LEVEL_ERROR)
20 (LOG_LEVEL_NOTICE)
30 (LOG_LEVEL_WARNING)
40 (LOG_LEVEL_INFO)
50 (LOG_LEVEL_VERBOSE)
All log output up to and including the selected log level is compiled into
the build. The default value is 40 in debug builds and 20 in release builds.
- ``MEASURED_BOOT``: Boolean flag to include support for the Measured Boot
feature. This flag can be enabled with ``TRUSTED_BOARD_BOOT`` in order to
provide trust that the code taking the measurements and recording them has
not been tampered with.
This option defaults to 0.
- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
specifies the file that contains the Non-Trusted World private key in PEM
format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
- ``NS_BL2U``: Path to NS_BL2U image in the host file system. This image is
optional. It is only needed if the platform makefile specifies that it
is required in order to build the ``fwu_fip`` target.
- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
contents upon world switch. It can take either 0 (don't save and restore) or
1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
wants the timer registers to be saved and restored.
- ``OVERRIDE_LIBC``: This option allows platforms to override the default libc
for the BL image. It can be either 0 (include) or 1 (remove). The default
value is 0.
- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
the underlying hardware is not a full PL011 UART but a minimally compliant
generic UART, which is a subset of the PL011. The driver will not access
any register that is not part of the SBSA generic UART specification.
Default value is 0 (a full PL011 compliant UART is present).
- ``PLAT``: Choose a platform to build TF-A for. The chosen platform name
must be subdirectory of any depth under ``plat/``, and must contain a
platform makefile named ``platform.mk``. For example, to build TF-A for the
Arm Juno board, select PLAT=juno.
- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
instead of the normal boot flow. When defined, it must specify the entry
point address for the preloaded BL33 image. This option is incompatible with
``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
over ``PRELOADED_BL33_BASE``.
- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
vector address can be programmed or is fixed on the platform. It can take
either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
programmable reset address, it is expected that a CPU will start executing
code directly at the right address, both on a cold and warm reset. In this
case, there is no need to identify the entrypoint on boot and the boot path
can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
does not need to be implemented in this case.
- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
possible for the PSCI power-state parameter: original and extended State-ID
formats. This flag if set to 1, configures the generic PSCI layer to use the
extended format. The default value of this flag is 0, which means by default
the original power-state format is used by the PSCI implementation. This flag
should be specified by the platform makefile and it governs the return value
of PSCI_FEATURES API for CPU_SUSPEND smc function id. When this option is
enabled on Arm platforms, the option ``ARM_RECOM_STATE_ID_ENC`` needs to be
set to 1 as well.
- ``RAS_EXTENSION``: When set to ``1``, enable Armv8.2 RAS features. RAS features
are an optional extension for pre-Armv8.2 CPUs, but are mandatory for Armv8.2
or later CPUs.
When ``RAS_EXTENSION`` is set to ``1``, ``HANDLE_EA_EL3_FIRST`` must also be
set to ``1``.
This option is disabled by default.
- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
entrypoint) or 1 (CPU reset to BL31 entrypoint).
The default value is 0.
- ``RESET_TO_SP_MIN``: SP_MIN is the minimal AArch32 Secure Payload provided
in TF-A. This flag configures SP_MIN entrypoint as the CPU reset vector
instead of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
entrypoint) or 1 (CPU reset to SP_MIN entrypoint). The default value is 0.
- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the ROT private key in PEM format and enforces public key
hash generation. If ``SAVE_KEYS=1``, this
file name will be used to save the key.
- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
certificate generation tool to save the keys used to establish the Chain of
Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
- ``SCP_BL2``: Path to SCP_BL2 image in the host file system. This image is optional.
If a SCP_BL2 image is present then this option must be passed for the ``fip``
target.
- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
file that contains the SCP_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
this file name will be used to save the key.
- ``SCP_BL2U``: Path to SCP_BL2U image in the host file system. This image is
optional. It is only needed if the platform makefile specifies that it
is required in order to build the ``fwu_fip`` target.
- ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software
Delegated Exception Interface to BL31 image. This defaults to ``0``.
When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be
set to ``1``.
- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
isolated on separate memory pages. This is a trade-off between security and
memory usage. See "Isolating code and read-only data on separate memory
pages" section in :ref:`Firmware Design`. This flag is disabled by default
and affects all BL images.
- ``SEPARATE_NOBITS_REGION``: Setting this option to ``1`` allows the NOBITS
sections of BL31 (.bss, stacks, page tables, and coherent memory) to be
allocated in RAM discontiguous from the loaded firmware image. When set, the
platform is expected to provide definitions for ``BL31_NOBITS_BASE`` and
``BL31_NOBITS_LIMIT``. When the option is ``0`` (the default), NOBITS
sections are placed in RAM immediately following the loaded firmware image.
- ``SEPARATE_BL2_NOLOAD_REGION``: Setting this option to ``1`` allows the
NOLOAD sections of BL2 (.bss, stacks, page tables) to be allocated in RAM
discontiguous from loaded firmware images. When set, the platform need to
provide definitions of ``BL2_NOLOAD_START`` and ``BL2_NOLOAD_LIMIT``. This
flag is disabled by default and NOLOAD sections are placed in RAM immediately
following the loaded firmware image.
- ``SMC_PCI_SUPPORT``: This option allows platforms to handle PCI configuration
access requests via a standard SMCCC defined in `DEN0115`_. When combined with
UEFI+ACPI this can provide a certain amount of OS forward compatibility
with newer platforms that aren't ECAM compliant.
- ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A.
This build option is only valid if ``ARCH=aarch64``. The value should be
the path to the directory containing the SPD source, relative to
``services/spd/``; the directory is expected to contain a makefile called
``<spd-value>.mk``. The SPM Dispatcher standard service is located in
services/std_svc/spmd and enabled by ``SPD=spmd``. The SPM Dispatcher
cannot be enabled when the ``SPM_MM`` option is enabled.
- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
execution in BL1 just before handing over to BL31. At this point, all
firmware images have been loaded in memory, and the MMU and caches are
turned off. Refer to the "Debugging options" section for more details.
- ``SPMD_SPM_AT_SEL2`` : this boolean option is used jointly with the SPM
Dispatcher option (``SPD=spmd``). When enabled (1) it indicates the SPMC
component runs at the S-EL2 execution state provided by the Armv8.4-SecEL2
extension. This is the default when enabling the SPM Dispatcher. When
disabled (0) it indicates the SPMC component runs at the S-EL1 execution
state. This latter configuration supports pre-Armv8.4 platforms (aka not
implementing the Armv8.4-SecEL2 extension).
- ``SPM_MM`` : Boolean option to enable the Management Mode (MM)-based Secure
Partition Manager (SPM) implementation. The default value is ``0``
(disabled). This option cannot be enabled (``1``) when SPM Dispatcher is
enabled (``SPD=spmd``).
- ``SP_LAYOUT_FILE``: Platform provided path to JSON file containing the
description of secure partitions. The build system will parse this file and
package all secure partition blobs into the FIP. This file is not
necessarily part of TF-A tree. Only available when ``SPD=spmd``.
- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
secure interrupts (caught through the FIQ line). Platforms can enable
this directive if they need to handle such interruption. When enabled,
the FIQ are handled in monitor mode and non secure world is not allowed
to mask these events. Platforms that enable FIQ handling in SP_MIN shall
implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
Boot feature. When set to '1', BL1 and BL2 images include support to load
and verify the certificates and images in a FIP, and BL1 includes support
for the Firmware Update. The default value is '0'. Generation and inclusion
of certificates in the FIP and FWU_FIP depends upon the value of the
``GENERATE_COT`` option.
.. warning::
This option depends on ``CREATE_KEYS`` to be enabled. If the keys
already exist in disk, they will be overwritten without further notice.
- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
specifies the file that contains the Trusted World private key in PEM
format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
synchronous, (see "Initializing a BL32 Image" section in
:ref:`Firmware Design`). It can take the value 0 (BL32 is initialized using
synchronous method) or 1 (BL32 is initialized using asynchronous method).
Default is 0.
- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
routing model which routes non-secure interrupts asynchronously from TSP
to EL3 causing immediate preemption of TSP. The EL3 is responsible
for saving and restoring the TSP context in this routing model. The
default routing model (when the value is 0) is to route non-secure
interrupts to TSP allowing it to save its context and hand over
synchronously to EL3 via an SMC.
.. note::
When ``EL3_EXCEPTION_HANDLING`` is ``1``, ``TSP_NS_INTR_ASYNC_PREEMPT``
must also be set to ``1``.
- ``USE_ARM_LINK``: This flag determines whether to enable support for ARM
linker. When the ``LINKER`` build variable points to the armlink linker,
this flag is enabled automatically. To enable support for armlink, platforms
will have to provide a scatter file for the BL image. Currently, Tegra
platforms use the armlink support to compile BL3-1 images.
- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
memory region in the BL memory map or not (see "Use of Coherent memory in
TF-A" section in :ref:`Firmware Design`). It can take the value 1
(Coherent memory region is included) or 0 (Coherent memory region is
excluded). Default is 1.
- ``USE_DEBUGFS``: When set to 1 this option activates an EXPERIMENTAL feature
exposing a virtual filesystem interface through BL31 as a SiP SMC function.
Default is 0.
- ``ARM_IO_IN_DTB``: This flag determines whether to use IO based on the
firmware configuration framework. This will move the io_policies into a
configuration device tree, instead of static structure in the code base.
- ``COT_DESC_IN_DTB``: This flag determines whether to create COT descriptors
at runtime using fconf. If this flag is enabled, COT descriptors are
statically captured in tb_fw_config file in the form of device tree nodes
and properties. Currently, COT descriptors used by BL2 are moved to the
device tree and COT descriptors used by BL1 are retained in the code
base statically.
- ``SDEI_IN_FCONF``: This flag determines whether to configure SDEI setup in
runtime using firmware configuration framework. The platform specific SDEI
shared and private events configuration is retrieved from device tree rather
than static C structures at compile time. This is only supported if
SDEI_SUPPORT build flag is enabled.
- ``SEC_INT_DESC_IN_FCONF``: This flag determines whether to configure Group 0
and Group1 secure interrupts using the firmware configuration framework. The
platform specific secure interrupt property descriptor is retrieved from
device tree in runtime rather than depending on static C structure at compile
time.
- ``USE_ROMLIB``: This flag determines whether library at ROM will be used.
This feature creates a library of functions to be placed in ROM and thus
reduces SRAM usage. Refer to :ref:`Library at ROM` for further details. Default
is 0.
- ``V``: Verbose build. If assigned anything other than 0, the build commands
are printed. Default is 0.
- ``VERSION_STRING``: String used in the log output for each TF-A image.
Defaults to a string formed by concatenating the version number, build type
and build string.
- ``W``: Warning level. Some compiler warning options of interest have been
regrouped and put in the root Makefile. This flag can take the values 0 to 3,
each level enabling more warning options. Default is 0.
- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
the CPU after warm boot. This is applicable for platforms which do not
require interconnect programming to enable cache coherency (eg: single
cluster platforms). If this option is enabled, then warm boot path
enables D-caches immediately after enabling MMU. This option defaults to 0.
- ``SUPPORT_STACK_MEMTAG``: This flag determines whether to enable memory
tagging for stack or not. It accepts 2 values: ``yes`` and ``no``. The
default value of this flag is ``no``. Note this option must be enabled only
for ARM architecture greater than Armv8.5-A.
- ``ERRATA_SPECULATIVE_AT``: This flag determines whether to enable ``AT``
speculative errata workaround or not. It accepts 2 values: ``1`` and ``0``.
The default value of this flag is ``0``.
``AT`` speculative errata workaround disables stage1 page table walk for
lower ELs (EL1 and EL0) in EL3 so that ``AT`` speculative fetch at any point
produces either the correct result or failure without TLB allocation.
This boolean option enables errata for all below CPUs.
+---------+--------------+-------------------------+
| Errata | CPU | Workaround Define |
+=========+==============+=========================+
| 1165522 | Cortex-A76 | ``ERRATA_A76_1165522`` |
+---------+--------------+-------------------------+
| 1319367 | Cortex-A72 | ``ERRATA_A72_1319367`` |
+---------+--------------+-------------------------+
| 1319537 | Cortex-A57 | ``ERRATA_A57_1319537`` |
+---------+--------------+-------------------------+
| 1530923 | Cortex-A55 | ``ERRATA_A55_1530923`` |
+---------+--------------+-------------------------+
| 1530924 | Cortex-A53 | ``ERRATA_A53_1530924`` |
+---------+--------------+-------------------------+
.. note::
This option is enabled by build only if platform sets any of above defines
mentioned in Workaround Define' column in the table.
If this option is enabled for the EL3 software then EL2 software also must
implement this workaround due to the behaviour of the errata mentioned
in new SDEN document which will get published soon.
- ``RAS_TRAP_LOWER_EL_ERR_ACCESS``: This flag enables/disables the SCR_EL3.TERR
bit, to trap access to the RAS ERR and RAS ERX registers from lower ELs.
This flag is disabled by default.
- ``OPENSSL_DIR``: This flag is used to provide the installed openssl directory
path on the host machine which is used to build certificate generation and
firmware encryption tool.
- ``USE_SP804_TIMER``: Use the SP804 timer instead of the Generic Timer for
functions that wait for an arbitrary time length (udelay and mdelay). The
default value is 0.
- ``ENABLE_TRBE_FOR_NS``: This flag is used to enable access of trace buffer
control registers from NS ELs, NS-EL2 or NS-EL1(when NS-EL2 is implemented
but unused) when FEAT_TRBE is implemented. TRBE is an optional architectural
feature for AArch64. The default is 0 and it is automatically disabled when
the target architecture is AArch32.
- ``ENABLE_SYS_REG_TRACE_FOR_NS``: Boolean option to enable trace system
registers access from NS ELs, NS-EL2 or NS-EL1 (when NS-EL2 is implemented
but unused). This feature is available if trace unit such as ETMv4.x, and
ETE(extending ETM feature) is implemented. This flag is disabled by default.
- ``ENABLE_TRF_FOR_NS``: Boolean option to enable trace filter control registers
access from NS ELs, NS-EL2 or NS-EL1 (when NS-EL2 is implemented but unused),
if FEAT_TRF is implemented. This flag is disabled by default.
GICv3 driver options
--------------------
GICv3 driver files are included using directive:
``include drivers/arm/gic/v3/gicv3.mk``
The driver can be configured with the following options set in the platform
makefile:
- ``GICV3_SUPPORT_GIC600``: Add support for the GIC-600 variants of GICv3.
Enabling this option will add runtime detection support for the
GIC-600, so is safe to select even for a GIC500 implementation.
This option defaults to 0.
- ``GICV3_SUPPORT_GIC600AE_FMU``: Add support for the Fault Management Unit
for GIC-600 AE. Enabling this option will introduce support to initialize
the FMU. Platforms should call the init function during boot to enable the
FMU and its safety mechanisms. This option defaults to 0.
- ``GICV3_IMPL_GIC600_MULTICHIP``: Selects GIC-600 variant with multichip
functionality. This option defaults to 0
- ``GICV3_OVERRIDE_DISTIF_PWR_OPS``: Allows override of default implementation
of ``arm_gicv3_distif_pre_save`` and ``arm_gicv3_distif_post_restore``
functions. This is required for FVP platform which need to simulate GIC save
and restore during SYSTEM_SUSPEND without powering down GIC. Default is 0.
- ``GIC_ENABLE_V4_EXTN`` : Enables GICv4 related changes in GICv3 driver.
This option defaults to 0.
- ``GIC_EXT_INTID``: When set to ``1``, GICv3 driver will support extended
PPI (1056-1119) and SPI (4096-5119) range. This option defaults to 0.
Debugging options
-----------------
To compile a debug version and make the build more verbose use
.. code:: shell
make PLAT=<platform> DEBUG=1 V=1 all
AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.
When debugging logic problems it might also be useful to disable all compiler
optimizations by using ``-O0``.
.. warning::
Using ``-O0`` could cause output images to be larger and base addresses
might need to be recalculated (see the **Memory layout on Arm development
platforms** section in the :ref:`Firmware Design`).
Extra debug options can be passed to the build system by setting ``CFLAGS`` or
``LDFLAGS``:
.. code:: shell
CFLAGS='-O0 -gdwarf-2' \
make PLAT=<platform> DEBUG=1 V=1 all
Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
ignored as the linker is called directly.
It is also possible to introduce an infinite loop to help in debugging the
post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the
``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the :ref:`build_options_common`
section. In this case, the developer may take control of the target using a
debugger when indicated by the console output. When using DS-5, the following
commands can be used:
::
# Stop target execution
interrupt
#
# Prepare your debugging environment, e.g. set breakpoints
#
# Jump over the debug loop
set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
# Resume execution
continue
Firmware update options
-----------------------
- ``NR_OF_FW_BANKS``: Define the number of firmware banks. This flag is used
in defining the firmware update metadata structure. This flag is by default
set to '2'.
- ``NR_OF_IMAGES_IN_FW_BANK``: Define the number of firmware images in each
firmware bank. Each firmware bank must have the same number of images as per
the `PSA FW update specification`_.
This flag is used in defining the firmware update metadata structure. This
flag is by default set to '1'.
- ``PSA_FWU_SUPPORT``: Enable the firmware update mechanism as per the
`PSA FW update specification`_. The default value is 0, and this is an
experimental feature.
PSA firmware update implementation has some limitations, such as BL2 is
not part of the protocol-updatable images, if BL2 needs to be updated, then
it should be done through another platform-defined mechanism, and it assumes
that the platform's hardware supports CRC32 instructions.
--------------
*Copyright (c) 2019-2022, Arm Limited. All rights reserved.*
.. _DEN0115: https://developer.arm.com/docs/den0115/latest
.. _PSA FW update specification: https://developer.arm.com/documentation/den0118/a/

View File

@@ -0,0 +1,115 @@
Building Documentation
======================
To create a rendered copy of this documentation locally you can use the
`Sphinx`_ tool to build and package the plain-text documents into HTML-formatted
pages.
If you are building the documentation for the first time then you will need to
check that you have the required software packages, as described in the
*Prerequisites* section that follows.
.. note::
An online copy of the documentation is available at
https://www.trustedfirmware.org/docs/tf-a, if you want to view a rendered
copy without doing a local build.
Prerequisites
-------------
For building a local copy of the |TF-A| documentation you will need, at minimum:
- Python 3 (3.5 or later)
- PlantUML (1.2017.15 or later)
Optionally, the `Dia`_ application can be installed if you need to edit
existing ``.dia`` diagram files, or create new ones.
You must also install the Python modules that are specified in the
``requirements.txt`` file in the root of the ``docs`` directory. These modules
can be installed using ``pip3`` (the Python Package Installer). Passing this
requirements file as an argument to ``pip3`` automatically installs the specific
module versions required by |TF-A|.
An example set of installation commands for Ubuntu 18.04 LTS follows, assuming
that the working directory is ``docs``:
.. code:: shell
sudo apt install python3 python3-pip plantuml [dia]
pip3 install [--user] -r requirements.txt
.. note::
Several other modules will be installed as dependencies. Please review
the list to ensure that there will be no conflicts with other modules already
installed in your environment.
Passing the optional ``--user`` argument to ``pip3`` will install the Python
packages only for the current user. Omitting this argument will attempt to
install the packages globally and this will likely require the command to be run
as root or using ``sudo``.
.. note::
More advanced usage instructions for *pip* are beyond the scope of this
document but you can refer to the `pip homepage`_ for detailed guides.
Building rendered documentation
-------------------------------
Documents can be built into HTML-formatted pages from project root directory by
running the following command.
.. code:: shell
make doc
Output from the build process will be placed in:
::
docs/build/html
We also support building documentation in other formats. From the ``docs``
directory of the project, run the following command to see the supported
formats. It is important to note that you will not get the correct result if
the command is run from the project root directory, as that would invoke the
top-level Makefile for |TF-A| itself.
.. code:: shell
make help
Building rendered documentation from a container
------------------------------------------------
There may be cases where you can not either install or upgrade required
dependencies to generate the documents, so in this case, one way to
create the documentation is through a docker container. The first step is
to check if `docker`_ is installed in your host, otherwise check main docker
page for installation instructions. Once installed, run the following script
from project root directory
.. code:: shell
docker run --rm -v $PWD:/TF sphinxdoc/sphinx \
bash -c 'cd /TF && \
pip3 install plantuml -r ./docs/requirements.txt && make doc'
The above command fetches the ``sphinxdoc/sphinx`` container from `docker
hub`_, launches the container, installs documentation requirements and finally
creates the documentation. Once done, exit the container and output from the
build process will be placed in:
::
docs/build/html
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*
.. _Sphinx: http://www.sphinx-doc.org/en/master/
.. _pip homepage: https://pip.pypa.io/en/stable/
.. _Dia: https://wiki.gnome.org/Apps/Dia
.. _docker: https://www.docker.com/
.. _docker hub: https://hub.docker.com/repository/docker/sphinxdoc/sphinx

View File

@@ -0,0 +1,183 @@
Image Terminology
=================
This page contains the current name, abbreviated name and purpose of the various
images referred to in the Trusted Firmware project.
General Notes
-------------
- Some of the names and abbreviated names have changed to accommodate new
requirements. The changed names are as backward compatible as possible to
minimize confusion. Where applicable, the previous names are indicated. Some
code, documentation and build artefacts may still refer to the previous names;
these will inevitably take time to catch up.
- The main name change is to prefix each image with the processor it corresponds
to (for example ``AP_``, ``SCP_``, ...). In situations where there is no
ambiguity (for example, within AP specific code/documentation), it is
permitted to omit the processor prefix (for example, just BL1 instead of
``AP_BL1``).
- Previously, the format for 3rd level images had 2 forms; ``BL3`` was either
suffixed with a dash ("-") followed by a number (for example, ``BL3-1``) or a
subscript number, depending on whether rich text formatting was available.
This was confusing and often the dash gets omitted in practice. Therefore the
new form is to just omit the dash and not use subscript formatting.
- The names no longer contain dash ("-") characters at all. In some places (for
example, function names) it's not possible to use this character. All dashes
are either removed or replaced by underscores ("_").
- The abbreviation BL stands for BootLoader. This is a historical anomaly.
Clearly, many of these images are not BootLoaders, they are simply firmware
images. However, the BL abbreviation is now widely used and is retained for
backwards compatibility.
- The image names are not case sensitive. For example, ``bl1`` is
interchangeable with ``BL1``, although mixed case should be avoided.
Trusted Firmware Images
-----------------------
AP Boot ROM: ``AP_BL1``
~~~~~~~~~~~~~~~~~~~~~~~
Typically, this is the first code to execute on the AP and cannot be modified.
Its primary purpose is to perform the minimum initialization necessary to load
and authenticate an updateable AP firmware image into an executable RAM
location, then hand-off control to that image.
AP RAM Firmware: ``AP_BL2``
~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the 2nd stage AP firmware. It is currently also known as the "Trusted
Boot Firmware". Its primary purpose is to perform any additional initialization
required to load and authenticate all 3rd level firmware images into their
executable RAM locations, then hand-off control to the EL3 Runtime Firmware.
EL3 Runtime Firmware: ``AP_BL31``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Also known as "SoC AP firmware" or "EL3 monitor firmware". Its primary purpose
is to handle transitions between the normal and secure world.
Secure-EL1 Payload (SP): ``AP_BL32``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Typically this is a TEE or Trusted OS, providing runtime secure services to the
normal world. However, it may refer to a more abstract Secure-EL1 Payload (SP).
Note that this abbreviation should only be used in systems where there is a
single or primary image executing at Secure-EL1. In systems where there are
potentially multiple SPs and there is no concept of a primary SP, this
abbreviation should be avoided; use the recommended **Other AP 3rd level
images** abbreviation instead.
AP Normal World Firmware: ``AP_BL33``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For example, UEFI or uboot. Its primary purpose is to boot a normal world OS.
Other AP 3rd level images: ``AP_BL3_XXX``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The abbreviated names of the existing 3rd level images imply a load/execution
ordering (for example, ``AP_BL31 -> AP_BL32 -> AP_BL33``). Some systems may
have additional images and/or a different load/execution ordering. The
abbreviated names of the existing images are retained for backward compatibility
but new 3rd level images should be suffixed with an underscore followed by text
identifier, not a number.
In systems where 3rd level images are provided by different vendors, the
abbreviated name should identify the vendor as well as the image
function. For example, ``AP_BL3_ARM_RAS``.
Realm Monitor Management Firmware: ``RMM``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the Realm-EL2 firmware. It is required if
:ref:`Realm Management Extension (RME)` feature is enabled. If a path to RMM
image is not provided, TF-A builds Test Realm Payload (TRP) image by default
and uses it as the RMM image.
SCP Boot ROM: ``SCP_BL1`` (previously ``BL0``)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Typically, this is the first code to execute on the SCP and cannot be modified.
Its primary purpose is to perform the minimum initialization necessary to load
and authenticate an updateable SCP firmware image into an executable RAM
location, then hand-off control to that image. This may be performed in
conjunction with other processor firmware (for example, ``AP_BL1`` and
``AP_BL2``).
This image was previously abbreviated as ``BL0`` but in some systems, the SCP
may directly load/authenticate its own firmware. In these systems, it doesn't
make sense to interleave the image terminology for AP and SCP; both AP and SCP
Boot ROMs are ``BL1`` from their own point of view.
SCP RAM Firmware: ``SCP_BL2`` (previously ``BL3-0``)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the 2nd stage SCP firmware. It is currently also known as the "SCP
runtime firmware" but it could potentially be an intermediate firmware if the
SCP needs to load/authenticate multiple 3rd level images in future.
This image was previously abbreviated as BL3-0 but from the SCP's point of view,
this has always been the 2nd stage firmware. The previous name is too
AP-centric.
Firmware Update (FWU) Images
----------------------------
The terminology for these images has not been widely adopted yet but they have
to be considered in a production Trusted Board Boot solution.
AP Firmware Update Boot ROM: ``AP_NS_BL1U``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Typically, this is the first normal world code to execute on the AP during a
firmware update operation, and cannot be modified. Its primary purpose is to
load subsequent firmware update images from an external interface and communicate
with ``AP_BL1`` to authenticate those images.
During firmware update, there are (potentially) multiple transitions between the
secure and normal world. The "level" of the BL image is relative to the world
it's in so it makes sense to encode "NS" in the normal world images. The absence
of "NS" implies a secure world image.
AP Firmware Update Config: ``AP_BL2U``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This image does the minimum necessary AP secure world configuration required to
complete the firmware update operation. It is potentially a subset of ``AP_BL2``
functionality.
SCP Firmware Update Config: ``SCP_BL2U`` (previously ``BL2-U0``)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This image does the minimum necessary SCP secure world configuration required to
complete the firmware update operation. It is potentially a subset of
``SCP_BL2`` functionality.
AP Firmware Updater: ``AP_NS_BL2U`` (previously ``BL3-U``)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the 2nd stage AP normal world firmware updater. Its primary purpose is
to load a new set of firmware images from an external interface and write them
into non-volatile storage.
Other Processor Firmware Images
-------------------------------
Some systems may have additional processors to the AP and SCP. For example, a
Management Control Processor (MCP). Images for these processors should follow
the same terminology, with the processor abbreviation prefix, followed by
underscore and the level of the firmware image.
For example,
MCP Boot ROM: ``MCP_BL1``
~~~~~~~~~~~~~~~~~~~~~~~~~
MCP RAM Firmware: ``MCP_BL2``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@@ -0,0 +1,21 @@
Getting Started
===============
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
prerequisites
docs-build
tools-build
initial-build
build-options
image-terminology
porting-guide
psci-lib-integration-guide
rt-svc-writers-guide
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,118 @@
Performing an Initial Build
===========================
- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
to the Linaro cross compiler.
For AArch64:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
For AArch32:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-none-eabi-
It is possible to build TF-A using Clang or Arm Compiler 6. To do so
``CC`` needs to point to the clang or armclang binary, which will
also select the clang or armclang assembler. Be aware that for Arm Compiler,
the GNU linker is used by default. However for Clang LLVM linker (LLD)
is used by default. In case of being needed the linker can be overridden
using the ``LD`` variable. LLVM linker (LLD) version 9 is
known to work with TF-A.
In both cases ``CROSS_COMPILE`` should be set as described above.
Arm Compiler 6 will be selected when the base name of the path assigned
to ``CC`` matches the string 'armclang'.
For AArch64 using Arm Compiler 6:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
Clang will be selected when the base name of the path assigned to ``CC``
contains the string 'clang'. This is to allow both clang and clang-X.Y
to work.
For AArch64 using clang:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make CC=<path-to-clang>/bin/clang PLAT=<platform> all
- Change to the root directory of the TF-A source tree and build.
For AArch64:
.. code:: shell
make PLAT=<platform> all
For AArch32:
.. code:: shell
make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
Notes:
- If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
:ref:`Build Options` document for more information on available build
options.
- (AArch32 only) Currently only ``PLAT=fvp`` is supported.
- (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp_min, is
provided by TF-A to demonstrate how PSCI Library can be integrated with
an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
include other runtime services, for example Trusted OS services. A guide
to integrate PSCI library with AArch32 EL3 Runtime Software can be found
at :ref:`PSCI Library Integration guide for Armv8-A AArch32 systems`.
- (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
image, is not compiled in by default. Refer to the
:ref:`Test Secure Payload (TSP) and Dispatcher (TSPD)` document for
details on building the TSP.
- By default this produces a release version of the build. To produce a
debug version instead, refer to the "Debugging options" section below.
- The build process creates products in a ``build`` directory tree, building
the objects and binaries for each boot loader stage in separate
sub-directories. The following boot loader binary files are created
from the corresponding ELF files:
- ``build/<platform>/<build-type>/bl1.bin``
- ``build/<platform>/<build-type>/bl2.bin``
- ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
- ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
where ``<platform>`` is the name of the chosen platform and ``<build-type>``
is either ``debug`` or ``release``. The actual number of images might differ
depending on the platform.
- Build products for a specific build variant can be removed using:
.. code:: shell
make DEBUG=<D> PLAT=<platform> clean
... where ``<D>`` is ``0`` or ``1``, as specified when building.
The build tree can be removed completely using:
.. code:: shell
make realclean
--------------
*Copyright (c) 2020, Arm Limited. All rights reserved.*

View File

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,169 @@
Prerequisites
=============
This document describes the software requirements for building |TF-A| for
AArch32 and AArch64 target platforms.
It may possible to build |TF-A| with combinations of software packages that are
different from those listed below, however only the software described in this
document can be officially supported.
Build Host
----------
|TF-A| can be built using either a Linux or a Windows machine as the build host.
A relatively recent Linux distribution is recommended for building |TF-A|. We
have performed tests using Ubuntu 16.04 LTS (64-bit) but other distributions
should also work fine as a base, provided that the necessary tools and libraries
can be installed.
.. _prerequisites_toolchain:
Toolchain
---------
|TF-A| can be built with any of the following *cross-compiler* toolchains that
target the Armv7-A or Armv8-A architectures:
- GCC >= 10.3-2021.07 (from the `Arm Developer website`_)
- Clang >= 4.0
- Arm Compiler >= 6.0
In addition, a native compiler is required to build the supporting tools.
.. note::
The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
.. note::
For instructions on how to select the cross compiler refer to
:ref:`Performing an Initial Build`.
.. _prerequisites_software_and_libraries:
Software and Libraries
----------------------
The following tools are required to obtain and build |TF-A|:
- An appropriate toolchain (see :ref:`prerequisites_toolchain`)
- GNU Make
- Git
The following libraries must be available to build one or more components or
supporting tools:
- OpenSSL >= 1.0.1
Required to build the cert_create tool.
The following libraries are required for Trusted Board Boot support:
- mbed TLS == 2.26.0 (tag: ``mbedtls-2.26.0``)
These tools are optional:
- Device Tree Compiler (DTC) >= 1.4.6
Needed if you want to rebuild the provided Flattened Device Tree (FDT)
source files (``.dts`` files). DTC is available for Linux through the package
repositories of most distributions.
- Arm `Development Studio 5 (DS-5)`_
The standard software package used for debugging software on Arm development
platforms and |FVP| models.
- Node.js >= 16
Highly recommended, and necessary in order to install and use the packaged
Git hooks and helper tools. Without these tools you will need to rely on the
CI for feedback on commit message conformance.
Package Installation (Linux)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you are using the recommended Ubuntu distribution then you can install the
required packages with the following command:
.. code:: shell
sudo apt install build-essential git libssl-dev
The optional packages can be installed using:
.. code:: shell
sudo apt install device-tree-compiler
Additionally, to install an up-to-date version of Node.js, you can use the `Node
Version Manager`_ to install a version of your choosing (we recommend 16, but
later LTS versions might offer a more stable experience):
.. code:: shell
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | "$SHELL"
exec "$SHELL" -ic "nvm install 16; exec $SHELL"
.. _Node Version Manager: https://github.com/nvm-sh/nvm#install--update-script
Supporting Files
----------------
TF-A has been tested with pre-built binaries and file systems from `Linaro
Release 20.01`_. Alternatively, you can build the binaries from source using
instructions in :ref:`Performing an Initial Build`.
.. _prerequisites_get_source:
Getting the TF-A Source
-----------------------
Source code for |TF-A| is maintained in a Git repository hosted on
TrustedFirmware.org. To clone this repository from the server, run the following
in your shell:
.. code:: shell
git clone "https://review.trustedfirmware.org/TF-A/trusted-firmware-a"
Additional Steps for Contributors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you are planning on contributing back to TF-A, there are some things you'll
want to know.
TF-A is hosted by a `Gerrit Code Review`_ server. Gerrit requires that all
commits include a ``Change-Id`` footer, and this footer is typically
automatically generated by a Git hook installed by you, the developer.
If you have Node.js installed already, you can automatically install this hook,
along with any additional hooks and Javascript-based tooling that we use, by
running from within your newly-cloned repository:
.. code:: shell
npm install --no-save
If you have opted **not** to install Node.js, you can install the Gerrit hook
manually by running:
.. code:: shell
curl -Lo $(git rev-parse --git-dir)/hooks/commit-msg https://review.trustedfirmware.org/tools/hooks/commit-msg
chmod +x $(git rev-parse --git-dir)/hooks/commit-msg
You can read more about Git hooks in the *githooks* page of the Git
documentation, available `here <https://git-scm.com/docs/githooks>`_.
--------------
*Copyright (c) 2021, Arm Limited. All rights reserved.*
.. _Arm Developer website: https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads
.. _Gerrit Code Review: https://www.gerritcodereview.com/
.. _Linaro Release Notes: https://community.arm.com/dev-platforms/w/docs/226/old-release-notes
.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/arm-reference-platforms-deliverables
.. _Development Studio 5 (DS-5): https://developer.arm.com/products/software-development-tools/ds-5-development-studio
.. _Linaro Release 20.01: http://releases.linaro.org/members/arm/platforms/20.01

View File

@@ -0,0 +1,546 @@
PSCI Library Integration guide for Armv8-A AArch32 systems
==========================================================
This document describes the PSCI library interface with a focus on how to
integrate with a suitable Trusted OS for an Armv8-A AArch32 system. The PSCI
Library implements the PSCI Standard as described in `PSCI spec`_ and is meant
to be integrated with EL3 Runtime Software which invokes the PSCI Library
interface appropriately. **EL3 Runtime Software** refers to software executing
at the highest secure privileged mode, which is EL3 in AArch64 or Secure SVC/
Monitor mode in AArch32, and provides runtime services to the non-secure world.
The runtime service request is made via SMC (Secure Monitor Call) and the call
must adhere to `SMCCC`_. In AArch32, EL3 Runtime Software may additionally
include Trusted OS functionality. A minimal AArch32 Secure Payload, SP-MIN, is
provided in Trusted Firmware-A (TF-A) to illustrate the usage and integration
of the PSCI library. The description of PSCI library interface and its
integration with EL3 Runtime Software in this document is targeted towards
AArch32 systems.
Generic call sequence for PSCI Library interface (AArch32)
----------------------------------------------------------
The generic call sequence of PSCI Library interfaces (see
`PSCI Library Interface`_) during cold boot in AArch32
system is described below:
#. After cold reset, the EL3 Runtime Software performs its cold boot
initialization including the PSCI library pre-requisites mentioned in
`PSCI Library Interface`_, and also the necessary platform
setup.
#. Call ``psci_setup()`` in Monitor mode.
#. Optionally call ``psci_register_spd_pm_hook()`` to register callbacks to
do bookkeeping for the EL3 Runtime Software during power management.
#. Call ``psci_prepare_next_non_secure_ctx()`` to initialize the non-secure CPU
context.
#. Get the non-secure ``cpu_context_t`` for the current CPU by calling
``cm_get_context()`` , then programming the registers in the non-secure
context and exiting to non-secure world. If the EL3 Runtime Software needs
additional configuration to be set for non-secure context, like routing
FIQs to the secure world, the values of the registers can be modified prior
to programming. See `PSCI CPU context management`_ for more
details on CPU context management.
The generic call sequence of PSCI library interfaces during warm boot in
AArch32 systems is described below:
#. After warm reset, the EL3 Runtime Software performs the necessary warm
boot initialization including the PSCI library pre-requisites mentioned in
`PSCI Library Interface`_ (Note that the Data cache
**must not** be enabled).
#. Call ``psci_warmboot_entrypoint()`` in Monitor mode. This interface
initializes/restores the non-secure CPU context as well.
#. Do step 5 of the cold boot call sequence described above.
The generic call sequence of PSCI library interfaces on receipt of a PSCI SMC
on an AArch32 system is described below:
#. On receipt of an SMC, save the register context as per `SMCCC`_.
#. If the SMC function identifier corresponds to a SMC32 PSCI API, construct
the appropriate arguments and call the ``psci_smc_handler()`` interface.
The invocation may or may not return back to the caller depending on
whether the PSCI API resulted in power down of the CPU.
#. If ``psci_smc_handler()`` returns, populate the return value in R0 (AArch32)/
X0 (AArch64) and restore other registers as per `SMCCC`_.
PSCI CPU context management
---------------------------
PSCI library is in charge of initializing/restoring the non-secure CPU system
registers according to `PSCI specification`_ during cold/warm boot.
This is referred to as ``PSCI CPU Context Management``. Registers that need to
be preserved across CPU power down/power up cycles are maintained in
``cpu_context_t`` data structure. The initialization of other non-secure CPU
system registers which do not require coordination with the EL3 Runtime
Software is done directly by the PSCI library (see ``cm_prepare_el3_exit()``).
The EL3 Runtime Software is responsible for managing register context
during switch between Normal and Secure worlds. The register context to be
saved and restored depends on the mechanism used to trigger the world switch.
For example, if the world switch was triggered by an SMC call, then the
registers need to be saved and restored according to `SMCCC`_. In AArch64,
due to the tight integration with BL31, both BL31 and PSCI library
use the same ``cpu_context_t`` data structure for PSCI CPU context management
and register context management during world switch. This cannot be assumed
for AArch32 EL3 Runtime Software since most AArch32 Trusted OSes already implement
a mechanism for register context management during world switch. Hence, when
the PSCI library is integrated with a AArch32 EL3 Runtime Software, the
``cpu_context_t`` is stripped down for just PSCI CPU context management.
During cold/warm boot, after invoking appropriate PSCI library interfaces, it
is expected that the EL3 Runtime Software will query the ``cpu_context_t`` and
write appropriate values to the corresponding system registers. This mechanism
resolves 2 additional problems for AArch32 EL3 Runtime Software:
#. Values for certain system registers like SCR and SCTLR cannot be
unilaterally determined by PSCI library and need inputs from the EL3
Runtime Software. Using ``cpu_context_t`` as an intermediary data store
allows EL3 Runtime Software to modify the register values appropriately
before programming them.
#. The PSCI library provides appropriate LR and SPSR values (entrypoint
information) for exit into non-secure world. Using ``cpu_context_t`` as an
intermediary data store allows the EL3 Runtime Software to store these
values safely until it is ready for exit to non-secure world.
Currently the ``cpu_context_t`` data structure for AArch32 stores the following
registers: R0 - R3, LR (R14), SCR, SPSR, SCTLR.
The EL3 Runtime Software must implement accessors to get/set pointers
to CPU context ``cpu_context_t`` data and these are described in
`CPU Context management API`_.
PSCI Library Interface
----------------------
The PSCI library implements the `PSCI Specification`_. The interfaces
to this library are declared in ``psci_lib.h`` and are as listed below:
.. code:: c
u_register_t psci_smc_handler(uint32_t smc_fid, u_register_t x1,
u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags);
int psci_setup(const psci_lib_args_t *lib_args);
void psci_warmboot_entrypoint(void);
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm);
void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info);
The CPU context data 'cpu_context_t' is programmed to the registers differently
when PSCI is integrated with an AArch32 EL3 Runtime Software compared to
when the PSCI is integrated with an AArch64 EL3 Runtime Software (BL31). For
example, in the case of AArch64, there is no need to retrieve ``cpu_context_t``
data and program the registers as it will done implicitly as part of
``el3_exit``. The description below of the PSCI interfaces is targeted at
integration with an AArch32 EL3 Runtime Software.
The PSCI library is responsible for initializing/restoring the non-secure world
to an appropriate state after boot and may choose to directly program the
non-secure system registers. The PSCI generic code takes care not to directly
modify any of the system registers affecting the secure world and instead
returns the values to be programmed to these registers via ``cpu_context_t``.
The EL3 Runtime Software is responsible for programming those registers and
can use the proposed values provided in the ``cpu_context_t``, modifying the
values if required.
PSCI library needs the flexibility to access both secure and non-secure
copies of banked registers. Hence it needs to be invoked in Monitor mode
for AArch32 and in EL3 for AArch64. The NS bit in SCR (in AArch32) or SCR_EL3
(in AArch64) must be set to 0. Additional requirements for the PSCI library
interfaces are:
- Instruction cache must be enabled
- Both IRQ and FIQ must be masked for the current CPU
- The page tables must be setup and the MMU enabled
- The C runtime environment must be setup and stack initialized
- The Data cache must be enabled prior to invoking any of the PSCI library
interfaces except for ``psci_warmboot_entrypoint()``. For
``psci_warmboot_entrypoint()``, if the build option ``HW_ASSISTED_COHERENCY``
is enabled however, data caches are expected to be enabled.
Further requirements for each interface can be found in the interface
description.
Interface : psci_setup()
~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : const psci_lib_args_t *lib_args
Return : void
This function is to be called by the primary CPU during cold boot before
any other interface to the PSCI library. It takes ``lib_args``, a const pointer
to ``psci_lib_args_t``, as the argument. The ``psci_lib_args_t`` is a versioned
structure and is declared in ``psci_lib.h`` header as follows:
.. code:: c
typedef struct psci_lib_args {
/* The version information of PSCI Library Interface */
param_header_t h;
/* The warm boot entrypoint function */
mailbox_entrypoint_t mailbox_ep;
} psci_lib_args_t;
The first field ``h``, of ``param_header_t`` type, provides the version
information. The second field ``mailbox_ep`` is the warm boot entrypoint address
and is used to configure the platform mailbox. Helper macros are provided in
``psci_lib.h`` to construct the ``lib_args`` argument statically or during
runtime. Prior to calling the ``psci_setup()`` interface, the platform setup for
cold boot must have completed. Major actions performed by this interface are:
- Initializes architecture.
- Initializes PSCI power domain and state coordination data structures.
- Calls ``plat_setup_psci_ops()`` with warm boot entrypoint ``mailbox_ep`` as
argument.
- Calls ``cm_set_context_by_index()`` (see
`CPU Context management API`_) for all the CPUs in the
platform
Interface : psci_prepare_next_non_secure_ctx()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : entry_point_info_t *next_image_info
Return : void
After ``psci_setup()`` and prior to exit to the non-secure world, this function
must be called by the EL3 Runtime Software to initialize the non-secure world
context. The non-secure world entrypoint information ``next_image_info`` (first
argument) will be used to determine the non-secure context. After this function
returns, the EL3 Runtime Software must retrieve the ``cpu_context_t`` (using
cm_get_context()) for the current CPU and program the registers prior to exit
to the non-secure world.
Interface : psci_register_spd_pm_hook()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : const spd_pm_ops_t *
Return : void
As explained in `Secure payload power management callback`_,
the EL3 Runtime Software may want to perform some bookkeeping during power
management operations. This function is used to register the ``spd_pm_ops_t``
(first argument) callbacks with the PSCI library which will be called
appropriately during power management. Calling this function is optional and
need to be called by the primary CPU during the cold boot sequence after
``psci_setup()`` has completed.
Interface : psci_smc_handler()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : uint32_t smc_fid, u_register_t x1,
u_register_t x2, u_register_t x3,
u_register_t x4, void *cookie,
void *handle, u_register_t flags
Return : u_register_t
This function is the top level handler for SMCs which fall within the
PSCI service range specified in `SMCCC`_. The function ID ``smc_fid`` (first
argument) determines the PSCI API to be called. The ``x1`` to ``x4`` (2nd to 5th
arguments), are the values of the registers r1 - r4 (in AArch32) or x1 - x4
(in AArch64) when the SMC is received. These are the arguments to PSCI API as
described in `PSCI spec`_. The 'flags' (8th argument) is a bit field parameter
and is detailed in 'smccc.h' header. It includes whether the call is from the
secure or non-secure world. The ``cookie`` (6th argument) and the ``handle``
(7th argument) are not used and are reserved for future use.
The return value from this interface is the return value from the underlying
PSCI API corresponding to ``smc_fid``. This function may not return back to the
caller if PSCI API causes power down of the CPU. In this case, when the CPU
wakes up, it will start execution from the warm reset address.
Interface : psci_warmboot_entrypoint()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
::
Argument : void
Return : void
This function performs the warm boot initialization/restoration as mandated by
`PSCI spec`_. For AArch32, on wakeup from power down the CPU resets to secure SVC
mode and the EL3 Runtime Software must perform the prerequisite initializations
mentioned at top of this section. This function must be called with Data cache
disabled (unless build option ``HW_ASSISTED_COHERENCY`` is enabled) but with MMU
initialized and enabled. The major actions performed by this function are:
- Invalidates the stack and enables the data cache.
- Initializes architecture and PSCI state coordination.
- Restores/Initializes the peripheral drivers to the required state via
appropriate ``plat_psci_ops_t`` hooks
- Restores the EL3 Runtime Software context via appropriate ``spd_pm_ops_t``
callbacks.
- Restores/Initializes the non-secure context and populates the
``cpu_context_t`` for the current CPU.
Upon the return of this function, the EL3 Runtime Software must retrieve the
non-secure ``cpu_context_t`` using ``cm_get_context()`` and program the registers
prior to exit to the non-secure world.
EL3 Runtime Software dependencies
---------------------------------
The PSCI Library includes supporting frameworks like context management,
cpu operations (cpu_ops) and per-cpu data framework. Other helper library
functions like bakery locks and spin locks are also included in the library.
The dependencies which must be fulfilled by the EL3 Runtime Software
for integration with PSCI library are described below.
General dependencies
~~~~~~~~~~~~~~~~~~~~
The PSCI library being a Multiprocessor (MP) implementation, EL3 Runtime
Software must provide an SMC handling framework capable of MP adhering to
`SMCCC`_ specification.
The EL3 Runtime Software must also export cache maintenance primitives
and some helper utilities for assert, print and memory operations as listed
below. The TF-A source tree provides implementations for all
these functions but the EL3 Runtime Software may use its own implementation.
**Functions : assert(), memcpy(), memset(), printf()**
These must be implemented as described in ISO C Standard.
**Function : flush_dcache_range()**
::
Argument : uintptr_t addr, size_t size
Return : void
This function cleans and invalidates (flushes) the data cache for memory
at address ``addr`` (first argument) address and of size ``size`` (second argument).
**Function : inv_dcache_range()**
::
Argument : uintptr_t addr, size_t size
Return : void
This function invalidates (flushes) the data cache for memory at address
``addr`` (first argument) address and of size ``size`` (second argument).
**Function : do_panic()**
::
Argument : void
Return : void
This function will be called by the PSCI library on encountering a critical
failure that cannot be recovered from. This function **must not** return.
CPU Context management API
~~~~~~~~~~~~~~~~~~~~~~~~~~
The CPU context management data memory is statically allocated by PSCI library
in BSS section. The PSCI library requires the EL3 Runtime Software to implement
APIs to store and retrieve pointers to this CPU context data. SP-MIN
demonstrates how these APIs can be implemented but the EL3 Runtime Software can
choose a more optimal implementation (like dedicating the secure TPIDRPRW
system register (in AArch32) for storing these pointers).
**Function : cm_set_context_by_index()**
::
Argument : unsigned int cpu_idx, void *context, unsigned int security_state
Return : void
This function is called during cold boot when the ``psci_setup()`` PSCI library
interface is called.
This function must store the pointer to the CPU context data, ``context`` (2nd
argument), for the specified ``security_state`` (3rd argument) and CPU identified
by ``cpu_idx`` (first argument). The ``security_state`` will always be non-secure
when called by PSCI library and this argument is retained for compatibility
with BL31. The ``cpu_idx`` will correspond to the index returned by the
``plat_core_pos_by_mpidr()`` for ``mpidr`` of the CPU.
The actual method of storing the ``context`` pointers is implementation specific.
For example, SP-MIN stores the pointers in the array ``sp_min_cpu_ctx_ptr``
declared in ``sp_min_main.c``.
**Function : cm_get_context()**
::
Argument : uint32_t security_state
Return : void *
This function must return the pointer to the ``cpu_context_t`` structure for
the specified ``security_state`` (first argument) for the current CPU. The caller
must ensure that ``cm_set_context_by_index`` is called first and the appropriate
context pointers are stored prior to invoking this API. The ``security_state``
will always be non-secure when called by PSCI library and this argument
is retained for compatibility with BL31.
**Function : cm_get_context_by_index()**
::
Argument : unsigned int cpu_idx, unsigned int security_state
Return : void *
This function must return the pointer to the ``cpu_context_t`` structure for
the specified ``security_state`` (second argument) for the CPU identified by
``cpu_idx`` (first argument). The caller must ensure that
``cm_set_context_by_index`` is called first and the appropriate context
pointers are stored prior to invoking this API. The ``security_state`` will
always be non-secure when called by PSCI library and this argument is
retained for compatibility with BL31. The ``cpu_idx`` will correspond to the
index returned by the ``plat_core_pos_by_mpidr()`` for ``mpidr`` of the CPU.
Platform API
~~~~~~~~~~~~
The platform layer abstracts the platform-specific details from the generic
PSCI library. The following platform APIs/macros must be defined by the EL3
Runtime Software for integration with the PSCI library.
The mandatory platform APIs are:
- plat_my_core_pos
- plat_core_pos_by_mpidr
- plat_get_syscnt_freq2
- plat_get_power_domain_tree_desc
- plat_setup_psci_ops
- plat_reset_handler
- plat_panic_handler
- plat_get_my_stack
The mandatory platform macros are:
- PLATFORM_CORE_COUNT
- PLAT_MAX_PWR_LVL
- PLAT_NUM_PWR_DOMAINS
- CACHE_WRITEBACK_GRANULE
- PLAT_MAX_OFF_STATE
- PLAT_MAX_RET_STATE
- PLAT_MAX_PWR_LVL_STATES (optional)
- PLAT_PCPU_DATA_SIZE (optional)
The details of these APIs/macros can be found in the :ref:`Porting Guide`.
All platform specific operations for power management are done via
``plat_psci_ops_t`` callbacks registered by the platform when
``plat_setup_psci_ops()`` API is called. The description of each of
the callbacks in ``plat_psci_ops_t`` can be found in PSCI section of the
:ref:`Porting Guide`. If any these callbacks are not registered, then the
PSCI API associated with that callback will not be supported by PSCI
library.
Secure payload power management callback
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During PSCI power management operations, the EL3 Runtime Software may
need to perform some bookkeeping, and PSCI library provides
``spd_pm_ops_t`` callbacks for this purpose. These hooks must be
populated and registered by using ``psci_register_spd_pm_hook()`` PSCI
library interface.
Typical bookkeeping during PSCI power management calls include save/restore
of the EL3 Runtime Software context. Also if the EL3 Runtime Software makes
use of secure interrupts, then these interrupts must also be managed
appropriately during CPU power down/power up. Any secure interrupt targeted
to the current CPU must be disabled or re-targeted to other running CPU prior
to power down of the current CPU. During power up, these interrupt can be
enabled/re-targeted back to the current CPU.
.. code:: c
typedef struct spd_pm_ops {
void (*svc_on)(u_register_t target_cpu);
int32_t (*svc_off)(u_register_t __unused);
void (*svc_suspend)(u_register_t max_off_pwrlvl);
void (*svc_on_finish)(u_register_t __unused);
void (*svc_suspend_finish)(u_register_t max_off_pwrlvl);
int32_t (*svc_migrate)(u_register_t from_cpu, u_register_t to_cpu);
int32_t (*svc_migrate_info)(u_register_t *resident_cpu);
void (*svc_system_off)(void);
void (*svc_system_reset)(void);
} spd_pm_ops_t;
A brief description of each callback is given below:
- svc_on, svc_off, svc_on_finish
The ``svc_on``, ``svc_off`` callbacks are called during PSCI_CPU_ON,
PSCI_CPU_OFF APIs respectively. The ``svc_on_finish`` is called when the
target CPU of PSCI_CPU_ON API powers up and executes the
``psci_warmboot_entrypoint()`` PSCI library interface.
- svc_suspend, svc_suspend_finish
The ``svc_suspend`` callback is called during power down bu either
PSCI_SUSPEND or PSCI_SYSTEM_SUSPEND APIs. The ``svc_suspend_finish`` is
called when the CPU wakes up from suspend and executes the
``psci_warmboot_entrypoint()`` PSCI library interface. The ``max_off_pwrlvl``
(first parameter) denotes the highest power domain level being powered down
to or woken up from suspend.
- svc_system_off, svc_system_reset
These callbacks are called during PSCI_SYSTEM_OFF and PSCI_SYSTEM_RESET
PSCI APIs respectively.
- svc_migrate_info
This callback is called in response to PSCI_MIGRATE_INFO_TYPE or
PSCI_MIGRATE_INFO_UP_CPU APIs. The return value of this callback must
correspond to the return value of PSCI_MIGRATE_INFO_TYPE API as described
in `PSCI spec`_. If the secure payload is a Uniprocessor (UP)
implementation, then it must update the mpidr of the CPU it is resident in
via ``resident_cpu`` (first argument). The updates to ``resident_cpu`` is
ignored if the secure payload is a multiprocessor (MP) implementation.
- svc_migrate
This callback is only relevant if the secure payload in EL3 Runtime
Software is a Uniprocessor (UP) implementation and supports migration from
the current CPU ``from_cpu`` (first argument) to another CPU ``to_cpu``
(second argument). This callback is called in response to PSCI_MIGRATE
API. This callback is never called if the secure payload is a
Multiprocessor (MP) implementation.
CPU operations
~~~~~~~~~~~~~~
The CPU operations (cpu_ops) framework implement power down sequence specific
to the CPU and the details of which can be found at
:ref:`firmware_design_cpu_ops_fwk`. The TF-A tree implements the ``cpu_ops``
for various supported CPUs and the EL3 Runtime Software needs to include the
required ``cpu_ops`` in its build. The start and end of the ``cpu_ops``
descriptors must be exported by the EL3 Runtime Software via the
``__CPU_OPS_START__`` and ``__CPU_OPS_END__`` linker symbols.
The ``cpu_ops`` descriptors also include reset sequences and may include errata
workarounds for the CPU. The EL3 Runtime Software can choose to call this
during cold/warm reset if it does not implement its own reset sequence/errata
workarounds.
--------------
*Copyright (c) 2016-2020, Arm Limited and Contributors. All rights reserved.*
.. _PSCI spec: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
.. _SMCCC: https://developer.arm.com/docs/den0028/latest
.. _PSCI specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf
.. _PSCI Specification: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

View File

@@ -0,0 +1,320 @@
EL3 Runtime Service Writer's Guide
=====================================================
Introduction
------------
This document describes how to add a runtime service to the EL3 Runtime
Firmware component of Trusted Firmware-A (TF-A), BL31.
Software executing in the normal world and in the trusted world at exception
levels lower than EL3 will request runtime services using the Secure Monitor
Call (SMC) instruction. These requests will follow the convention described in
the SMC Calling Convention PDD (`SMCCC`_). The `SMCCC`_ assigns function
identifiers to each SMC request and describes how arguments are passed and
results are returned.
SMC Functions are grouped together based on the implementor of the service, for
example a subset of the Function IDs are designated as "OEM Calls" (see `SMCCC`_
for full details). The EL3 runtime services framework in BL31 enables the
independent implementation of services for each group, which are then compiled
into the BL31 image. This simplifies the integration of common software from
Arm to support `PSCI`_, Secure Monitor for a Trusted OS and SoC specific
software. The common runtime services framework ensures that SMC Functions are
dispatched to their respective service implementation - the
:ref:`Firmware Design` document provides details of how this is achieved.
The interface and operation of the runtime services depends heavily on the
concepts and definitions described in the `SMCCC`_, in particular SMC Function
IDs, Owning Entity Numbers (OEN), Fast and Standard calls, and the SMC32 and
SMC64 calling conventions. Please refer to that document for a full explanation
of these terms.
Owning Entities, Call Types and Function IDs
--------------------------------------------
The SMC Function Identifier includes a OEN field. These values and their
meaning are described in `SMCCC`_ and summarized in table 1 below. Some entities
are allocated a range of of OENs. The OEN must be interpreted in conjunction
with the SMC call type, which is either *Fast* or *Yielding*. Fast calls are
uninterruptible whereas Yielding calls can be pre-empted. The majority of
Owning Entities only have allocated ranges for Fast calls: Yielding calls are
reserved exclusively for Trusted OS providers or for interoperability with
legacy 32-bit software that predates the `SMCCC`_.
::
Type OEN Service
Fast 0 Arm Architecture calls
Fast 1 CPU Service calls
Fast 2 SiP Service calls
Fast 3 OEM Service calls
Fast 4 Standard Service calls
Fast 5-47 Reserved for future use
Fast 48-49 Trusted Application calls
Fast 50-63 Trusted OS calls
Yielding 0- 1 Reserved for existing Armv7-A calls
Yielding 2-63 Trusted OS Standard Calls
*Table 1: Service types and their corresponding Owning Entity Numbers*
Each individual entity can allocate the valid identifiers within the entity
range as they need - it is not necessary to coordinate with other entities of
the same type. For example, two SoC providers can use the same Function ID
within the SiP Service calls OEN range to mean different things - as these
calls should be specific to the SoC. The Standard Runtime Calls OEN is used for
services defined by Arm standards, such as `PSCI`_.
The SMC Function ID also indicates whether the call has followed the SMC32
calling convention, where all parameters are 32-bit, or the SMC64 calling
convention, where the parameters are 64-bit. The framework identifies and
rejects invalid calls that use the SMC64 calling convention but that originate
from an AArch32 caller.
The EL3 runtime services framework uses the call type and OEN to identify a
specific handler for each SMC call, but it is expected that an individual
handler will be responsible for all SMC Functions within a given service type.
Getting started
---------------
TF-A has a ``services`` directory in the source tree under which
each owning entity can place the implementation of its runtime service. The
`PSCI`_ implementation is located here in the ``lib/psci`` directory.
Runtime service sources will need to include the ``runtime_svc.h`` header file.
Registering a runtime service
-----------------------------
A runtime service is registered using the ``DECLARE_RT_SVC()`` macro, specifying
the name of the service, the range of OENs covered, the type of service and
initialization and call handler functions.
.. code:: c
#define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch)
- ``_name`` is used to identify the data structure declared by this macro, and
is also used for diagnostic purposes
- ``_start`` and ``_end`` values must be based on the ``OEN_*`` values defined in
``smccc.h``
- ``_type`` must be one of ``SMC_TYPE_FAST`` or ``SMC_TYPE_YIELD``
- ``_setup`` is the initialization function with the ``rt_svc_init`` signature:
.. code:: c
typedef int32_t (*rt_svc_init)(void);
- ``_smch`` is the SMC handler function with the ``rt_svc_handle`` signature:
.. code:: c
typedef uintptr_t (*rt_svc_handle_t)(uint32_t smc_fid,
u_register_t x1, u_register_t x2,
u_register_t x3, u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);
Details of the requirements and behavior of the two callbacks is provided in
the following sections.
During initialization the services framework validates each declared service
to ensure that the following conditions are met:
#. The ``_start`` OEN is not greater than the ``_end`` OEN
#. The ``_end`` OEN does not exceed the maximum OEN value (63)
#. The ``_type`` is one of ``SMC_TYPE_FAST`` or ``SMC_TYPE_YIELD``
#. ``_setup`` and ``_smch`` routines have been specified
``std_svc_setup.c`` provides an example of registering a runtime service:
.. code:: c
/* Register Standard Service Calls as runtime service */
DECLARE_RT_SVC(
std_svc,
OEN_STD_START,
OEN_STD_END,
SMC_TYPE_FAST,
std_svc_setup,
std_svc_smc_handler
);
Initializing a runtime service
------------------------------
Runtime services are initialized once, during cold boot, by the primary CPU
after platform and architectural initialization is complete. The framework
performs basic validation of the declared service before calling
the service initialization function (``_setup`` in the declaration). This
function must carry out any essential EL3 initialization prior to receiving a
SMC Function call via the handler function.
On success, the initialization function must return ``0``. Any other return value
will cause the framework to issue a diagnostic:
::
Error initializing runtime service <name of the service>
and then ignore the service - the system will continue to boot but SMC calls
will not be passed to the service handler and instead return the *Unknown SMC
Function ID* result ``0xFFFFFFFF``.
If the system must not be allowed to proceed without the service, the
initialization function must itself cause the firmware boot to be halted.
If the service uses per-CPU data this must either be initialized for all CPUs
during this call, or be done lazily when a CPU first issues an SMC call to that
service.
Handling runtime service requests
---------------------------------
SMC calls for a service are forwarded by the framework to the service's SMC
handler function (``_smch`` in the service declaration). This function must have
the following signature:
.. code:: c
typedef uintptr_t (*rt_svc_handle_t)(uint32_t smc_fid,
u_register_t x1, u_register_t x2,
u_register_t x3, u_register_t x4,
void *cookie,
void *handle,
u_register_t flags);
The handler is responsible for:
#. Determining that ``smc_fid`` is a valid and supported SMC Function ID,
otherwise completing the request with the *Unknown SMC Function ID*:
.. code:: c
SMC_RET1(handle, SMC_UNK);
#. Determining if the requested function is valid for the calling security
state. SMC Calls can be made from Non-secure, Secure or Realm worlds and
the framework will forward all calls to the service handler.
The ``flags`` parameter to this function indicates the caller security state
in bits 0 and 5. The ``is_caller_secure(flags)``, ``is_caller_non_secure(flags)``
and ``is_caller_realm(flags)`` helper functions can be used to determine whether
the caller's security state is Secure, Non-secure or Realm respectively.
If invalid, the request should be completed with:
.. code:: c
SMC_RET1(handle, SMC_UNK);
#. Truncating parameters for calls made using the SMC32 calling convention.
Such calls can be determined by checking the CC field in bit[30] of the
``smc_fid`` parameter, for example by using:
::
if (GET_SMC_CC(smc_fid) == SMC_32) ...
For such calls, the upper bits of the parameters x1-x4 and the saved
parameters X5-X7 are UNDEFINED and must be explicitly ignored by the
handler. This can be done by truncating the values to a suitable 32-bit
integer type before use, for example by ensuring that functions defined
to handle individual SMC Functions use appropriate 32-bit parameters.
#. Providing the service requested by the SMC Function, utilizing the
immediate parameters x1-x4 and/or the additional saved parameters X5-X7.
The latter can be retrieved using the ``SMC_GET_GP(handle, ref)`` function,
supplying the appropriate ``CTX_GPREG_Xn`` reference, e.g.
.. code:: c
uint64_t x6 = SMC_GET_GP(handle, CTX_GPREG_X6);
#. Implementing the standard SMC32 Functions that provide information about
the implementation of the service. These are the Call Count, Implementor
UID and Revision Details for each service documented in section 6 of the
`SMCCC`_.
TF-A expects owning entities to follow this recommendation.
#. Returning the result to the caller. Based on `SMCCC`_ spec, results are
returned in W0-W7(X0-X7) registers for SMC32(SMC64) calls from AArch64
state. Results are returned in R0-R7 registers for SMC32 calls from AArch32
state. The framework provides a family of macros to set the multi-register
return value and complete the handler:
.. code:: c
AArch64 state:
SMC_RET1(handle, x0);
SMC_RET2(handle, x0, x1);
SMC_RET3(handle, x0, x1, x2);
SMC_RET4(handle, x0, x1, x2, x3);
SMC_RET5(handle, x0, x1, x2, x3, x4);
SMC_RET6(handle, x0, x1, x2, x3, x4, x5);
SMC_RET7(handle, x0, x1, x2, x3, x4, x5, x6);
SMC_RET8(handle, x0, x1, x2, x3, x4, x5, x6, x7);
AArch32 state:
SMC_RET1(handle, r0);
SMC_RET2(handle, r0, r1);
SMC_RET3(handle, r0, r1, r2);
SMC_RET4(handle, r0, r1, r2, r3);
SMC_RET5(handle, r0, r1, r2, r3, r4);
SMC_RET6(handle, r0, r1, r2, r3, r4, r5);
SMC_RET7(handle, r0, r1, r2, r3, r4, r5, r6);
SMC_RET8(handle, r0, r1, r2, r3, r4, r5, r6, r7);
The ``cookie`` parameter to the handler is reserved for future use and can be
ignored. The ``handle`` is returned by the SMC handler - completion of the
handler function must always be via one of the ``SMC_RETn()`` macros.
.. note::
The PSCI and Test Secure-EL1 Payload Dispatcher services do not follow
all of the above requirements yet.
Services that contain multiple sub-services
-------------------------------------------
It is possible that a single owning entity implements multiple sub-services. For
example, the Standard calls service handles ``0x84000000``-``0x8400FFFF`` and
``0xC4000000``-``0xC400FFFF`` functions. Within that range, the `PSCI`_ service
handles the ``0x84000000``-``0x8400001F`` and ``0xC4000000``-``0xC400001F`` functions.
In that respect, `PSCI`_ is a 'sub-service' of the Standard calls service. In
future, there could be additional such sub-services in the Standard calls
service which perform independent functions.
In this situation it may be valuable to introduce a second level framework to
enable independent implementation of sub-services. Such a framework might look
very similar to the current runtime services framework, but using a different
part of the SMC Function ID to identify the sub-service. TF-A does not provide
such a framework at present.
Secure-EL1 Payload Dispatcher service (SPD)
-------------------------------------------
Services that handle SMC Functions targeting a Trusted OS, Trusted Application,
or other Secure-EL1 Payload are special. These services need to manage the
Secure-EL1 context, provide the *Secure Monitor* functionality of switching
between the normal and secure worlds, deliver SMC Calls through to Secure-EL1
and generally manage the Secure-EL1 Payload through CPU power-state transitions.
TODO: Provide details of the additional work required to implement a SPD and
the BL31 support for these services. Or a reference to the document that will
provide this information....
--------------
*Copyright (c) 2014-2021, Arm Limited and Contributors. All rights reserved.*
.. _SMCCC: https://developer.arm.com/docs/den0028/latest
.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

View File

@@ -0,0 +1,167 @@
Building Supporting Tools
=========================
Building and using the FIP tool
-------------------------------
Firmware Image Package (FIP) is a packaging format used by TF-A to package
firmware images in a single binary. The number and type of images that should
be packed in a FIP is platform specific and may include TF-A images and other
firmware images required by the platform. For example, most platforms require
a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
U-Boot).
The TF-A build system provides the make target ``fip`` to create a FIP file
for the specified platform using the FIP creation tool included in the TF-A
project. Examples below show how to build a FIP file for FVP, packaging TF-A
and BL33 images.
For AArch64:
.. code:: shell
make PLAT=fvp BL33=<path-to>/bl33.bin fip
For AArch32:
.. code:: shell
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path-to>/bl33.bin fip
The resulting FIP may be found in:
::
build/fvp/<build-type>/fip.bin
For advanced operations on FIP files, it is also possible to independently build
the tool and create or modify FIPs using this tool. To do this, follow these
steps:
It is recommended to remove old artifacts before building the tool:
.. code:: shell
make -C tools/fiptool clean
Build the tool:
.. code:: shell
make [DEBUG=1] [V=1] fiptool
The tool binary can be located in:
::
./tools/fiptool/fiptool
Invoking the tool with ``help`` will print a help message with all available
options.
Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
.. code:: shell
./tools/fiptool/fiptool create \
--tb-fw build/<platform>/<build-type>/bl2.bin \
--soc-fw build/<platform>/<build-type>/bl31.bin \
fip.bin
Example 2: view the contents of an existing Firmware package:
.. code:: shell
./tools/fiptool/fiptool info <path-to>/fip.bin
Example 3: update the entries of an existing Firmware package:
.. code:: shell
# Change the BL2 from Debug to Release version
./tools/fiptool/fiptool update \
--tb-fw build/<platform>/release/bl2.bin \
build/<platform>/debug/fip.bin
Example 4: unpack all entries from an existing Firmware package:
.. code:: shell
# Images will be unpacked to the working directory
./tools/fiptool/fiptool unpack <path-to>/fip.bin
Example 5: remove an entry from an existing Firmware package:
.. code:: shell
./tools/fiptool/fiptool remove \
--tb-fw build/<platform>/debug/fip.bin
Note that if the destination FIP file exists, the create, update and
remove operations will automatically overwrite it.
The unpack operation will fail if the images already exist at the
destination. In that case, use -f or --force to continue.
More information about FIP can be found in the :ref:`Firmware Design` document.
.. _tools_build_cert_create:
Building the Certificate Generation Tool
----------------------------------------
The ``cert_create`` tool is built as part of the TF-A build process when the
``fip`` make target is specified and TBB is enabled (as described in the
previous section), but it can also be built separately with the following
command:
.. code:: shell
make PLAT=<platform> [DEBUG=1] [V=1] certtool
For platforms that require their own IDs in certificate files, the generic
'cert_create' tool can be built with the following command. Note that the target
platform must define its IDs within a ``platform_oid.h`` header file for the
build to succeed.
.. code:: shell
make PLAT=<platform> USE_TBBR_DEFS=0 [DEBUG=1] [V=1] certtool
``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
verbose. The following command should be used to obtain help about the tool:
.. code:: shell
./tools/cert_create/cert_create -h
.. _tools_build_enctool:
Building the Firmware Encryption Tool
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ``encrypt_fw`` tool is built as part of the TF-A build process when the
``fip`` make target is specified, DECRYPTION_SUPPORT and TBB are enabled, but
it can also be built separately with the following command:
.. code:: shell
make PLAT=<platform> [DEBUG=1] [V=1] enctool
``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
verbose. The following command should be used to obtain help about the tool:
.. code:: shell
./tools/encrypt_fw/encrypt_fw -h
Note that the enctool in its current implementation only supports encryption
key to be provided in plain format. A typical implementation can very well
extend this tool to support custom techniques to protect encryption key.
Also, a user may choose to provide encryption key or nonce as an input file
via using ``cat <filename>`` instead of a hex string.
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,68 @@
.. |AArch32| replace:: :term:`AArch32`
.. |AArch64| replace:: :term:`AArch64`
.. |AMU| replace:: :term:`AMU`
.. |AMUs| replace:: :term:`AMUs <AMU>`
.. |API| replace:: :term:`API`
.. |BTI| replace:: :term:`BTI`
.. |CoT| replace:: :term:`CoT`
.. |COT| replace:: :term:`COT`
.. |CSS| replace:: :term:`CSS`
.. |CVE| replace:: :term:`CVE`
.. |DTB| replace:: :term:`DTB`
.. |DS-5| replace:: :term:`DS-5`
.. |DSU| replace:: :term:`DSU`
.. |DT| replace:: :term:`DT`
.. |EL| replace:: :term:`EL`
.. |EHF| replace:: :term:`EHF`
.. |FCONF| replace:: :term:`FCONF`
.. |FDT| replace:: :term:`FDT`
.. |FF-A| replace:: :term:`FF-A`
.. |FIP| replace:: :term:`FIP`
.. |FVP| replace:: :term:`FVP`
.. |FWU| replace:: :term:`FWU`
.. |GIC| replace:: :term:`GIC`
.. |ISA| replace:: :term:`ISA`
.. |Linaro| replace:: :term:`Linaro`
.. |MMU| replace:: :term:`MMU`
.. |MPAM| replace:: :term:`MPAM`
.. |MPMM| replace:: :term:`MPMM`
.. |MPIDR| replace:: :term:`MPIDR`
.. |MTE| replace:: :term:`MTE`
.. |OEN| replace:: :term:`OEN`
.. |OP-TEE| replace:: :term:`OP-TEE`
.. |OTE| replace:: :term:`OTE`
.. |PDD| replace:: :term:`PDD`
.. |PAUTH| replace:: :term:`PAUTH`
.. |PMF| replace:: :term:`PMF`
.. |PSCI| replace:: :term:`PSCI`
.. |RAS| replace:: :term:`RAS`
.. |ROT| replace:: :term:`ROT`
.. |SCMI| replace:: :term:`SCMI`
.. |SCP| replace:: :term:`SCP`
.. |SDEI| replace:: :term:`SDEI`
.. |SDS| replace:: :term:`SDS`
.. |SEA| replace:: :term:`SEA`
.. |SiP| replace:: :term:`SiP`
.. |SIP| replace:: :term:`SIP`
.. |SMC| replace:: :term:`SMC`
.. |SMCCC| replace:: :term:`SMCCC`
.. |SoC| replace:: :term:`SoC`
.. |SP| replace:: :term:`SP`
.. |SPD| replace:: :term:`SPD`
.. |SPM| replace:: :term:`SPM`
.. |SSBS| replace:: :term:`SSBS`
.. |SVE| replace:: :term:`SVE`
.. |TBB| replace:: :term:`TBB`
.. |TBBR| replace:: :term:`TBBR`
.. |TEE| replace:: :term:`TEE`
.. |TF-A| replace:: :term:`TF-A`
.. |TF-M| replace:: :term:`TF-M`
.. |TLB| replace:: :term:`TLB`
.. |TLK| replace:: :term:`TLK`
.. |TRNG| replace:: :term:`TRNG`
.. |TSP| replace:: :term:`TSP`
.. |TZC| replace:: :term:`TZC`
.. |UBSAN| replace:: :term:`UBSAN`
.. |UEFI| replace:: :term:`UEFI`
.. |WDOG| replace:: :term:`WDOG`
.. |XLAT| replace:: :term:`XLAT`

View File

@@ -0,0 +1,225 @@
Glossary
========
This glossary provides definitions for terms and abbreviations used in the TF-A
documentation.
You can find additional definitions in the `Arm Glossary`_.
.. glossary::
:sorted:
AArch32
32-bit execution state of the ARMv8 ISA
AArch64
64-bit execution state of the ARMv8 ISA
AMU
Activity Monitor Unit, a hardware monitoring unit introduced by FEAT_AMUv1
that exposes CPU core runtime metrics as a set of counter registers.
API
Application Programming Interface
AT
Address Translation
BTI
Branch Target Identification. An Armv8.5 extension providing additional
control flow integrity around indirect branches and their targets.
CoT
COT
Chain of Trust
CSS
Compute Sub-System
CVE
Common Vulnerabilities and Exposures. A CVE document is commonly used to
describe a publicly-known security vulnerability.
DS-5
Arm Development Studio 5
DSU
DynamIQ Shared Unit
DT
Device Tree
DTB
Device Tree Blob
EL
Exception Level
EHF
Exception Handling Framework
FCONF
Firmware Configuration Framework
FDT
Flattened Device Tree
FF-A
Firmware Framework for Arm A-profile
FIP
Firmware Image Package
FVP
Fixed Virtual Platform
FWU
FirmWare Update
GIC
Generic Interrupt Controller
ISA
Instruction Set Architecture
Linaro
A collaborative engineering organization consolidating
and optimizing open source software and tools for the Arm architecture.
MMU
Memory Management Unit
MPAM
Memory Partitioning And Monitoring. An optional Armv8.4 extension.
MPMM
Maximum Power Mitigation Mechanism, an optional power management mechanism
supported by some Arm Armv9-A cores.
MPIDR
Multiprocessor Affinity Register
MTE
Memory Tagging Extension. An optional Armv8.5 extension that enables
hardware-assisted memory tagging.
OEN
Owning Entity Number
OP-TEE
Open Portable Trusted Execution Environment. An example of a :term:`TEE`
OTE
Open-source Trusted Execution Environment
PDD
Platform Design Document
PAUTH
Pointer Authentication. An optional extension introduced in Armv8.3.
PMF
Performance Measurement Framework
PSA
Platform Security Architecture
PSCI
Power State Coordination Interface
RAS
Reliability, Availability, and Serviceability extensions. A mandatory
extension for the Armv8.2 architecture and later. An optional extension to
the base Armv8 architecture.
ROT
Root of Trust
SCMI
System Control and Management Interface
SCP
System Control Processor
SDEI
Software Delegated Exception Interface
SDS
Shared Data Storage
SEA
Synchronous External Abort
SiP
SIP
Silicon Provider
SMC
Secure Monitor Call
SMCCC
:term:`SMC` Calling Convention
SoC
System on Chip
SP
Secure Partition
SPD
Secure Payload Dispatcher
SPM
Secure Partition Manager
SSBS
Speculative Store Bypass Safe. Introduced in Armv8.5, this configuration
bit can be set by software to allow or prevent the hardware from
performing speculative operations.
SVE
Scalable Vector Extension
TBB
Trusted Board Boot
TBBR
Trusted Board Boot Requirements
TEE
Trusted Execution Environment
TF-A
Trusted Firmware-A
TF-M
Trusted Firmware-M
TLB
Translation Lookaside Buffer
TLK
Trusted Little Kernel. A Trusted OS from NVIDIA.
TRNG
True Randon Number Generator (hardware based)
TSP
Test Secure Payload
TZC
TrustZone Controller
UBSAN
Undefined Behavior Sanitizer
UEFI
Unified Extensible Firmware Interface
WDOG
Watchdog
XLAT
Translation (abbr.). For example, "XLAT table".
.. _`Arm Glossary`: https://developer.arm.com/support/arm-glossary

View File

@@ -0,0 +1,96 @@
Trusted Firmware-A Documentation
================================
.. toctree::
:maxdepth: 1
:hidden:
Home<self>
about/index
getting_started/index
process/index
components/index
design/index
plat/index
perf/index
security_advisories/index
design_documents/index
threat_model/index
change-log
glossary
license
Trusted Firmware-A (TF-A) provides a reference implementation of secure world
software for `Armv7-A and Armv8-A`_, including a `Secure Monitor`_ executing
at Exception Level 3 (EL3). It implements various Arm interface standards,
such as:
- The `Power State Coordination Interface (PSCI)`_
- `Trusted Board Boot Requirements CLIENT (TBBR-CLIENT)`_
- `SMC Calling Convention`_
- `System Control and Management Interface (SCMI)`_
- `Software Delegated Exception Interface (SDEI)`_
- `PSA FW update specification`_
Where possible, the code is designed for reuse or porting to other Armv7-A and
Armv8-A model and hardware platforms.
This release provides a suitable starting point for productization of secure
world boot and runtime firmware, in either the AArch32 or AArch64 execution
states.
Users are encouraged to do their own security validation, including penetration
testing, on any secure world code derived from TF-A.
In collaboration with interested parties, we will continue to enhance |TF-A|
with reference implementations of Arm standards to benefit developers working
with Armv7-A and Armv8-A TrustZone technology.
Getting Started
---------------
The |TF-A| documentation contains guidance for obtaining and building the
software for existing, supported platforms, as well as supporting information
for porting the software to a new platform.
The **About** chapter gives a high-level overview of |TF-A| features as well as
some information on the project and how it is organized.
Refer to the documents in the **Getting Started** chapter for information about
the prerequisites and requirements for building |TF-A|.
The **Processes & Policies** chapter explains the project's release schedule
and process, how security disclosures are handled, and the guidelines for
contributing to the project (including the coding style).
The **Components** chapter holds documents that explain specific components
that make up the |TF-A| software, the :ref:`Exception Handling Framework`, for
example.
In the **System Design** chapter you will find documents that explain the
design of portions of the software that involve more than one component, such
as the :ref:`Trusted Board Boot` process.
**Platform Ports** provides a list of the supported hardware and software-model
platforms that are supported upstream in |TF-A|. Most of these platforms also
have additional documentation that has been provided by the maintainers of the
platform.
The results of any performance evaluations are added to the
**Performance & Testing** chapter.
**Security Advisories** holds a list of documents relating to |CVE| entries that
have previously been raised against the software.
--------------
*Copyright (c) 2013-2021, Arm Limited and Contributors. All rights reserved.*
.. _Armv7-A and Armv8-A: https://developer.arm.com/products/architecture/a-profile
.. _Secure Monitor: http://www.arm.com/products/processors/technologies/trustzone/tee-smc.php
.. _Power State Coordination Interface (PSCI): http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
.. _Trusted Board Boot Requirements CLIENT (TBBR-CLIENT): https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
.. _System Control and Management Interface (SCMI): http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/DEN0056A_System_Control_and_Management_Interface.pdf
.. _Software Delegated Exception Interface (SDEI): http://infocenter.arm.com/help/topic/com.arm.doc.den0054a/ARM_DEN0054A_Software_Delegated_Exception_Interface.pdf
.. _SMC Calling Convention: https://developer.arm.com/docs/den0028/latest
.. _PSA FW update specification: https://developer.arm.com/documentation/den0118/a/

View File

@@ -0,0 +1,90 @@
License
=======
The software is provided under a BSD-3-Clause license (below). Contributions to
this project are accepted under the same license with developer sign-off as
described in the :ref:`Contributor's Guide`.
::
Copyright (c) [XXXX-]YYYY, <OWNER>. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
- Neither the name of Arm nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
SPDX Identifiers
----------------
Individual files contain the following tag instead of the full license text.
::
SPDX-License-Identifier: BSD-3-Clause
This enables machine processing of license information based on the SPDX
License Identifiers that are here available: http://spdx.org/licenses/
Other Projects
--------------
This project contains code from other projects as listed below. The original
license text is included in those source files.
- The libc source code is derived from `FreeBSD`_ and `SCC`_. FreeBSD uses
various BSD licenses, including BSD-3-Clause and BSD-2-Clause. The SCC code
is used under the BSD-3-Clause license with the author's permission.
- The libfdt source code is disjunctively dual licensed
(GPL-2.0+ OR BSD-2-Clause). It is used by this project under the terms of
the BSD-2-Clause license. Any contributions to this code must be made under
the terms of both licenses.
- The LLVM compiler-rt source code is disjunctively dual licensed
(NCSA OR MIT). It is used by this project under the terms of the NCSA
license (also known as the University of Illinois/NCSA Open Source License),
which is a permissive license compatible with BSD-3-Clause. Any
contributions to this code must be made under the terms of both licenses.
- The zlib source code is licensed under the Zlib license, which is a
permissive license compatible with BSD-3-Clause.
- Some STMicroelectronics platform source code is disjunctively dual licensed
(GPL-2.0+ OR BSD-3-Clause). It is used by this project under the terms of the
BSD-3-Clause license. Any contributions to this code must be made under the
terms of both licenses.
- Some source files originating from the Linux source tree, which are
disjunctively dual licensed (GPL-2.0 OR MIT), are redistributed under the
terms of the MIT license. These files are:
- ``include/dt-bindings/interrupt-controller/arm-gic.h``
- ``include/dt-bindings/interrupt-controller/irq.h``
See the original `Linux MIT license`_.
.. _FreeBSD: http://www.freebsd.org
.. _Linux MIT license: https://raw.githubusercontent.com/torvalds/linux/master/LICENSES/preferred/MIT
.. _SCC: http://www.simple-cc.org/

View File

@@ -0,0 +1,15 @@
Performance & Testing
=====================
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
psci-performance-juno
tsp
performance-monitoring-unit
--------------
*Copyright (c) 2019-2020, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,158 @@
Performance Monitoring Unit
===========================
The Performance Monitoring Unit (PMU) allows recording of architectural and
microarchitectural events for profiling purposes.
This document gives an overview of the PMU counter configuration to assist with
implementation and to complement the PMU security guidelines given in the
:ref:`Secure Development Guidelines` document.
.. note::
This section applies to Armv8-A implementations which have version 3
of the Performance Monitors Extension (PMUv3).
PMU Counters
------------
The PMU makes 32 counters available at all privilege levels:
- 31 programmable event counters: ``PMEVCNTR<n>``, where ``n`` is ``0`` to
``30``.
- A dedicated cycle counter: ``PMCCNTR``.
Architectural mappings
~~~~~~~~~~~~~~~~~~~~~~
+--------------+---------+----------------------------+
| Counters | State | System Register Name |
+==============+=========+============================+
| | AArch64 | ``PMEVCNTR<n>_EL0[63*:0]`` |
| Programmable +---------+----------------------------+
| | AArch32 | ``PMEVCNTR<n>[31:0]`` |
+--------------+---------+----------------------------+
| | AArch64 | ``PMCCNTR_EL0[63:0]`` |
| Cycle +---------+----------------------------+
| | AArch32 | ``PMCCNTR[63:0]`` |
+--------------+---------+----------------------------+
.. note::
Bits [63:32] are only available if ARMv8.5-PMU is implemented. Refer to the
`Arm ARM`_ for a detailed description of ARMv8.5-PMU features.
Configuring the PMU for counting events
---------------------------------------
Each programmable counter has an associated register, ``PMEVTYPER<n>`` which
configures it. The cycle counter has the ``PMCCFILTR_EL0`` register, which has
an identical function and bit field layout as ``PMEVTYPER<n>``. In addition,
the counters are enabled (permitted to increment) via the ``PMCNTENSET`` and
``PMCR`` registers. These can be accessed at all privilege levels.
Architectural mappings
~~~~~~~~~~~~~~~~~~~~~~
+-----------------------------+------------------------+
| AArch64 | AArch32 |
+=============================+========================+
| ``PMEVTYPER<n>_EL0[63*:0]`` | ``PMEVTYPER<n>[31:0]`` |
+-----------------------------+------------------------+
| ``PMCCFILTR_EL0[63*:0]`` | ``PMCCFILTR[31:0]`` |
+-----------------------------+------------------------+
| ``PMCNTENSET_EL0[63*:0]`` | ``PMCNTENSET[31:0]`` |
+-----------------------------+------------------------+
| ``PMCR_EL0[63*:0]`` | ``PMCR[31:0]`` |
+-----------------------------+------------------------+
.. note::
Bits [63:32] are reserved.
Relevant register fields
~~~~~~~~~~~~~~~~~~~~~~~~
For ``PMEVTYPER<n>_EL0``/``PMEVTYPER<n>`` and ``PMCCFILTR_EL0/PMCCFILTR``, the
most important fields are:
- ``P``:
- Bit 31.
- If set to ``0``, will increment the associated ``PMEVCNTR<n>`` at EL1.
- ``NSK``:
- Bit 29.
- If equal to the ``P`` bit it enables the associated ``PMEVCNTR<n>`` at
Non-secure EL1.
- Reserved if EL3 not implemented.
- ``NSH``:
- Bit 27.
- If set to ``1``, will increment the associated ``PMEVCNTR<n>`` at EL2.
- Reserved if EL2 not implemented.
- ``SH``:
- Bit 24.
- If different to the ``NSH`` bit it enables the associated ``PMEVCNTR<n>``
at Secure EL2.
- Reserved if Secure EL2 not implemented.
- ``M``:
- Bit 26.
- If equal to the ``P`` bit it enables the associated ``PMEVCNTR<n>`` at
EL3.
- ``evtCount[15:10]``:
- Extension to ``evtCount[9:0]``. Reserved unless ARMv8.1-PMU implemented.
- ``evtCount[9:0]``:
- The event number that the associated ``PMEVCNTR<n>`` will count.
For ``PMCNTENSET_EL0``/``PMCNTENSET``, the most important fields are:
- ``P[30:0]``:
- Setting bit ``P[n]`` to ``1`` enables counter ``PMEVCNTR<n>``.
- The effects of ``PMEVTYPER<n>`` are applied on top of this.
In other words, the counter will not increment at any privilege level or
security state unless it is enabled here.
- ``C``:
- Bit 31.
- If set to ``1`` enables the cycle counter ``PMCCNTR``.
For ``PMCR``/``PMCR_EL0``, the most important fields are:
- ``DP``:
- Bit 5.
- If set to ``1`` it disables the cycle counter ``PMCCNTR`` where event
counting (by ``PMEVCNTR<n>``) is prohibited (e.g. EL2 and the Secure
world).
- If set to ``0``, ``PMCCNTR`` will not be affected by this bit and
therefore will be able to count where the programmable counters are
prohibited.
- ``E``:
- Bit 0.
- Enables/disables counting altogether.
- The effects of ``PMCNTENSET`` and ``PMCR.DP`` are applied on top of this.
In other words, if this bit is ``0`` then no counters will increment
regardless of how the other PMU system registers or bit fields are
configured.
.. rubric:: References
- `Arm ARM`_
--------------
*Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.*
.. _Arm ARM: https://developer.arm.com/docs/ddi0487/latest

View File

@@ -0,0 +1,292 @@
PSCI Performance Measurements on Arm Juno Development Platform
==============================================================
This document summarises the findings of performance measurements of key
operations in the Trusted Firmware-A Power State Coordination Interface (PSCI)
implementation, using the in-built Performance Measurement Framework (PMF) and
runtime instrumentation timestamps.
Method
------
We used the `Juno R1 platform`_ for these tests, which has 4 x Cortex-A53 and 2
x Cortex-A57 clusters running at the following frequencies:
+-----------------+--------------------+
| Domain | Frequency (MHz) |
+=================+====================+
| Cortex-A57 | 900 (nominal) |
+-----------------+--------------------+
| Cortex-A53 | 650 (underdrive) |
+-----------------+--------------------+
| AXI subsystem | 533 |
+-----------------+--------------------+
Juno supports CPU, cluster and system power down states, corresponding to power
levels 0, 1 and 2 respectively. It does not support any retention states.
We used the upstream `TF master as of 31/01/2017`_, building the platform using
the ``ENABLE_RUNTIME_INSTRUMENTATION`` option:
.. code:: shell
make PLAT=juno ENABLE_RUNTIME_INSTRUMENTATION=1 \
SCP_BL2=<path/to/scp-fw.bin> \
BL33=<path/to/test-fw.bin> \
all fip
When using the debug build of TF, there was no noticeable difference in the
results.
The tests are based on an ARM-internal test framework. The release build of this
framework was used because the results in the debug build became skewed; the
console output prevented some of the tests from executing in parallel.
The tests consist of both parallel and sequential tests, which are broadly
described as follows:
- **Parallel Tests** This type of test powers on all the non-lead CPUs and
brings them and the lead CPU to a common synchronization point. The lead CPU
then initiates the test on all CPUs in parallel.
- **Sequential Tests** This type of test powers on each non-lead CPU in
sequence. The lead CPU initiates the test on a non-lead CPU then waits for the
test to complete before proceeding to the next non-lead CPU. The lead CPU then
executes the test on itself.
In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and
CPUs 4-5 refer to CPUs in the big cluster (A57). In all cases CPU 4 is the lead
CPU.
``PSCI_ENTRY`` refers to the time taken from entering the TF PSCI implementation
to the point the hardware enters the low power state (WFI). Referring to the TF
runtime instrumentation points, this corresponds to:
``(RT_INSTR_ENTER_HW_LOW_PWR - RT_INSTR_ENTER_PSCI)``.
``PSCI_EXIT`` refers to the time taken from the point the hardware exits the low
power state to exiting the TF PSCI implementation. This corresponds to:
``(RT_INSTR_EXIT_PSCI - RT_INSTR_EXIT_HW_LOW_PWR)``.
``CFLUSH_OVERHEAD`` refers to the part of ``PSCI_ENTRY`` taken to flush the
caches. This corresponds to: ``(RT_INSTR_EXIT_CFLUSH - RT_INSTR_ENTER_CFLUSH)``.
Note there is very little variance observed in the values given (~1us), although
the values for each CPU are sometimes interchanged, depending on the order in
which locks are acquired. Also, there is very little variance observed between
executing the tests sequentially in a single boot or rebooting between tests.
Given that runtime instrumentation using PMF is invasive, there is a small
(unquantified) overhead on the results. PMF uses the generic counter for
timestamps, which runs at 50MHz on Juno.
Results and Commentary
----------------------
``CPU_SUSPEND`` to deepest power level on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 27 | 20 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 114 | 86 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 202 | 58 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 375 | 29 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 20 | 22 | 6 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 290 | 18 | 206 |
+-------+---------------------+--------------------+--------------------------+
A large variance in ``PSCI_ENTRY`` and ``PSCI_EXIT`` times across CPUs is
observed due to TF PSCI lock contention. In the worst case, CPU 3 has to wait
for the 3 other CPUs in the cluster (0-2) to complete ``PSCI_ENTRY`` and release
the lock before proceeding.
The ``CFLUSH_OVERHEAD`` times for CPUs 3 and 5 are higher because they are the
last CPUs in their respective clusters to power down, therefore both the L1 and
L2 caches are flushed.
The ``CFLUSH_OVERHEAD`` time for CPU 5 is a lot larger than that for CPU 3
because the L2 cache size for the big cluster is lot larger (2MB) compared to
the little cluster (1MB).
``CPU_SUSPEND`` to power level 0 on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 116 | 14 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 204 | 14 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 287 | 13 | 8 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 376 | 13 | 9 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 29 | 15 | 7 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 21 | 15 | 8 |
+-------+---------------------+--------------------+--------------------------+
There is no lock contention in TF generic code at power level 0 but the large
variance in ``PSCI_ENTRY`` times across CPUs is due to lock contention in Juno
platform code. The platform lock is used to mediate access to a single SCP
communication channel. This is compounded by the SCP firmware waiting for each
AP CPU to enter WFI before making the channel available to other CPUs, which
effectively serializes the SCP power down commands from all CPUs.
On platforms with a more efficient CPU power down mechanism, it should be
possible to make the ``PSCI_ENTRY`` times smaller and consistent.
The ``PSCI_EXIT`` times are consistent across all CPUs because TF does not
require locks at power level 0.
The ``CFLUSH_OVERHEAD`` times for all CPUs are small and consistent since only
the cache associated with power level 0 is flushed (L1).
``CPU_SUSPEND`` to deepest power level on all CPUs in sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 114 | 20 | 94 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 195 | 22 | 180 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 21 | 17 | 6 |
+-------+---------------------+--------------------+--------------------------+
The ``CFLUSH_OVERHEAD`` times for lead CPU 4 and all CPUs in the non-lead cluster
are large because all other CPUs in the cluster are powered down during the
test. The ``CPU_SUSPEND`` call powers down to the cluster level, requiring a
flush of both L1 and L2 caches.
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
to the little cluster (1MB).
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are low because lead
CPU 4 continues to run while CPU 5 is suspended. Hence CPU 5 only powers down to
level 0, which only requires L1 cache flush.
``CPU_SUSPEND`` to power level 0 on all CPUs in sequence
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 21 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 22 | 14 | 5 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 17 | 14 | 6 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 18 | 15 | 6 |
+-------+---------------------+--------------------+--------------------------+
Here the times are small and consistent since there is no contention and it is
only necessary to flush the cache to power level 0 (L1). This is the best case
scenario.
The ``PSCI_ENTRY`` times for CPUs in the big cluster are slightly smaller than
for the CPUs in little cluster due to greater CPU performance.
The ``PSCI_EXIT`` times are generally lower than in the last test because the
cluster remains powered on throughout the test and there is less code to execute
on power on (for example, no need to enter CCI coherency)
``CPU_OFF`` on all non-lead CPUs in sequence then ``CPU_SUSPEND`` on lead CPU to deepest power level
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The test sequence here is as follows:
1. Call ``CPU_ON`` and ``CPU_OFF`` on each non-lead CPU in sequence.
2. Program wake up timer and suspend the lead CPU to the deepest power level.
3. Call ``CPU_ON`` on non-lead CPU to get the timestamps from each CPU.
+-------+---------------------+--------------------+--------------------------+
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
+=======+=====================+====================+==========================+
| 0 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 1 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 2 | 110 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 3 | 111 | 28 | 93 |
+-------+---------------------+--------------------+--------------------------+
| 4 | 195 | 22 | 181 |
+-------+---------------------+--------------------+--------------------------+
| 5 | 20 | 23 | 6 |
+-------+---------------------+--------------------+--------------------------+
The ``CFLUSH_OVERHEAD`` times for all little CPUs are large because all other
CPUs in that cluster are powerered down during the test. The ``CPU_OFF`` call
powers down to the cluster level, requiring a flush of both L1 and L2 caches.
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are small because
lead CPU 4 is running and CPU 5 only powers down to level 0, which only requires
an L1 cache flush.
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
to the little cluster (1MB).
The ``PSCI_EXIT`` times for CPUs in the big cluster are slightly smaller than
for CPUs in the little cluster due to greater CPU performance. These times
generally are greater than the ``PSCI_EXIT`` times in the ``CPU_SUSPEND`` tests
because there is more code to execute in the "on finisher" compared to the
"suspend finisher" (for example, GIC redistributor register programming).
``PSCI_VERSION`` on all CPUs in parallel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since very little code is associated with ``PSCI_VERSION``, this test
approximates the round trip latency for handling a fast SMC at EL3 in TF.
+-------+-------------------+
| CPU | TOTAL TIME (ns) |
+=======+===================+
| 0 | 3020 |
+-------+-------------------+
| 1 | 2940 |
+-------+-------------------+
| 2 | 2980 |
+-------+-------------------+
| 3 | 3060 |
+-------+-------------------+
| 4 | 520 |
+-------+-------------------+
| 5 | 720 |
+-------+-------------------+
The times for the big CPUs are less than the little CPUs due to greater CPU
performance.
We suspect the time for lead CPU 4 is shorter than CPU 5 due to subtle cache
effects, given that these measurements are at the nano-second level.
--------------
*Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.*
.. _Juno R1 platform: https://static.docs.arm.com/100122/0100/arm_versatile_express_juno_r1_development_platform_(v2m_juno_r1)_technical_reference_manual_100122_0100_05_en.pdf
.. _TF master as of 31/01/2017: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d

View File

@@ -0,0 +1,27 @@
Test Secure Payload (TSP) and Dispatcher (TSPD)
===============================================
Building the Test Secure Payload
--------------------------------
The TSP is coupled with a companion runtime service in the BL31 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
must be recompiled as well. For more information on SPs and SPDs, see the
:ref:`firmware_design_sel1_spd` section in the :ref:`Firmware Design`.
First clean the TF-A build directory to get rid of any previous BL31 binary.
Then to build the TSP image use:
.. code:: shell
make PLAT=<platform> SPD=tspd all
An additional boot loader binary file is created in the ``build`` directory:
::
build/<platform>/<build-type>/bl32.bin
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,142 @@
Allwinner ARMv8 SoCs
====================
Trusted Firmware-A (TF-A) implements the EL3 firmware layer for Allwinner
SoCs with ARMv8 cores. Only BL31 is used to provide proper EL3 setup and
PSCI runtime services.
Building TF-A
-------------
There is one build target per supported SoC:
+------+-------------------+
| SoC | TF-A build target |
+======+===================+
| A64 | sun50i_a64 |
+------+-------------------+
| H5 | sun50i_a64 |
+------+-------------------+
| H6 | sun50i_h6 |
+------+-------------------+
| H616 | sun50i_h616 |
+------+-------------------+
| H313 | sun50i_h616 |
+------+-------------------+
| R329 | sun50i_r329 |
+------+-------------------+
To build with the default settings for a particular SoC:
.. code:: shell
make CROSS_COMPILE=aarch64-linux-gnu- PLAT=<build target> DEBUG=1
So for instance to build for a board with the Allwinner A64 SoC::
make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sun50i_a64 DEBUG=1
Platform-specific build options
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The default build options should generate a working firmware image. There are
some build options that allow to fine-tune the firmware, or to disable support
for optional features.
- ``SUNXI_PSCI_USE_NATIVE`` : Support direct control of the CPU cores powerdown
and powerup sequence by BL31. This requires either support for a code snippet
to be loaded into the ARISC SCP (A64, H5), or the power sequence control
registers to be programmed directly (H6, H616). This supports only basic
control, like core on/off and system off/reset.
This option defaults to 1. If an active SCP supporting the SCPI protocol
is detected at runtime, this control scheme will be ignored, and SCPI
will be used instead, unless support has been explicitly disabled.
- ``SUNXI_PSCI_USE_SCPI`` : Support control of the CPU cores powerdown and
powerup sequence by talking to the SCP processor via the SCPI protocol.
This allows more advanced power saving techniques, like suspend to RAM.
This option defaults to 1 on SoCs that feature an SCP. If no SCP firmware
using the SCPI protocol is detected, the native sequence will be used
instead. If both native and SCPI methods are included, SCPI will be favoured
if SCP support is detected.
- ``SUNXI_SETUP_REGULATORS`` : On SoCs that typically ship with a PMIC
power management controller, BL31 tries to set up all needed power rails,
programming them to their respective voltages. That allows bootloader
software like U-Boot to ignore power control via the PMIC.
This setting defaults to 1. In some situations that enables too many
regulators, or some regulators need to be enabled in a very specific
sequence. To avoid problems with those boards, ``SUNXI_SETUP_REGULATORS``
can bet set to ``0`` on the build command line, to skip the PMIC setup
entirely. Any bootloader or OS would need to setup the PMIC on its own then.
Installation
------------
U-Boot's SPL acts as a loader, loading both BL31 and BL33 (typically U-Boot).
Loading is done from SD card, eMMC or SPI flash, also via an USB debug
interface (FEL).
After building bl31.bin, the binary must be fed to the U-Boot build system
to include it in the FIT image that the SPL loader will process.
bl31.bin can be either copied (or sym-linked) into U-Boot's root directory,
or the environment variable BL31 must contain the binary's path.
See the respective `U-Boot documentation`_ for more details.
.. _U-Boot documentation: https://gitlab.denx.de/u-boot/u-boot/-/blob/master/board/sunxi/README.sunxi64
Memory layout
-------------
A64, H5 and H6 SoCs
~~~~~~~~~~~~~~~~~~~
BL31 lives in SRAM A2, which is documented to be accessible from secure
world only. Since this SRAM region is very limited (48 KB), we take
several measures to reduce memory consumption. One of them is to confine
BL31 to only 28 bits of virtual address space, which reduces the number
of required page tables (each occupying 4KB of memory).
The mapping we use on those SoCs is as follows:
::
0 64K 16M 1GB 1G+160M physical address
+-+------+-+---+------+--...---+-------+----+------+----------
|B| |S|///| |//...///| |////| |
|R| SRAM |C|///| dev |//...///| (sec) |////| BL33 | DRAM ...
|O| |P|///| MMIO |//...///| DRAM |////| |
|M| | |///| |//...///| (32M) |////| |
+-+------+-+---+------+--...---+-------+----+------+----------
| | | | | | / / / /
| | | | | | / / / /
| | | | | | / / / /
| | | | | | / // /
| | | | | | / / /
+-+------+-+---+------+--+-------+------+
|B| |S|///| |//| | |
|R| SRAM |C|///| dev |//| sec | BL33 |
|O| |P|///| MMIO |//| DRAM | |
|M| | |///| |//| | |
+-+------+-+---+------+--+-------+------+
0 64K 16M 160M 192M 256M virtual address
H616 SoC
~~~~~~~~
The H616 lacks the secure SRAM region present on the other SoCs, also
lacks the "ARISC" management processor (SCP) we use. BL31 thus needs to
run from DRAM, which prevents our compressed virtual memory map described
above. Since running in DRAM also lifts the restriction of the limited
SRAM size, we use the normal 1:1 mapping with 32 bits worth of virtual
address space. So the virtual addresses used in BL31 match the physical
addresses as presented above.
Trusted OS dispatcher
---------------------
One can boot Trusted OS(OP-TEE OS, bl32 image) along side bl31 image on Allwinner A64.
In order to include the 'opteed' dispatcher in the image, pass 'SPD=opteed' on the command line
while compiling the bl31 image and make sure the loader (SPL) loads the Trusted OS binary to
the beginning of DRAM (0x40000000).

View File

@@ -0,0 +1,159 @@
Arm Development Platform Build Options
======================================
Arm Platform Build Options
--------------------------
- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
BL31 in TZC secured DRAM. If TSP is present, then setting this option also
sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
flag.
- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which
should match the frame used by the Non-Secure image (normally the Linux
kernel). Default is true (access to the frame is allowed).
- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
By default, Arm platforms use a watchdog to trigger a system reset in case
an error is encountered during the boot process (for example, when an image
could not be loaded or authenticated). The watchdog is enabled in the early
platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
Trusted Watchdog may be disabled at build time for testing or development
purposes.
- ``ARM_LINUX_KERNEL_AS_BL33``: The Linux kernel expects registers x0-x3 to
have specific values at boot. This boolean option allows the Trusted Firmware
to have a Linux kernel image as BL33 by preparing the registers to these
values before jumping to BL33. This option defaults to 0 (disabled). For
AArch64 ``RESET_TO_BL31`` and for AArch32 ``RESET_TO_SP_MIN`` must be 1 when
using it. If this option is set to 1, ``ARM_PRELOADED_DTB_BASE`` must be set
to the location of a device tree blob (DTB) already loaded in memory. The
Linux Image address must be specified using the ``PRELOADED_BL33_BASE``
option.
- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
is set, the functions which deal with MPIDR assume that the ``MT`` bit in
MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
this flag is 0. Note that this option is not used on FVP platforms.
- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
for the construction of composite state-ID in the power-state parameter.
The existing PSCI clients currently do not support this encoding of
State-ID yet. Hence this flag is used to configure whether to use the
recommended State-ID encoding or not. The default value of this flag is 0,
in which case the platform is configured to expect NULL in the State-ID
field of power-state parameter.
- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
for Arm platforms. Depending on the selected option, the proper private key
must be specified using the ``ROT_KEY`` option when building the Trusted
Firmware. This private key will be used by the certificate generation tool
to sign the BL2 and Trusted Key certificates. Available options for
``ARM_ROTPK_LOCATION`` are:
- ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
registers.
- ``devel_rsa`` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the RSA public key
``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY``
when creating the certificates.
- ``devel_ecdsa`` : return a development public key hash embedded in the BL1
and BL2 binaries. This hash has been obtained from the ECDSA public key
``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To
use this option, ``arm_rotprivk_ecdsa.pem`` must be specified as
``ROT_KEY`` when creating the certificates.
- ``ARM_ROTPK_HASH``: used when ``ARM_ROTPK_LOCATION=devel_*``. Specifies the
location of the ROTPK hash. Not expected to be a build option. This defaults to
``plat/arm/board/common/rotpk/*_sha256.bin`` depending on the specified algorithm.
Providing ``ROT_KEY`` enforces generation of the hash from the ``ROT_KEY`` and
overwrites the default hash file.
- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
- ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
- ``tdram`` : Trusted DRAM (if available)
- ``dram`` : Secure region in DRAM (default option when TBB is enabled,
configured by the TrustZone controller)
- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
of the translation tables library instead of version 2. It is set to 0 by
default, which selects version 2.
- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
platforms. If this option is specified, then the path to the CryptoCell
SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
- ``ARM_ETHOSN_NPU_DRIVER``: boolean option to enable a SiP service that can
configure an Arm Ethos-N NPU. To use this service the target platform's
``HW_CONFIG`` must include the device tree nodes for the NPU. Currently, only
the Arm Juno platform has this included in its ``HW_CONFIG`` and the platform
only loads the ``HW_CONFIG`` in AArch64 builds. Default is 0.
- ``ARM_SPMC_MANIFEST_DTS`` : path to an alternate manifest file used as the
SPMC Core manifest. Valid when ``SPD=spmd`` is selected.
- ``ARM_BL2_SP_LIST_DTS``: Path to DTS file snippet to override the hardcoded
SP nodes in tb_fw_config.
- ``OPTEE_SP_FW_CONFIG``: DTC build flag to include OP-TEE as SP in tb_fw_config
device tree. This flag is defined only when ``ARM_SPMC_MANIFEST_DTS`` manifest
file name contains pattern optee_sp.
- ``TS_SP_FW_CONFIG``: DTC build flag to include Trusted Services (Crypto and
internal-trusted-storage) as SP in tb_fw_config device tree.
- ``ARM_GPT_SUPPORT``: Enable GPT parser to get the entry address and length of
the various partitions present in the GPT image. This support is available
only for the BL2 component, and it is disabled by default.
The following diagram shows the view of the FIP partition inside the GPT
image:
|FIP in a GPT image|
For a better understanding of these options, the Arm development platform memory
map is explained in the :ref:`Firmware Design`.
.. _build_options_arm_css_platform:
Arm CSS Platform-Specific Build Options
---------------------------------------
- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
compatible change to the MTL protocol, used for AP/SCP communication.
TF-A no longer supports earlier SCP versions. If this option is set to 1
then TF-A will detect if an earlier version is in use. Default is 1.
- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP_BL2 and
SCP_BL2U to the FIP and FWU_FIP respectively, and enables them to be loaded
during boot. Default is 1.
- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
instead of SCPI/BOM driver for communicating with the SCP during power
management operations and for SCP RAM Firmware transfer. If this option
is set to 1, then SCMI/SDS drivers will be used. Default is 0.
- ``CSS_SGI_CHIP_COUNT``: Configures the number of chips on a SGI/RD platform
which supports multi-chip operation. If ``CSS_SGI_CHIP_COUNT`` is set to any
valid value greater than 1, the platform code performs required configuration
to support multi-chip operation.
- ``CSS_SGI_PLATFORM_VARIANT``: Selects the variant of a SGI/RD platform. A
particular SGI/RD platform may have multiple variants which may differ in
core count, cluster count or other peripherals. This build option is used
to select the appropriate platform variant for the build. The range of
valid values is platform specific.
--------------
.. |FIP in a GPT image| image:: ../../resources/diagrams/FIP_in_a_GPT_image.png
*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,97 @@
Arm FPGA Platform
=================
This platform supports FPGA images used internally in Arm Ltd., for
testing and bringup of new cores. With that focus, peripheral support is
minimal: there is no mass storage or display output, for instance. Also
this port ignores any power management features of the platform.
Some interconnect setup is done internally by the platform, so the TF-A code
just needs to setup UART and GIC.
The FPGA platform requires to pass on a DTB for the non-secure payload
(mostly Linux), so we let TF-A use information from the DTB for dynamic
configuration: the UART and GIC base addresses are read from there.
As a result this port is a fairly generic BL31-only port, which can serve
as a template for a minimal new (and possibly DT-based) platform port.
The aim of this port is to support as many FPGA images as possible with
a single build. Image specific data must be described in the DTB or should
be auto-detected at runtime.
As the number and topology layout of the CPU cores differs significantly
across the various images, this is detected at runtime by BL31.
The /cpus node in the DT will be added and filled accordingly, as long as
it does not exist already.
Platform-specific build options
-------------------------------
- ``SUPPORT_UNKNOWN_MPID`` : Boolean option to allow unknown MPIDR registers.
Normally TF-A panics if it encounters a MPID value not matched to its
internal list, but for new or experimental cores this creates a lot of
churn. With this option, the code will fall back to some basic CPU support
code (only architectural system registers, and no errata).
Default value of this flag is 1.
- ``PRELOADED_BL33_BASE`` : Physical address of the BL33 non-secure payload.
It must have been loaded into DRAM already, typically this is done by
the script that also loads BL31 and the DTB.
It defaults to 0x80080000, which is the traditional load address for an
arm64 Linux kernel.
- ``FPGA_PRELOADED_DTB_BASE`` : Physical address of the flattened device
tree blob (DTB). This DT will be used by TF-A for dynamic configuration,
so it must describe at least the UART and a GICv3 interrupt controller.
The DT gets amended by the code, to potentially add a command line and
fill the CPU topology nodes. It will also be passed on to BL33, by
putting its address into the x0 register before jumping to the entry
point (following the Linux kernel boot protocol).
It defaults to 0x80070000, which is 64KB before the BL33 load address.
- ``FPGA_PRELOADED_CMD_LINE`` : Physical address of the command line to
put into the devicetree blob. Due to the lack of a proper bootloader,
a command line can be put somewhere into memory, so that BL31 will
detect it and copy it into the DTB passed on to BL33.
To avoid random garbage, there needs to be a "CMD:" signature before the
actual command line.
Defaults to 0x1000, which is normally in the "ROM" space of the typical
FPGA image (which can be written by the FPGA payload uploader, but is
read-only to the CPU). The FPGA payload tool should be given a text file
containing the desired command line, prefixed by the "CMD:" signature.
Building the TF-A image
-----------------------
.. code:: shell
make PLAT=arm_fgpa DEBUG=1
This will use the default load addresses as described above. When those
addresses need to differ for a certain setup, they can be passed on the
make command line:
.. code:: shell
make PLAT=arm_fgpa DEBUG=1 PRELOADED_BL33_BASE=0x80200000 FPGA_PRELOADED_DTB_BASE=0x80180000 bl31
Running the TF-A image
----------------------
After building TF-A, the actual TF-A code will be located in ``bl31.bin`` in
the build directory.
Additionally there is a ``bl31.axf`` ELF file, which contains BL31, as well
as some simple ROM trampoline code (required by the Arm FPGA boot flow) and
a generic DTB to support most of the FPGA images. This can be simply handed
over to the FPGA payload uploader, which will take care of loading the
components at their respective load addresses. In addition to this file
you need at least a BL33 payload (typically a Linux kernel image), optionally
a Linux initrd image file and possibly a command line:
.. code:: shell
fpga-run ... -m bl31.axf -l auto -m Image -l 0x80080000 -m initrd.gz -l 0x84000000 -m cmdline.txt -l 0x1000
--------------
*Copyright (c) 2020, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,61 @@
Corstone1000 Platform
==========================
Some of the features of the Corstone1000 platform referenced in TF-A include:
- Cortex-A35 application processor (64-bit mode)
- Secure Enclave
- GIC-400
- Trusted Board Boot
Boot Sequence
-------------
The board boot relies on CoT (chain of trust). The trusted-firmware-a
BL2 is extracted from the FIP and verified by the Secure Enclave
processor. BL2 verification relies on the signature area at the
beginning of the BL2 image. This area is needed by the SecureEnclave
bootloader.
Then, the application processor is released from reset and starts by
executing BL2.
BL2 performs the actions described in the trusted-firmware-a TBB design
document.
Build Procedure (TF-A only)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Obtain AArch64 ELF bare-metal target `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
Set the CROSS_COMPILE environment variable to point to the toolchain folder.
- Build TF-A:
.. code:: shell
make LD=aarch64-none-elf-ld \
CC=aarch64-none-elf-gcc \
V=1 \
BUILD_BASE=<path to the build folder> \
PLAT=corstone1000 \
SPD=spmd \
SPMD_SPM_AT_SEL2=0 \
DEBUG=1 \
MBEDTLS_DIR=mbedtls \
OPENSSL_DIR=<path to openssl usr folder> \
RUNTIME_SYSROOT=<path to the sysroot> \
ARCH=aarch64 \
TARGET_PLATFORM=<fpga or fvp> \
ENABLE_PIE=1 \
BL2_AT_EL3=1 \
CREATE_KEYS=1 \
GENERATE_COT=1 \
TRUSTED_BOARD_BOOT=1 \
COT=tbbr \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
BL32=<path to optee binary> \
BL33=<path to u-boot binary> \
bl2
*Copyright (c) 2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,84 @@
Arm Versatile Express
=====================
Versatile Express (VE) family development platform provides an ultra fast
environment for prototyping Armv7 System-on-Chip designs. VE Fixed Virtual
Platforms (FVP) are simulations of Versatile Express boards. The platform in
Trusted Firmware-A has been verified with Arm Cortex-A5 and Cortex-A7 VE FVP's.
This platform is tested on and only expected to work with single core models.
Boot Sequence
-------------
BL1 --> BL2 --> BL32(sp_min) --> BL33(u-boot) --> Linux kernel
How to build
------------
Code Locations
~~~~~~~~~~~~~~
- `U-boot <https://git.linaro.org/landing-teams/working/arm/u-boot.git>`__
- `Trusted Firmware-A <https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git>`__
Build Procedure
~~~~~~~~~~~~~~~
- Obtain arm toolchain. The software stack has been verified with linaro 6.2
`arm-linux-gnueabihf <https://releases.linaro.org/components/toolchain/binaries/6.2-2016.11/arm-linux-gnueabihf/>`__.
Set the CROSS_COMPILE environment variable to point to the toolchain folder.
- Fetch and build u-boot.
Make the .config file using the command:
.. code:: shell
make ARCH=arm vexpress_aemv8a_aarch32_config
Make the u-boot binary for Cortex-A5 using the command:
.. code:: shell
make ARCH=arm SUPPORT_ARCH_TIMER=no
Make the u-boot binary for Cortex-A7 using the command:
.. code:: shell
make ARCH=arm
- Build TF-A:
The make command for Cortex-A5 is:
.. code:: shell
make PLAT=fvp_ve ARCH=aarch32 ARM_ARCH_MAJOR=7 ARM_CORTEX_A5=yes \
AARCH32_SP=sp_min FVP_HW_CONFIG_DTS=fdts/fvp-ve-Cortex-A5x1.dts \
ARM_XLAT_TABLES_LIB_V1=1 BL33=<path_to_u-boot.bin> all fip
The make command for Cortex-A7 is:
.. code:: shell
make PLAT=fvp_ve ARCH=aarch32 ARM_ARCH_MAJOR=7 ARM_CORTEX_A7=yes \
AARCH32_SP=sp_min FVP_HW_CONFIG_DTS=fdts/fvp-ve-Cortex-A7x1.dts \
BL33=<path_to_u-boot.bin> all fip
Run Procedure
~~~~~~~~~~~~~
The following model parameters should be used to boot Linux using the build of
Trusted Firmware-A made using the above make commands:
.. code:: shell
./<path_to_model> <path_to_bl1.elf> \
-C motherboard.flashloader1.fname=<path_to_fip.bin> \
--data cluster.cpu0=<path_to_zImage>@0x80080000 \
--data cluster.cpu0=<path_to_ramdisk>@0x84000000
--------------
*Copyright (c) 2019, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,652 @@
Arm Fixed Virtual Platforms (FVP)
=================================
Fixed Virtual Platform (FVP) Support
------------------------------------
This section lists the supported Arm |FVP| platforms. Please refer to the FVP
documentation for a detailed description of the model parameter options.
The latest version of the AArch64 build of TF-A has been tested on the following
Arm FVPs without shifted affinities, and that do not support threaded CPU cores
(64-bit host machine only).
.. note::
The FVP models used are Version 11.16 Build 16, unless otherwise stated.
- ``Foundation_Platform``
- ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502``
- ``FVP_Base_AEMv8A-AEMv8A`` (For certain configurations also uses 11.14/21)
- ``FVP_Base_AEMv8A-GIC600AE``
- ``FVP_Base_AEMvA`` (For certain configurations also uses 0.0/6684)
- ``FVP_Base_Cortex-A32x4`` (Version 11.12/38)
- ``FVP_Base_Cortex-A35x4``
- ``FVP_Base_Cortex-A53x4``
- ``FVP_Base_Cortex-A55x4``
- ``FVP_Base_Cortex-A55x4+Cortex-A75x4``
- ``FVP_Base_Cortex-A57x1-A53x1``
- ``FVP_Base_Cortex-A57x2-A53x4``
- ``FVP_Base_Cortex-A57x4-A53x4``
- ``FVP_Base_Cortex-A57x4``
- ``FVP_Base_Cortex-A65AEx8``
- ``FVP_Base_Cortex-A65x4``
- ``FVP_Base_Cortex-A710x4``
- ``FVP_Base_Cortex-A72x4-A53x4``
- ``FVP_Base_Cortex-A72x4``
- ``FVP_Base_Cortex-A73x4-A53x4``
- ``FVP_Base_Cortex-A73x4``
- ``FVP_Base_Cortex-A75x4``
- ``FVP_Base_Cortex-A76AEx4``
- ``FVP_Base_Cortex-A76AEx8``
- ``FVP_Base_Cortex-A76x4``
- ``FVP_Base_Cortex-A77x4``
- ``FVP_Base_Cortex-A78x4``
- ``FVP_Base_Neoverse-E1x1``
- ``FVP_Base_Neoverse-E1x2``
- ``FVP_Base_Neoverse-E1x4``
- ``FVP_Base_Neoverse-N1x4``
- ``FVP_Base_Neoverse-N2x4`` (Version 11.12 build 38)
- ``FVP_Base_Neoverse-V1x4``
- ``FVP_Base_RevC-2xAEMvA`` (For certain configurations also uses 0.0/6557)
- ``FVP_CSS_SGI-575`` (Version 11.15/26)
- ``FVP_Morello`` (Version 0.11/19)
- ``FVP_RD_E1_edge`` (Version 11.15/26)
- ``FVP_RD_N1_edge_dual`` (Version 11.15/26)
- ``FVP_RD_N1_edge`` (Version 11.15/26)
- ``FVP_RD_V1`` (Version 11.15/26)
- ``FVP_TC0``
- ``FVP_TC1``
The latest version of the AArch32 build of TF-A has been tested on the
following Arm FVPs without shifted affinities, and that do not support threaded
CPU cores (64-bit host machine only).
- ``FVP_Base_AEMvA``
- ``FVP_Base_AEMv8A-AEMv8A``
- ``FVP_Base_Cortex-A32x4``
.. note::
The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
is not compatible with legacy GIC configurations. Therefore this FVP does not
support these legacy GIC configurations.
The *Foundation* and *Base* FVPs can be downloaded free of charge. See the `Arm
FVP website`_. The Cortex-A models listed above are also available to download
from `Arm's website`_.
.. note::
The build numbers quoted above are those reported by launching the FVP
with the ``--version`` parameter.
.. note::
Linaro provides a ramdisk image in prebuilt FVP configurations and full
file systems that can be downloaded separately. To run an FVP with a virtio
file system image an additional FVP configuration option
``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
used.
.. note::
The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an ``unhandled argument`` error in this case.
.. note::
FVPs can be launched with ``--cadi-server`` option such that a
CADI-compliant debugger (for example, Arm DS-5) can connect to and control
its execution.
.. warning::
Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
the internal synchronisation timings changed compared to older versions of
the models. The models can be launched with ``-Q 100`` option if they are
required to match the run time characteristics of the older versions.
All the above platforms have been tested with `Linaro Release 20.01`_.
.. _build_options_arm_fvp_platform:
Arm FVP Platform Specific Build Options
---------------------------------------
- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
build the topology tree within TF-A. By default TF-A is configured for dual
cluster topology and this option can be used to override the default value.
- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
explained in the options below:
- ``FVP_CCI`` : The CCI driver is selected. This is the default
if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
- ``FVP_CCN`` : The CCN driver is selected. This is the default
if ``FVP_CLUSTER_COUNT`` > 2.
- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
a single cluster. This option defaults to 4.
- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
in the system. This option defaults to 1. Note that the build option
``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
- ``FVP_GICV2`` : The GICv2 only driver is selected
- ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
to DTB and packaged in FIP as the HW_CONFIG. See :ref:`Firmware Design` for
details on HW_CONFIG. By default, this is initialized to a sensible DTS
file in ``fdts/`` folder depending on other build options. But some cases,
like shifted affinity format for MPIDR, cannot be detected at build time
and this option is needed to specify the appropriate DTS file.
- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
FIP. See :ref:`Firmware Design` for details on HW_CONFIG. This option is
similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
HW_CONFIG blob instead of the DTS file. This option is useful to override
the default HW_CONFIG selected by the build system.
- ``FVP_GICR_REGION_PROTECTION``: Mark the redistributor pages of
inactive/fused CPU cores as read-only. The default value of this option
is ``0``, which means the redistributor pages of all CPU cores are marked
as read and write.
Booting Firmware Update images
------------------------------
When Firmware Update (FWU) is enabled there are at least 2 new images
that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
FWU FIP.
The additional fip images must be loaded with:
::
--data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
--data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
In the same way, the address ns_bl2u_base_address is the value of
NS_BL2U_BASE.
Booting an EL3 payload
----------------------
The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
the secondary CPUs holding pen to work properly. Unfortunately, its reset value
is undefined on the FVP platform and the FVP platform code doesn't clear it.
Therefore, one must modify the way the model is normally invoked in order to
clear the mailbox at start-up.
One way to do that is to create an 8-byte file containing all zero bytes using
the following command:
.. code:: shell
dd if=/dev/zero of=mailbox.dat bs=1 count=8
and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
using the following model parameters:
::
--data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
--data=mailbox.dat@0x04000000 [Foundation FVP]
To provide the model with the EL3 payload image, the following methods may be
used:
#. If the EL3 payload is able to execute in place, it may be programmed into
flash memory. On Base Cortex and AEM FVPs, the following model parameter
loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
used for the FIP):
::
-C bp.flashloader1.fname="<path-to>/<el3-payload>"
On Foundation FVP, there is no flash loader component and the EL3 payload
may be programmed anywhere in flash using method 3 below.
#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
command may be used to load the EL3 payload ELF image over JTAG:
::
load <path-to>/el3-payload.elf
#. The EL3 payload may be pre-loaded in volatile memory using the following
model parameters:
::
--data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
--data="<path-to>/<el3-payload>"@address [Foundation FVP]
The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
used when building TF-A.
Booting a preloaded kernel image (Base FVP)
-------------------------------------------
The following example uses a simplified boot flow by directly jumping from the
TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
useful if both the kernel and the device tree blob (DTB) are already present in
memory (like in FVP).
For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
address ``0x82000000``, the firmware can be built like this:
.. code:: shell
CROSS_COMPILE=aarch64-none-elf- \
make PLAT=fvp DEBUG=1 \
RESET_TO_BL31=1 \
ARM_LINUX_KERNEL_AS_BL33=1 \
PRELOADED_BL33_BASE=0x80080000 \
ARM_PRELOADED_DTB_BASE=0x82000000 \
all fip
Now, it is needed to modify the DTB so that the kernel knows the address of the
ramdisk. The following script generates a patched DTB from the provided one,
assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
script assumes that the user is using a ramdisk image prepared for U-Boot, like
the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
offset in ``INITRD_START`` has to be removed.
.. code:: bash
#!/bin/bash
# Path to the input DTB
KERNEL_DTB=<path-to>/<fdt>
# Path to the output DTB
PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
# Base address of the ramdisk
INITRD_BASE=0x84000000
# Path to the ramdisk
INITRD=<path-to>/<ramdisk.img>
# Skip uboot header (64 bytes)
INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
INITRD_SIZE=$(stat -Lc %s ${INITRD})
INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
CHOSEN_NODE=$(echo \
"/ { \
chosen { \
linux,initrd-start = <${INITRD_START}>; \
linux,initrd-end = <${INITRD_END}>; \
}; \
};")
echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
And the FVP binary can be run with the following command:
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04001000 \
-C cluster0.cpu1.RVBAR=0x04001000 \
-C cluster0.cpu2.RVBAR=0x04001000 \
-C cluster0.cpu3.RVBAR=0x04001000 \
-C cluster1.cpu0.RVBAR=0x04001000 \
-C cluster1.cpu1.RVBAR=0x04001000 \
-C cluster1.cpu2.RVBAR=0x04001000 \
-C cluster1.cpu3.RVBAR=0x04001000 \
--data cluster0.cpu0="<path-to>/bl31.bin"@0x04001000 \
--data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
Obtaining the Flattened Device Trees
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Depending on the FVP configuration and Linux configuration used, different
FDT files are required. FDT source files for the Foundation and Base FVPs can
be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
a subset of the Base FVP components. For example, the Foundation FVP lacks
CLCD and MMC support, and has only one CPU cluster.
.. note::
It is not recommended to use the FDTs built along the kernel because not
all FDTs are available from there.
The dynamic configuration capability is enabled in the firmware for FVPs.
This means that the firmware can authenticate and load the FDT if present in
FIP. A default FDT is packaged into FIP during the build based on
the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
or ``FVP_HW_CONFIG_DTS`` build options (refer to
:ref:`build_options_arm_fvp_platform` for details on the options).
- ``fvp-base-gicv2-psci.dts``
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration.
- ``fvp-base-gicv2-psci-aarch32.dts``
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration.
- ``fvp-base-gicv3-psci.dts``
For use with models such as the Cortex-A57-A53 Base FVPs without shifted
affinities and with Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-1t.dts``
For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
single threaded CPUs, Base memory map configuration and Linux GICv3 support.
- ``fvp-base-gicv3-psci-dynamiq.dts``
For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
single cluster, single threaded CPUs, Base memory map configuration and Linux
GICv3 support.
- ``fvp-base-gicv3-psci-aarch32.dts``
For use with models such as the Cortex-A32 Base FVPs without shifted
affinities and running Linux in AArch32 state with Base memory map
configuration and Linux GICv3 support.
- ``fvp-foundation-gicv2-psci.dts``
For use with Foundation FVP with Base memory map configuration.
- ``fvp-foundation-gicv3-psci.dts``
(Default) For use with Foundation FVP with Base memory map configuration
and Linux GICv3 support.
Running on the Foundation FVP with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``Foundation_Platform`` parameters should be used to boot Linux with
4 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/Foundation_Platform \
--cores=4 \
--arm-v8.0 \
--secure-memory \
--visualization \
--gicv3 \
--data="<path-to>/<bl1-binary>"@0x0 \
--data="<path-to>/<FIP-binary>"@0x08000000 \
--data="<path-to>/<kernel-binary>"@0x80080000 \
--data="<path-to>/<ramdisk-binary>"@0x84000000
Notes:
- BL1 is loaded at the start of the Trusted ROM.
- The Firmware Image Package is loaded at the start of NOR FLASH0.
- The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address
is specified via the ``hw_config_addr`` property in `TB_FW_CONFIG for FVP`_.
- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
and enable the GICv3 device in the model. Note that without this option,
the Foundation FVP defaults to legacy (Versatile Express) memory map which
is not supported by TF-A.
- In order for TF-A to run correctly on the Foundation FVP, the architecture
versions must match. The Foundation FVP defaults to the highest v8.x
version it supports but the default build for TF-A is for v8.0. To avoid
issues either start the Foundation FVP to use v8.0 architecture using the
``--arm-v8.0`` option, or build TF-A with an appropriate value for
``ARM_ARCH_MINOR``.
Running on the AEMv8 Base FVP with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
.. note::
The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires
a specific DTS for all the CPUs to be loaded.
Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
-C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the AEMv8 Base FVP with reset to BL31 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_RevC-2xAEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBAR=0x04010000 \
-C cluster0.cpu1.RVBAR=0x04010000 \
-C cluster0.cpu2.RVBAR=0x04010000 \
-C cluster0.cpu3.RVBAR=0x04010000 \
-C cluster1.cpu0.RVBAR=0x04010000 \
-C cluster1.cpu1.RVBAR=0x04010000 \
-C cluster1.cpu2.RVBAR=0x04010000 \
-C cluster1.cpu3.RVBAR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Notes:
- Position Independent Executable (PIE) support is enabled in this
config allowing BL31 to be loaded at any valid address for execution.
- Since a FIP is not loaded when using BL31 as reset entrypoint, the
``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
parameter is needed to load the individual bootloader images in memory.
BL32 image is only needed if BL31 has been built to expect a Secure-EL1
Payload. For the same reason, the FDT needs to be compiled from the DT source
and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000``
parameter.
- The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
specific DTS for all the CPUs to be loaded.
- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
X and Y are the cluster and CPU numbers respectively, is used to set the
reset vector for each core.
- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
changing the value of
``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
``BL32_BASE``.
Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
with 8 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_AEMv8A-AEMv8A \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cluster0.NUM_CORES=4 \
-C cluster1.NUM_CORES=4 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.CONFIG64=0 \
-C cluster0.cpu1.CONFIG64=0 \
-C cluster0.cpu2.CONFIG64=0 \
-C cluster0.cpu3.CONFIG64=0 \
-C cluster1.cpu0.CONFIG64=0 \
-C cluster1.cpu1.CONFIG64=0 \
-C cluster1.cpu2.CONFIG64=0 \
-C cluster1.cpu3.CONFIG64=0 \
-C cluster0.cpu0.RVBAR=0x04002000 \
-C cluster0.cpu1.RVBAR=0x04002000 \
-C cluster0.cpu2.RVBAR=0x04002000 \
-C cluster0.cpu3.RVBAR=0x04002000 \
-C cluster1.cpu0.RVBAR=0x04002000 \
-C cluster1.cpu1.RVBAR=0x04002000 \
-C cluster1.cpu2.RVBAR=0x04002000 \
-C cluster1.cpu3.RVBAR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
.. note::
Position Independent Executable (PIE) support is enabled in this
config allowing SP_MIN to be loaded at any valid address for execution.
Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
boot Linux with 8 CPUs using the AArch64 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A57x4-A53x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04010000 \
-C cluster0.cpu1.RVBARADDR=0x04010000 \
-C cluster0.cpu2.RVBARADDR=0x04010000 \
-C cluster0.cpu3.RVBARADDR=0x04010000 \
-C cluster1.cpu0.RVBARADDR=0x04010000 \
-C cluster1.cpu1.RVBARADDR=0x04010000 \
-C cluster1.cpu2.RVBARADDR=0x04010000 \
-C cluster1.cpu3.RVBARADDR=0x04010000 \
--data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
boot Linux with 4 CPUs using the AArch32 build of TF-A.
.. code:: shell
<path-to>/FVP_Base_Cortex-A32x4 \
-C pctl.startup=0.0.0.0 \
-C bp.secure_memory=1 \
-C bp.tzc_400.diagnostics=1 \
-C cache_state_modelled=1 \
-C cluster0.cpu0.RVBARADDR=0x04002000 \
-C cluster0.cpu1.RVBARADDR=0x04002000 \
-C cluster0.cpu2.RVBARADDR=0x04002000 \
-C cluster0.cpu3.RVBARADDR=0x04002000 \
--data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
--data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
--data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
--data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
--------------
*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*
.. _TB_FW_CONFIG for FVP: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/plat/arm/board/fvp/fdts/fvp_tb_fw_config.dts
.. _Arm's website: `FVP models`_
.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
.. _Linaro Release 20.01: http://releases.linaro.org/members/arm/platforms/20.01
.. _Arm FVP website: https://developer.arm.com/products/system-design/fixed-virtual-platforms

View File

@@ -0,0 +1,46 @@
ARM V8-R64 Fixed Virtual Platform (FVP)
=======================================
Some of the features of Armv8-R AArch64 FVP platform referenced in Trusted
Boot R-class include:
- Secure World Support Only
- EL2 as Maximum EL support (No EL3)
- MPU Support only at EL2
- MPU or MMU Support at EL0/EL1
- AArch64 Support Only
- Trusted Board Boot
Further information on v8-R64 FVP is available at `info <https://developer.arm.com/documentation/ddi0600/latest/>`_
Boot Sequence
-------------
BL1 > BL33
The execution begins from BL1 which loads the BL33 image, a boot-wrapped (bootloader + Operating System)
Operating System, from FIP to DRAM.
Build Procedure
~~~~~~~~~~~~~~~
- Obtain arm `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
Set the CROSS_COMPILE environment variable to point to the toolchain folder.
- Build TF-A:
.. code:: shell
make PLAT=fvp_r BL33=<path_to_os.bin> all fip
Enable TBBR by adding the following options to the make command:
.. code:: shell
MBEDTLS_DIR=<path_to_mbedtls_directory> \
TRUSTED_BOARD_BOOT=1 \
GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem
*Copyright (c) 2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,24 @@
Arm Development Platforms
=========================
.. toctree::
:maxdepth: 1
:caption: Contents
juno/index
fvp/index
fvp_r/index
fvp-ve/index
tc/index
arm_fpga/index
arm-build-options
morello/index
corstone1000/index
This chapter holds documentation related to Arm's development platforms,
including both software models (FVPs) and hardware development boards
such as Juno.
--------------
*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,253 @@
Arm Juno Development Platform
=============================
Platform-specific build options
-------------------------------
- ``JUNO_TZMP1`` : Boolean option to configure Juno to be used for TrustZone
Media Protection (TZ-MP1). Default value of this flag is 0.
Running software on Juno
------------------------
This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
To run TF-A on Juno, you need to first prepare an SD card with Juno software
stack that includes TF-A. This version of TF-A is tested with pre-built
`Linaro release software stack`_ version 20.01. You can alternatively
build the software stack yourself by following the
`Juno platform software user guide`_. Once you prepare the software stack
on an SD card, you can replace the ``bl1.bin`` and ``fip.bin``
binaries in the ``SOFTWARE/`` directory with custom built TF-A binaries.
Preparing TF-A images
---------------------
This section provides Juno and FVP specific instructions to build Trusted
Firmware, obtain the additional required firmware, and pack it all together in
a single FIP binary. It assumes that a Linaro release software stack has been
installed.
.. note::
Pre-built binaries for AArch32 are available from Linaro Release 16.12
onwards. Before that release, pre-built binaries are only available for
AArch64.
.. warning::
Follow the full instructions for one platform before switching to a
different one. Mixing instructions for different platforms may result in
corrupted binaries.
.. warning::
The uboot image downloaded by the Linaro workspace script does not always
match the uboot image packaged as BL33 in the corresponding fip file. It is
recommended to use the version that is packaged in the fip file using the
instructions below.
.. note::
For the FVP, the kernel FDT is packaged in FIP during build and loaded
by the firmware at runtime.
#. Clean the working directory
.. code:: shell
make realclean
#. Obtain SCP binaries (Juno)
This version of TF-A is tested with SCP version 2.8.0 on Juno. You can
download pre-built SCP binaries (``scp_bl1.bin`` and ``scp_bl2.bin``)
from `TF-A downloads page`_. Alternatively, you can `build
the binaries from source`_.
#. Obtain BL33 (all platforms)
Use the fiptool to extract the BL33 image from the FIP
package included in the Linaro release:
.. code:: shell
# Build the fiptool
make [DEBUG=1] [V=1] fiptool
# Unpack firmware images from Linaro FIP
./tools/fiptool/fiptool unpack <path-to-linaro-release>/[SOFTWARE]/fip.bin
The unpack operation will result in a set of binary images extracted to the
current working directory. BL33 corresponds to ``nt-fw.bin``.
.. note::
The fiptool will complain if the images to be unpacked already
exist in the current directory. If that is the case, either delete those
files or use the ``--force`` option to overwrite.
.. note::
For AArch32, the instructions below assume that nt-fw.bin is a
normal world boot loader that supports AArch32.
#. Build TF-A images and create a new FIP for FVP
.. code:: shell
# AArch64
make PLAT=fvp BL33=nt-fw.bin all fip
# AArch32
make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
#. Build TF-A images and create a new FIP for Juno
For AArch64:
Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
as a build parameter.
.. code:: shell
make PLAT=juno BL33=nt-fw.bin SCP_BL2=scp_bl2.bin all fip
For AArch32:
Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
separately for AArch32.
- Before building BL32, the environment variable ``CROSS_COMPILE`` must point
to the AArch32 Linaro cross compiler.
.. code:: shell
export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
- Build BL32 in AArch32.
.. code:: shell
make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
- Save ``bl32.bin`` to a temporary location and clean the build products.
::
cp <path-to-build>/bl32.bin <path-to-temporary>
make realclean
- Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
must point to the AArch64 Linaro cross compiler.
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
- The following parameters should be used to build BL1 and BL2 in AArch64
and point to the BL32 file.
.. code:: shell
make ARCH=aarch64 PLAT=juno JUNO_AARCH32_EL3_RUNTIME=1 \
BL33=nt-fw.bin SCP_BL2=scp_bl2.bin \
BL32=<path-to-temporary>/bl32.bin all fip
The resulting BL1 and FIP images may be found in:
::
# Juno
./build/juno/release/bl1.bin
./build/juno/release/fip.bin
# FVP
./build/fvp/release/bl1.bin
./build/fvp/release/fip.bin
After building TF-A, the files ``bl1.bin``, ``fip.bin`` and ``scp_bl1.bin``
need to be copied to the ``SOFTWARE/`` directory on the Juno SD card.
Booting Firmware Update images
------------------------------
The new images must be programmed in flash memory by adding
an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
on the Juno SD card (where ``x`` depends on the revision of the Juno board).
Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
programming" for more information. User should ensure these do not
overlap with any other entries in the file.
::
NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
NOR10LOAD: 00000000 ;Image Load Address
NOR10ENTRY: 00000000 ;Image Entry Point
NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
NOR11LOAD: 00000000 ;Image Load Address
The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
In the same way, the address ns_bl2u_base_address is the value of
NS_BL2U_BASE - 0x8000000.
.. _plat_juno_booting_el3_payload:
Booting an EL3 payload
----------------------
If the EL3 payload is able to execute in place, it may be programmed in flash
memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
on the Juno SD card (where ``x`` depends on the revision of the Juno board).
Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
programming" for more information.
Alternatively, the same DS-5 command mentioned in the FVP section above can
be used to load the EL3 payload's ELF file over JTAG on Juno.
For more information on EL3 payloads in general, see
:ref:`alt_boot_flows_el3_payload`.
Booting a preloaded kernel image
--------------------------------
The Trusted Firmware must be compiled in a similar way as for FVP explained
above. The process to load binaries to memory is the one explained in
`plat_juno_booting_el3_payload`_.
Testing System Suspend
----------------------
The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
on Juno, at the linux shell prompt, issue the following command:
.. code:: shell
echo +10 > /sys/class/rtc/rtc0/wakealarm
echo -n mem > /sys/power/state
The Juno board should suspend to RAM and then wakeup after 10 seconds due to
wakeup interrupt from RTC.
Additional Resources
--------------------
Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
software information. Please also refer to the `Juno Getting Started Guide`_ to
get more detailed information about the Juno Arm development platform and how to
configure it.
--------------
*Copyright (c) 2019-2021, Arm Limited. All rights reserved.*
.. _Linaro release software stack: http://releases.linaro.org/members/arm/platforms/
.. _Juno platform software user guide: https://git.linaro.org/landing-teams/working/arm/arm-reference-platforms.git/about/docs/juno/user-guide.rst
.. _TF-A downloads page: https://downloads.trustedfirmware.org/tf-a/css_scp_2.8.0/juno/
.. _build the binaries from source: https://github.com/ARM-software/SCP-firmware/blob/master/user_guide.md#scp-firmware-user-guide
.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf
.. _Juno Arm Development Platform: http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php

View File

@@ -0,0 +1,33 @@
Morello Platform
================
Morello is an ARMv8-A platform that implements the capability architecture extension.
The platform port present at `site <https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git>`_
provides ARMv8-A architecture enablement.
Capability architecture specific changes will be added `here <https://git.morello-project.org/morello>`_
Further information on Morello Platform is available at `info <https://developer.arm.com/architectures/cpu-architecture/a-profile/morello>`_
Boot Sequence
-------------
The execution begins from SCP_BL1 which loads the SCP_BL2 and starts its
execution. SCP_BL2 powers up the AP which starts execution at AP_BL31. The AP
then continues executing and hands off execution to Non-secure world (UEFI).
Build Procedure (TF-A only)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Obtain arm `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
Set the CROSS_COMPILE environment variable to point to the toolchain folder.
- Build TF-A:
.. code:: shell
export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-
make PLAT=morello all
*Copyright (c) 2020, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,56 @@
TC Total Compute Platform
==========================
Some of the features of TC platform referenced in TF-A include:
- A `System Control Processor <https://github.com/ARM-software/SCP-firmware>`_
to abstract power and system management tasks away from application
processors. The RAM firmware for SCP is included in the TF-A FIP and is
loaded by AP BL2 from FIP in flash to SRAM for copying by SCP (SCP has access
to AP SRAM).
- GICv4
- Trusted Board Boot
- SCMI
- MHUv2
Currently, the main difference between TC0 (TARGET_PLATFORM=0) and TC1
(TARGET_PLATFORM=1) platforms w.r.t to TF-A is the CPUs supported. TC0 has
support for Cortex A510, Cortex A710 and Cortex X2, while TC1 has support for
Cortex A510, Cortex Makalu and Cortex Makalu ELP Arm CPUs.
Boot Sequence
-------------
The execution begins from SCP_BL1. SCP_BL1 powers up the AP which starts
executing AP_BL1 and then executes AP_BL2 which loads the SCP_BL2 from
FIP to SRAM. The SCP has access to AP SRAM. The address and size of SCP_BL2
is communicated to SCP using SDS. SCP copies SCP_BL2 from SRAM to its own
RAM and starts executing it. The AP then continues executing the rest of TF-A
stages including BL31 runtime stage and hands off executing to
Non-secure world (u-boot).
Build Procedure (TF-A only)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Obtain arm `toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads>`_.
Set the CROSS_COMPILE environment variable to point to the toolchain folder.
- Build TF-A:
.. code:: shell
make PLAT=tc BL33=<path_to_uboot.bin> \
SCP_BL2=<path_to_scp_ramfw.bin> TARGET_PLATFORM={0,1} all fip
Enable TBBR by adding the following options to the make command:
.. code:: shell
MBEDTLS_DIR=<path_to_mbedtls_directory> \
TRUSTED_BOARD_BOOT=1 \
GENERATE_COT=1 \
ARM_ROTPK_LOCATION=devel_rsa \
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem
*Copyright (c) 2020-2021, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,43 @@
Broadcom Stingray
=================
Description
-----------
Broadcom's Stingray(BCM958742t) is a multi-core processor with 8 Cortex-A72 cores.
Trusted Firmware-A (TF-A) is used to implement secure world firmware, supporting
BL2 and BL31 for Broadcom Stingray SoCs.
On Poweron, Boot ROM will load bl2 image and Bl2 will initialize the hardware,
then loads bl31 and bl33 into DDR and boots to bl33.
Boot Sequence
-------------
Bootrom --> TF-A BL2 --> TF-A BL31 --> BL33(u-boot)
Code Locations
~~~~~~~~~~~~~~
- Trusted Firmware-A:
`link <https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/>`__
How to build
------------
Build Procedure
~~~~~~~~~~~~~~~
- Prepare AARCH64 toolchain.
- Build u-boot first, and get the binary image: u-boot.bin,
- Build TF-A
Build fip:
.. code:: shell
make CROSS_COMPILE=aarch64-linux-gnu- PLAT=stingray BOARD_CFG=bcm958742t all fip BL33=u-boot.bin
Deploy TF-A Images
~~~~~~~~~~~~~~~~~~
The u-boot will be upstreamed soon, this doc will be updated once they are ready, and the link will be posted.

View File

@@ -0,0 +1,20 @@
Deprecated platforms
====================
Process of deprecating a platform
---------------------------------
Platform can be deprecated and its source can be kept in repository for a cooling
off period before deleting it or it can be deleted straight away. For later types
Deprecated/Deleted version would be same.
List of deprecated platforms
----------------------------
+----------------+----------------+--------------------+--------------------+
| Platform | Vendor | Deprecated version | Deleted version |
+================+================+====================+====================+
| sgm775 | Arm | 2.5 | 2.7 |
+----------------+----------------+--------------------+--------------------+
| mt6795 | MTK | 2.5 | 2.7 |
+----------------+----------------+--------------------+--------------------+

View File

@@ -0,0 +1,155 @@
HiKey
=====
HiKey is one of 96boards. Hisilicon Kirin6220 processor is installed on HiKey.
More information are listed in `link`_.
How to build
------------
Code Locations
~~~~~~~~~~~~~~
- Trusted Firmware-A:
`link <https://github.com/ARM-software/arm-trusted-firmware>`__
- OP-TEE
`link <https://github.com/OP-TEE/optee_os>`__
- edk2:
`link <https://github.com/96boards-hikey/edk2/tree/testing/hikey960_v2.5>`__
- OpenPlatformPkg:
`link <https://github.com/96boards-hikey/OpenPlatformPkg/tree/testing/hikey960_v1.3.4>`__
- l-loader:
`link <https://github.com/96boards-hikey/l-loader/tree/testing/hikey960_v1.2>`__
- atf-fastboot:
`link <https://github.com/96boards-hikey/atf-fastboot/tree/master>`__
Build Procedure
~~~~~~~~~~~~~~~
- Fetch all the above repositories into local host.
Make all the repositories in the same ${BUILD\_PATH}.
.. code:: shell
git clone https://github.com/ARM-software/arm-trusted-firmware -b integration
git clone https://github.com/OP-TEE/optee_os
git clone https://github.com/96boards-hikey/edk2 -b testing/hikey960_v2.5
git clone https://github.com/96boards-hikey/OpenPlatformPkg -b testing/hikey960_v1.3.4
git clone https://github.com/96boards-hikey/l-loader -b testing/hikey960_v1.2
git clone https://github.com/96boards-hikey/atf-fastboot
- Create the symbol link to OpenPlatformPkg in edk2.
.. code:: shell
$cd ${BUILD_PATH}/edk2
$ln -sf ../OpenPlatformPkg
- Prepare AARCH64 && AARCH32 toolchain. Prepare python.
- If your hikey hardware is built by CircuitCo, update *OpenPlatformPkg/Platforms/Hisilicon/HiKey/HiKey.dsc* first. *(optional)*
console on hikey.**
.. code:: shell
DEFINE SERIAL_BASE=0xF8015000
If your hikey hardware is built by LeMaker, nothing to do.
- Build it as debug mode. Create your own build script file or you could refer to **build\_uefi.sh** in l-loader git repository.
.. code:: shell
cd {BUILD_PATH}/arm-trusted-firmware
sh ../l-loader/build_uefi.sh hikey
- Generate l-loader.bin and partition table for aosp. The eMMC capacity is either 8GB or 4GB. Just change "aosp-8g" to "linux-8g" for debian.
.. code:: shell
cd ${BUILD_PATH}/l-loader
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl1.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl2.bin
ln -sf ${BUILD_PATH}/atf-fastboot/build/hikey/${FASTBOOT_BUILD_OPTION}/bl1.bin fastboot.bin
make hikey PTABLE_LST=aosp-8g
Setup Console
-------------
- Install ser2net. Use telnet as the console since UEFI fails to display Boot Manager GUI in minicom. **If you don't need Boot Manager GUI, just ignore this section.**
.. code:: shell
$sudo apt-get install ser2net
- Configure ser2net.
.. code:: shell
$sudo vi /etc/ser2net.conf
Append one line for serial-over-USB in below.
*#ser2net.conf*
.. code:: shell
2004:telnet:0:/dev/ttyUSB0:115200 8DATABITS NONE 1STOPBIT banner
- Start ser2net
.. code:: shell
$sudo killall ser2net
$sudo ser2net -u
- Open the console.
.. code:: shell
$telnet localhost 2004
And you could open the console remotely, too.
Flash images in recovery mode
-----------------------------
- Make sure Pin3-Pin4 on J15 are connected for recovery mode. Then power on HiKey.
- Remove the modemmanager package. This package may cause the idt tool failure.
.. code:: shell
$sudo apt-get purge modemmanager
- Run the command to download recovery.bin into HiKey.
.. code:: shell
$sudo python hisi-idt.py -d /dev/ttyUSB1 --img1 recovery.bin
- Update images. All aosp or debian images could be fetched from `link <http://releases.linaro.org/96boards/>`__.
.. code:: shell
$sudo fastboot flash ptable prm_ptable.img
$sudo fastboot flash loader l-loader.bin
$sudo fastboot flash fastboot fip.bin
$sudo fastboot flash boot boot.img
$sudo fastboot flash cache cache.img
$sudo fastboot flash system system.img
$sudo fastboot flash userdata userdata.img
Boot UEFI in normal mode
------------------------
- Make sure Pin3-Pin4 on J15 are open for normal boot mode. Then power on HiKey.
- Reference `link <https://github.com/96boards-hikey/tools-images-hikey960/blob/master/build-from-source/README-ATF-UEFI-build-from-source.md>`__
.. _link: https://www.96boards.org/documentation/consumer/hikey/

View File

@@ -0,0 +1,180 @@
HiKey960
========
HiKey960 is one of 96boards. Hisilicon Hi3660 processor is installed on HiKey960.
More information are listed in `link`_.
How to build
------------
Code Locations
~~~~~~~~~~~~~~
- Trusted Firmware-A:
`link <https://github.com/ARM-software/arm-trusted-firmware>`__
- OP-TEE:
`link <https://github.com/OP-TEE/optee_os>`__
- edk2:
`link <https://github.com/96boards-hikey/edk2/tree/testing/hikey960_v2.5>`__
- OpenPlatformPkg:
`link <https://github.com/96boards-hikey/OpenPlatformPkg/tree/testing/hikey960_v1.3.4>`__
- l-loader:
`link <https://github.com/96boards-hikey/l-loader/tree/testing/hikey960_v1.2>`__
Build Procedure
~~~~~~~~~~~~~~~
- Fetch all the above 5 repositories into local host.
Make all the repositories in the same ${BUILD\_PATH}.
.. code:: shell
git clone https://github.com/ARM-software/arm-trusted-firmware -b integration
git clone https://github.com/OP-TEE/optee_os
git clone https://github.com/96boards-hikey/edk2 -b testing/hikey960_v2.5
git clone https://github.com/96boards-hikey/OpenPlatformPkg -b testing/hikey960_v1.3.4
git clone https://github.com/96boards-hikey/l-loader -b testing/hikey960_v1.2
- Create the symbol link to OpenPlatformPkg in edk2.
.. code:: shell
$cd ${BUILD_PATH}/edk2
$ln -sf ../OpenPlatformPkg
- Prepare AARCH64 toolchain.
- If your hikey960 hardware is v1, update *OpenPlatformPkg/Platforms/Hisilicon/HiKey960/HiKey960.dsc* first. *(optional)*
.. code:: shell
DEFINE SERIAL_BASE=0xFDF05000
If your hikey960 hardware is v2 or newer, nothing to do.
- Build it as debug mode. Create script file for build.
.. code:: shell
cd {BUILD_PATH}/arm-trusted-firmware
sh ../l-loader/build_uefi.sh hikey960
- Generate l-loader.bin and partition table.
*Make sure that you're using the sgdisk in the l-loader directory.*
.. code:: shell
cd ${BUILD_PATH}/l-loader
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl1.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/bl2.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/fip.bin
ln -sf ${EDK2_OUTPUT_DIR}/FV/BL33_AP_UEFI.fd
make hikey960
Setup Console
-------------
- Install ser2net. Use telnet as the console since UEFI will output window
that fails to display in minicom.
.. code:: shell
$sudo apt-get install ser2net
- Configure ser2net.
.. code:: shell
$sudo vi /etc/ser2net.conf
Append one line for serial-over-USB in *#ser2net.conf*
::
2004:telnet:0:/dev/ttyUSB0:115200 8DATABITS NONE 1STOPBIT banner
- Start ser2net
.. code:: shell
$sudo killall ser2net
$sudo ser2net -u
- Open the console.
.. code:: shell
$telnet localhost 2004
And you could open the console remotely, too.
Boot UEFI in recovery mode
--------------------------
- Fetch that are used in recovery mode. The code location is in below.
`link <https://github.com/96boards-hikey/tools-images-hikey960>`__
- Prepare recovery binary.
.. code:: shell
$cd tools-images-hikey960
$ln -sf ${BUILD_PATH}/l-loader/l-loader.bin
$ln -sf ${BUILD_PATH}/l-loader/fip.bin
$ln -sf ${BUILD_PATH}/l-loader/recovery.bin
- Prepare config file.
.. code:: shell
$vi config
# The content of config file
./sec_usb_xloader.img 0x00020000
./sec_uce_boot.img 0x6A908000
./recovery.bin 0x1AC00000
- Remove the modemmanager package. This package may causes hikey\_idt tool failure.
.. code:: shell
$sudo apt-get purge modemmanager
- Run the command to download recovery.bin into HiKey960.
.. code:: shell
$sudo ./hikey_idt -c config -p /dev/ttyUSB1
- UEFI running in recovery mode.
When prompt '.' is displayed on console, press hotkey 'f' in keyboard. Then Android fastboot app is running.
The timeout of prompt '.' is 10 seconds.
- Update images.
.. code:: shell
$sudo fastboot flash ptable prm_ptable.img
$sudo fastboot flash xloader sec_xloader.img
$sudo fastboot flash fastboot l-loader.bin
$sudo fastboot flash fip fip.bin
$sudo fastboot flash boot boot.img
$sudo fastboot flash cache cache.img
$sudo fastboot flash system system.img
$sudo fastboot flash userdata userdata.img
- Notice: UEFI could also boot kernel in recovery mode, but BL31 isn't loaded in
recovery mode.
Boot UEFI in normal mode
------------------------
- Make sure "Boot Mode" switch is OFF for normal boot mode. Then power on HiKey960.
- Reference `link <https://github.com/96boards-hikey/tools-images-hikey960/blob/master/build-from-source/README-ATF-UEFI-build-from-source.md>`__
.. _link: https://www.96boards.org/documentation/consumer/hikey/hikey960

View File

@@ -0,0 +1,58 @@
NXP i.MX 8 Series
=================
The i.MX 8 series of applications processors is a feature- and
performance-scalable multi-core platform that includes single-,
dual-, and quad-core families based on the Arm® Cortex®
architecture—including combined Cortex-A72 + Cortex-A53,
Cortex-A35, and Cortex-M4 based solutions for advanced graphics,
imaging, machine vision, audio, voice, video, and safety-critical
applications.
The i.MX8QM is with 2 Cortex-A72 ARM core, 4 Cortex-A53 ARM core
and 1 Cortex-M4 system controller.
The i.MX8QX is with 4 Cortex-A35 ARM core and 1 Cortex-M4 system
controller.
The System Controller (SC) represents the evolution of centralized
control for system-level resources on i.MX8. The heart of the system
controller is a Cortex-M4 that executes system controller firmware.
Boot Sequence
-------------
Bootrom --> BL31 --> BL33(u-boot) --> Linux kernel
How to build
------------
Build Procedure
~~~~~~~~~~~~~~~
- Prepare AARCH64 toolchain.
- Build System Controller Firmware and u-boot firstly, and get binary images: scfw_tcm.bin and u-boot.bin
- Build TF-A
Build bl31:
.. code:: shell
CROSS_COMPILE=aarch64-linux-gnu- make PLAT=<Target_SoC> bl31
Target_SoC should be "imx8qm" for i.MX8QM SoC.
Target_SoC should be "imx8qx" for i.MX8QX SoC.
Deploy TF-A Images
~~~~~~~~~~~~~~~~~~
TF-A binary(bl31.bin), scfw_tcm.bin and u-boot.bin are combined together
to generate a binary file called flash.bin, the imx-mkimage tool is used
to generate flash.bin, and flash.bin needs to be flashed into SD card
with certain offset for BOOT ROM. The system controller firmware,
u-boot and imx-mkimage will be upstreamed soon, this doc will be updated
once they are ready, and the link will be posted.
.. _i.MX8: https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-8-processors/i.mx-8-family-arm-cortex-a53-cortex-a72-virtualization-vision-3d-graphics-4k-video:i.MX8

View File

@@ -0,0 +1,70 @@
NXP i.MX 8M Series
==================
The i.MX 8M family of applications processors based on Arm Corte-A53 and Cortex-M4
cores provide high-performance computing, power efficiency, enhanced system
reliability and embedded security needed to drive the growth of fast-growing
edge node computing, streaming multimedia, and machine learning applications.
imx8mq is dropped in TF-A CI build due to the small OCRAM size, but still actively
maintained in NXP official release.
Boot Sequence
-------------
Bootrom --> SPL --> BL31 --> BL33(u-boot) --> Linux kernel
How to build
------------
Build Procedure
~~~~~~~~~~~~~~~
- Prepare AARCH64 toolchain.
- Build spl and u-boot firstly, and get binary images: u-boot-spl.bin,
u-boot-nodtb.bin and dtb for the target board.
- Build TF-A
Build bl31:
.. code:: shell
CROSS_COMPILE=aarch64-linux-gnu- make PLAT=<Target_SoC> bl31
Target_SoC should be "imx8mq" for i.MX8MQ SoC.
Target_SoC should be "imx8mm" for i.MX8MM SoC.
Target_SoC should be "imx8mn" for i.MX8MN SoC.
Target_SoC should be "imx8mp" for i.MX8MP SoC.
Deploy TF-A Images
~~~~~~~~~~~~~~~~~~
TF-A binary(bl31.bin), u-boot-spl.bin u-boot-nodtb.bin and dtb are combined
together to generate a binary file called flash.bin, the imx-mkimage tool is
used to generate flash.bin, and flash.bin needs to be flashed into SD card
with certain offset for BOOT ROM. the u-boot and imx-mkimage will be upstreamed
soon, this doc will be updated once they are ready, and the link will be posted.
TBBR Boot Sequence
------------------
When setting NEED_BL2=1 on imx8mm. We support an alternative way of
boot sequence to support TBBR.
Bootrom --> SPL --> BL2 --> BL31 --> BL33(u-boot with UEFI) --> grub
This helps us to fulfill the SystemReady EBBR standard.
BL2 will be in the FIT image and SPL will verify it.
All of the BL3x will be put in the FIP image. BL2 will verify them.
In U-boot we turn on the UEFI secure boot features so it can verify
grub. And we use grub to verify linux kernel.
Measured Boot
-------------
When setting MEASURED_BOOT=1 on imx8mm we can let TF-A generate event logs
with a DTB overlay. The overlay will be put at PLAT_IMX8M_DTO_BASE with
maximum size PLAT_IMX8M_DTO_MAX_SIZE. Then in U-boot we can apply the DTB
overlay and let U-boot to parse the event log and update the PCRs.

View File

@@ -0,0 +1,66 @@
Platform Ports
==============
.. toctree::
:maxdepth: 1
:caption: Contents
:numbered:
:hidden:
allwinner
arm/index
deprecated
meson-axg
meson-gxbb
meson-gxl
meson-g12a
hikey
hikey960
intel-agilex
intel-stratix10
marvell/index
mt8183
mt8186
mt8192
mt8195
nvidia-tegra
warp7
imx8
imx8m
nxp/index
poplar
qemu
qemu-sbsa
qti
qti-msm8916
rpi3
rpi4
rcar-gen3
rz-g2
rockchip
socionext-uniphier
synquacer
stm32mp1
ti-k3
xilinx-versal
xilinx-zynqmp
brcm-stingray
This section provides a list of supported upstream *platform ports* and the
documentation associated with them.
.. note::
In addition to the platforms ports listed within the table of contents, there
are several additional platforms that are supported upstream but which do not
currently have associated documentation:
- Arm Neoverse N1 System Development Platform (N1SDP)
- Arm Neoverse Reference Design N1 Edge (RD-N1-Edge) FVP
- Arm Neoverse Reference Design E1 Edge (RD-E1-Edge) FVP
- Arm SGI-575 and SGM-775
- MediaTek MT6795 and MT8173 SoCs
- Arm Morello Platform
--------------
*Copyright (c) 2019-2020, Arm Limited. All rights reserved.*

View File

@@ -0,0 +1,86 @@
Intel Agilex SoCFPGA
========================
Agilex SoCFPGA is a FPGA with integrated quad-core 64-bit Arm Cortex A53 processor.
Upon boot, Boot ROM loads bl2 into OCRAM. Bl2 subsequently initializes
the hardware, then loads bl31 and bl33 (UEFI) into DDR and boots to bl33.
::
Boot ROM --> Trusted Firmware-A --> UEFI
How to build
------------
Code Locations
~~~~~~~~~~~~~~
- Trusted Firmware-A:
`link <https://github.com/ARM-software/arm-trusted-firmware>`__
- UEFI (to be updated with new upstreamed UEFI):
`link <https://github.com/altera-opensource/uefi-socfpga>`__
Build Procedure
~~~~~~~~~~~~~~~
- Fetch all the above 2 repositories into local host.
Make all the repositories in the same ${BUILD\_PATH}.
- Prepare the AARCH64 toolchain.
- Build UEFI using Agilex platform as configuration
This will be updated to use an updated UEFI using the latest EDK2 source
.. code:: bash
make CROSS_COMPILE=aarch64-linux-gnu- device=agx
- Build atf providing the previously generated UEFI as the BL33 image
.. code:: bash
make CROSS_COMPILE=aarch64-linux-gnu- bl2 fip PLAT=agilex
BL33=PEI.ROM
Install Procedure
~~~~~~~~~~~~~~~~~
- dd fip.bin to a A2 partition on the MMC drive to be booted in Agilex
board.
- Generate a SOF containing bl2
.. code:: bash
aarch64-linux-gnu-objcopy -I binary -O ihex --change-addresses 0xffe00000 bl2.bin bl2.hex
quartus_cpf --bootloader bl2.hex <quartus_generated_sof> <output_sof_with_bl2>
- Configure SOF to board
.. code:: bash
nios2-configure-sof <output_sof_with_bl2>
Boot trace
----------
::
INFO: DDR: DRAM calibration success.
INFO: ECC is disabled.
NOTICE: BL2: v2.1(debug)
NOTICE: BL2: Built
INFO: BL2: Doing platform setup
NOTICE: BL2: Booting BL31
INFO: Entry point address = 0xffe1c000
INFO: SPSR = 0x3cd
NOTICE: BL31: v2.1(debug)
NOTICE: BL31: Built
INFO: ARM GICv2 driver initialized
INFO: BL31: Initializing runtime services
WARNING: BL31: cortex_a53
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x50000
INFO: SPSR = 0x3c9

View File

@@ -0,0 +1,94 @@
Intel Stratix 10 SoCFPGA
========================
Stratix 10 SoCFPGA is a FPGA with integrated quad-core 64-bit Arm Cortex A53 processor.
Upon boot, Boot ROM loads bl2 into OCRAM. Bl2 subsequently initializes
the hardware, then loads bl31 and bl33 (UEFI) into DDR and boots to bl33.
::
Boot ROM --> Trusted Firmware-A --> UEFI
How to build
------------
Code Locations
~~~~~~~~~~~~~~
- Trusted Firmware-A:
`link <https://github.com/ARM-software/arm-trusted-firmware>`__
- UEFI (to be updated with new upstreamed UEFI):
`link <https://github.com/altera-opensource/uefi-socfpga>`__
Build Procedure
~~~~~~~~~~~~~~~
- Fetch all the above 2 repositories into local host.
Make all the repositories in the same ${BUILD\_PATH}.
- Prepare the AARCH64 toolchain.
- Build UEFI using Stratix 10 platform as configuration
This will be updated to use an updated UEFI using the latest EDK2 source
.. code:: bash
make CROSS_COMPILE=aarch64-linux-gnu- device=s10
- Build atf providing the previously generated UEFI as the BL33 image
.. code:: bash
make CROSS_COMPILE=aarch64-linux-gnu- bl2 fip PLAT=stratix10
BL33=PEI.ROM
Install Procedure
~~~~~~~~~~~~~~~~~
- dd fip.bin to a A2 partition on the MMC drive to be booted in Stratix 10
board.
- Generate a SOF containing bl2
.. code:: bash
aarch64-linux-gnu-objcopy -I binary -O ihex --change-addresses 0xffe00000 bl2.bin bl2.hex
quartus_cpf --bootloader bl2.hex <quartus_generated_sof> <output_sof_with_bl2>
- Configure SOF to board
.. code:: bash
nios2-configure-sof <output_sof_with_bl2>
Boot trace
----------
::
INFO: DDR: DRAM calibration success.
INFO: ECC is disabled.
INFO: Init HPS NOC's DDR Scheduler.
NOTICE: BL2: v2.0(debug):v2.0-809-g7f8474a-dirty
NOTICE: BL2: Built : 17:38:19, Feb 18 2019
INFO: BL2: Doing platform setup
INFO: BL2: Loading image id 3
INFO: Loading image id=3 at address 0xffe1c000
INFO: Image id=3 loaded: 0xffe1c000 - 0xffe24034
INFO: BL2: Loading image id 5
INFO: Loading image id=5 at address 0x50000
INFO: Image id=5 loaded: 0x50000 - 0x550000
NOTICE: BL2: Booting BL31
INFO: Entry point address = 0xffe1c000
INFO: SPSR = 0x3cd
NOTICE: BL31: v2.0(debug):v2.0-810-g788c436-dirty
NOTICE: BL31: Built : 15:17:16, Feb 20 2019
INFO: ARM GICv2 driver initialized
INFO: BL31: Initializing runtime services
WARNING: BL31: cortex_a53: CPU workaround for 855873 was missing!
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x50000
INFO: SPSR = 0x3c9
UEFI firmware (version 1.0 built at 11:26:18 on Nov 7 2018)

View File

@@ -0,0 +1,476 @@
TF-A Build Instructions for Marvell Platforms
=============================================
This section describes how to compile the Trusted Firmware-A (TF-A) project for Marvell's platforms.
Build Instructions
------------------
(1) Set the cross compiler
.. code:: shell
> export CROSS_COMPILE=/path/to/toolchain/aarch64-linux-gnu-
(2) Set path for FIP images:
Set U-Boot image path (relatively to TF-A root or absolute path)
.. code:: shell
> export BL33=path/to/u-boot.bin
For example: if U-Boot project (and its images) is located at ``~/project/u-boot``,
BL33 should be ``~/project/u-boot/u-boot.bin``
.. note::
*u-boot.bin* should be used and not *u-boot-spl.bin*
Set MSS/SCP image path (mandatory only for A7K/8K/CN913x when MSS_SUPPORT=1)
.. code:: shell
> export SCP_BL2=path/to/mrvl_scp_bl2*.img
(3) Armada-37x0 build requires WTP tools installation.
See below in the section "Tools and external components installation".
Install ARM 32-bit cross compiler, which is required for building WTMI image for CM3
.. code:: shell
> sudo apt-get install gcc-arm-linux-gnueabi
(4) Clean previous build residuals (if any)
.. code:: shell
> make distclean
(5) Build TF-A
There are several build options:
- PLAT
Supported Marvell platforms are:
- a3700 - A3720 DB, EspressoBin and Turris MOX
- a70x0
- a70x0_amc - AMC board
- a70x0_mochabin - Globalscale MOCHAbin
- a80x0
- a80x0_mcbin - MacchiatoBin
- a80x0_puzzle - IEI Puzzle-M801
- t9130 - CN913x
- t9130_cex7_eval - CN913x CEx7 Evaluation Board
- DEBUG
Default is without debug information (=0). in order to enable it use ``DEBUG=1``.
Can be enabled also when building UART recovery images, there is no issue with it.
Production TF-A images should be built without this debug option!
- LOG_LEVEL
Defines the level of logging which will be purged to the default output port.
- 0 - LOG_LEVEL_NONE
- 10 - LOG_LEVEL_ERROR
- 20 - LOG_LEVEL_NOTICE (default for DEBUG=0)
- 30 - LOG_LEVEL_WARNING
- 40 - LOG_LEVEL_INFO (default for DEBUG=1)
- 50 - LOG_LEVEL_VERBOSE
- USE_COHERENT_MEM
This flag determines whether to include the coherent memory region in the
BL memory map or not. Enabled by default.
- LLC_ENABLE
Flag defining the LLC (L3) cache state. The cache is enabled by default (``LLC_ENABLE=1``).
- LLC_SRAM
Flag enabling the LLC (L3) cache SRAM support. The LLC SRAM is activated and used
by Trusted OS (OP-TEE OS, BL32). The TF-A only prepares CCU address translation windows
for SRAM address range at BL31 execution stage with window target set to DRAM-0.
When Trusted OS activates LLC SRAM, the CCU window target is changed to SRAM.
There is no reason to enable this feature if OP-TEE OS built with CFG_WITH_PAGER=n.
Only set LLC_SRAM=1 if OP-TEE OS is built with CFG_WITH_PAGER=y.
- MARVELL_SECURE_BOOT
Build trusted(=1)/non trusted(=0) image, default is non trusted.
This parameter is used only for ``mrvl_flash`` and ``mrvl_uart`` targets.
- MV_DDR_PATH
This parameter is required for ``mrvl_flash`` and ``mrvl_uart`` targets.
For A7K/8K/CN913x it is used for BLE build and for Armada37x0 it used
for ddr_tool build.
Specify path to the full checkout of Marvell mv-ddr-marvell git
repository. Checkout must contain also .git subdirectory because
mv-ddr build process calls git commands.
Do not remove any parts of git checkout becuase build process and other
applications need them for correct building and version determination.
CN913x specific build options:
- CP_NUM
Total amount of CPs (South Bridge) connected to AP. When the parameter is omitted,
the build uses the default number of CPs, which is a number of embedded CPs inside the
package: 1 or 2 depending on the SoC used. The parameter is valid for OcteonTX2 CN913x SoC
family (PLAT=t9130), which can have external CPs connected to the MCI ports. Valid
values with CP_NUM are in a range of 1 to 3.
A7K/8K/CN913x specific build options:
- BLE_PATH
Points to BLE (Binary ROM extension) sources folder.
The parameter is optional, its default value is ``plat/marvell/armada/a8k/common/ble``
which uses TF-A in-tree BLE implementation.
- MSS_SUPPORT
When ``MSS_SUPPORT=1``, then TF-A includes support for Management SubSystem (MSS).
When enabled it is required to specify path to the MSS firmware image via ``SCP_BL2``
option.
This option is by default enabled.
- SCP_BL2
Specify path to the MSS fimware image binary which will run on Cortex-M3 coprocessor.
It is available in Marvell binaries-marvell git repository. Required when ``MSS_SUPPORT=1``.
Globalscale MOCHAbin specific build options:
- DDR_TOPOLOGY
The DDR topology map index/name, default is 0.
Supported Options:
- 0 - DDR4 1CS 2GB
- 1 - DDR4 1CS 4GB
- 2 - DDR4 2CS 8GB
Armada37x0 specific build options:
- HANDLE_EA_EL3_FIRST
When ``HANDLE_EA_EL3_FIRST=1``, External Aborts and SError Interrupts will be always trapped
in TF-A. TF-A in this case enables dirty hack / workaround for a bug found in U-Boot and
Linux kernel PCIe controller driver pci-aardvark.c, traps and then masks SError interrupt
caused by AXI SLVERR on external access (syndrome 0xbf000002).
Otherwise when ``HANDLE_EA_EL3_FIRST=0``, these exceptions will be trapped in the current
exception level (or in EL1 if the current exception level is EL0). So exceptions caused by
U-Boot will be trapped in U-Boot, exceptions caused by Linux kernel (or user applications)
will be trapped in Linux kernel.
Mentioned bug in pci-aardvark.c driver is fixed in U-Boot version v2021.07 and Linux kernel
version v5.13 (workarounded since Linux kernel version 5.9) and also backported in Linux
kernel stable releases since versions v5.12.13, v5.10.46, v5.4.128, v4.19.198, v4.14.240.
If target system has already patched version of U-Boot and Linux kernel then it is strongly
recommended to not enable this workaround as it disallows propagating of all External Aborts
to running Linux kernel and makes correctable errors as fatal aborts.
This option is now disabled by default. In past this option was enabled by default in
TF-A versions v2.2, v2.3, v2.4 and v2.5.
- CM3_SYSTEM_RESET
When ``CM3_SYSTEM_RESET=1``, the Cortex-M3 secure coprocessor will be used for system reset.
TF-A will send command 0x0009 with a magic value via the rWTM mailbox interface to the
Cortex-M3 secure coprocessor.
The firmware running in the coprocessor must either implement this functionality or
ignore the 0x0009 command (which is true for the firmware from A3700-utils-marvell
repository). If this option is enabled but the firmware does not support this command,
an error message will be printed prior trying to reboot via the usual way.
This option is needed on Turris MOX as a workaround to a HW bug which causes reset to
sometime hang the board.
- A3720_DB_PM_WAKEUP_SRC
For Armada 3720 Development Board only, when ``A3720_DB_PM_WAKEUP_SRC=1``,
TF-A will setup PM wake up src configuration. This option is disabled by default.
Armada37x0 specific build options for ``mrvl_flash`` and ``mrvl_uart`` targets:
- DDR_TOPOLOGY
The DDR topology map index/name, default is 0.
Supported Options:
- 0 - DDR3 1CS 512MB (DB-88F3720-DDR3-Modular, EspressoBin V3-V5)
- 1 - DDR4 1CS 512MB (DB-88F3720-DDR4-Modular)
- 2 - DDR3 2CS 1GB (EspressoBin V3-V5)
- 3 - DDR4 2CS 4GB (DB-88F3720-DDR4-Modular)
- 4 - DDR3 1CS 1GB (DB-88F3720-DDR3-Modular, EspressoBin V3-V5)
- 5 - DDR4 1CS 1GB (EspressoBin V7, EspressoBin-Ultra)
- 6 - DDR4 2CS 2GB (EspressoBin V7)
- 7 - DDR3 2CS 2GB (EspressoBin V3-V5)
- CUST - CUSTOMER BOARD (Customer board settings)
- CLOCKSPRESET
The clock tree configuration preset including CPU and DDR frequency,
default is CPU_800_DDR_800.
- CPU_600_DDR_600 - CPU at 600 MHz, DDR at 600 MHz
- CPU_800_DDR_800 - CPU at 800 MHz, DDR at 800 MHz
- CPU_1000_DDR_800 - CPU at 1000 MHz, DDR at 800 MHz
- CPU_1200_DDR_750 - CPU at 1200 MHz, DDR at 750 MHz
Look at Armada37x0 chip package marking on board to identify correct CPU frequency.
The last line on package marking (next line after the 88F37x0 line) should contain:
- C080 or I080 - chip with 800 MHz CPU - use ``CLOCKSPRESET=CPU_800_DDR_800``
- C100 or I100 - chip with 1000 MHz CPU - use ``CLOCKSPRESET=CPU_1000_DDR_800``
- C120 - chip with 1200 MHz CPU - use ``CLOCKSPRESET=CPU_1200_DDR_750``
- BOOTDEV
The flash boot device, default is ``SPINOR``.
Currently, Armada37x0 only supports ``SPINOR``, ``SPINAND``, ``EMMCNORM`` and ``SATA``:
- SPINOR - SPI NOR flash boot
- SPINAND - SPI NAND flash boot
- EMMCNORM - eMMC Download Mode
Download boot loader or program code from eMMC flash into CM3 or CA53
Requires full initialization and command sequence
- SATA - SATA device boot
Image needs to be stored at disk LBA 0 or at disk partition with
MBR type 0x4d (ASCII 'M' as in Marvell) or at disk partition with
GPT partition type GUID ``6828311A-BA55-42A4-BCDE-A89BB5EDECAE``.
- PARTNUM
The boot partition number, default is 0.
To boot from eMMC, the value should be aligned with the parameter in
U-Boot with name of ``CONFIG_SYS_MMC_ENV_PART``, whose value by default is
1. For details about CONFIG_SYS_MMC_ENV_PART, please refer to the U-Boot
build instructions.
- WTMI_IMG
The path of the binary can point to an image which
does nothing, an image which supports EFUSE or a customized CM3 firmware
binary. The default image is ``fuse.bin`` that built from sources in WTP
folder, which is the next option. If the default image is OK, then this
option should be skipped.
Please note that this is not a full WTMI image, just a main loop without
hardware initialization code. Final WTMI image is built from this WTMI_IMG
binary and sys-init code from the WTP directory which sets DDR and CPU
clocks according to DDR_TOPOLOGY and CLOCKSPRESET options.
CZ.NIC as part of Turris project released free and open source WTMI
application firmware ``wtmi_app.bin`` for all Armada 3720 devices.
This firmware includes additional features like access to Hardware
Random Number Generator of Armada 3720 SoC which original Marvell's
``fuse.bin`` image does not have.
CZ.NIC's Armada 3720 Secure Firmware is available at website:
https://gitlab.nic.cz/turris/mox-boot-builder/
- WTP
Specify path to the full checkout of Marvell A3700-utils-marvell git
repository. Checkout must contain also .git subdirectory because WTP
build process calls git commands.
WTP build process uses also Marvell mv-ddr-marvell git repository
specified in MV_DDR_PATH option.
Do not remove any parts of git checkout becuase build process and other
applications need them for correct building and version determination.
- CRYPTOPP_PATH
Use this parameter to point to Crypto++ source code
directory. If this option is specified then Crypto++ source code in
CRYPTOPP_PATH directory will be automatically compiled. Crypto++ library
is required for building WTP image tool. Either CRYPTOPP_PATH or
CRYPTOPP_LIBDIR with CRYPTOPP_INCDIR needs to be specified for Armada37x0.
- CRYPTOPP_LIBDIR
Use this parameter to point to the directory with
compiled Crypto++ library. By default it points to the CRYPTOPP_PATH.
On Debian systems it is possible to install system-wide Crypto++ library
via command ``apt install libcrypto++-dev`` and specify CRYPTOPP_LIBDIR
to ``/usr/lib/``.
- CRYPTOPP_INCDIR
Use this parameter to point to the directory with
header files of Crypto++ library. By default it points to the CRYPTOPP_PATH.
On Debian systems it is possible to install system-wide Crypto++ library
via command ``apt install libcrypto++-dev`` and specify CRYPTOPP_INCDIR
to ``/usr/include/crypto++/``.
For example, in order to build the image in debug mode with log level up to 'notice' level run
.. code:: shell
> make DEBUG=1 USE_COHERENT_MEM=0 LOG_LEVEL=20 PLAT=<MARVELL_PLATFORM> mrvl_flash
And if we want to build a Armada37x0 image in debug mode with log level up to 'notice' level,
the image has the preset CPU at 1000 MHz, preset DDR3 at 800 MHz, the DDR topology of DDR4 2CS,
the image boot from SPI NOR flash partition 0, and the image is non trusted in WTP, the command
line is as following
.. code:: shell
> make DEBUG=1 USE_COHERENT_MEM=0 LOG_LEVEL=20 CLOCKSPRESET=CPU_1000_DDR_800 \
MARVELL_SECURE_BOOT=0 DDR_TOPOLOGY=3 BOOTDEV=SPINOR PARTNUM=0 PLAT=a3700 \
MV_DDR_PATH=/path/to/mv-ddr-marvell/ WTP=/path/to/A3700-utils-marvell/ \
CRYPTOPP_PATH=/path/to/cryptopp/ BL33=/path/to/u-boot.bin \
all fip mrvl_bootimage mrvl_flash mrvl_uart
To build just TF-A without WTMI image (useful for A3720 Turris MOX board), run following command:
.. code:: shell
> make USE_COHERENT_MEM=0 PLAT=a3700 CM3_SYSTEM_RESET=1 BL33=/path/to/u-boot.bin \
CROSS_COMPILE=aarch64-linux-gnu- mrvl_bootimage
Here is full example how to build production release of Marvell firmware image (concatenated
binary of Marvell's A3720 sys-init, CZ.NIC's Armada 3720 Secure Firmware, TF-A and U-Boot) for
EspressoBin board (PLAT=a3700) with 1GHz CPU (CLOCKSPRESET=CPU_1000_DDR_800) and
1GB DDR4 RAM (DDR_TOPOLOGY=5):
.. code:: shell
> git clone https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
> git clone https://source.denx.de/u-boot/u-boot.git
> git clone https://github.com/weidai11/cryptopp.git
> git clone https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git
> git clone https://github.com/MarvellEmbeddedProcessors/A3700-utils-marvell.git
> git clone https://gitlab.nic.cz/turris/mox-boot-builder.git
> make -C u-boot CROSS_COMPILE=aarch64-linux-gnu- mvebu_espressobin-88f3720_defconfig u-boot.bin
> make -C mox-boot-builder CROSS_CM3=arm-linux-gnueabi- wtmi_app.bin
> make -C trusted-firmware-a CROSS_COMPILE=aarch64-linux-gnu- CROSS_CM3=arm-linux-gnueabi- \
USE_COHERENT_MEM=0 PLAT=a3700 CLOCKSPRESET=CPU_1000_DDR_800 DDR_TOPOLOGY=5 \
MV_DDR_PATH=$PWD/mv-ddr-marvell/ WTP=$PWD/A3700-utils-marvell/ \
CRYPTOPP_PATH=$PWD/cryptopp/ BL33=$PWD/u-boot/u-boot.bin \
WTMI_IMG=$PWD/mox-boot-builder/wtmi_app.bin FIP_ALIGN=0x100 mrvl_flash
Produced Marvell firmware flash image: ``trusted-firmware-a/build/a3700/release/flash-image.bin``
Special Build Flags
--------------------
- PLAT_RECOVERY_IMAGE_ENABLE
When set this option to enable secondary recovery function when build atf.
In order to build UART recovery image this operation should be disabled for
A7K/8K/CN913x because of hardware limitation (boot from secondary image
can interrupt UART recovery process). This MACRO definition is set in
``plat/marvell/armada/a8k/common/include/platform_def.h`` file.
- DDR32
In order to work in 32bit DDR, instead of the default 64bit ECC DDR,
this flag should be set to 1.
For more information about build options, please refer to the
:ref:`Build Options` document.
Build output
------------
Marvell's TF-A compilation generates 8 files:
- ble.bin - BLe image (not available for Armada37x0)
- bl1.bin - BL1 image
- bl2.bin - BL2 image
- bl31.bin - BL31 image
- fip.bin - FIP image (contains BL2, BL31 & BL33 (U-Boot) images)
- boot-image.bin - TF-A image (contains BL1 and FIP images)
- flash-image.bin - Flashable Marvell firmware image. For Armada37x0 it
contains TIM, WTMI and boot-image.bin images. For other platforms it contains
BLe and boot-image.bin images. Should be placed on the boot flash/device.
- uart-images.tgz.bin - GZIPed TAR archive which contains Armada37x0 images
for booting via UART. Could be loaded via Marvell's WtpDownload tool from
A3700-utils-marvell repository.
Additional make target ``mrvl_bootimage`` produce ``boot-image.bin`` file. Target
``mrvl_flash`` produce final ``flash-image.bin`` file and target ``mrvl_uart``
produce ``uart-images.tgz.bin`` file.
Tools and external components installation
------------------------------------------
Armada37x0 Builds require installation of additional components
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(1) ARM cross compiler capable of building images for the service CPU (CM3).
This component is usually included in the Linux host packages.
On Debian/Ubuntu hosts the default GNU ARM tool chain can be installed
using the following command
.. code:: shell
> sudo apt-get install gcc-arm-linux-gnueabi
Only if required, the default tool chain prefix ``arm-linux-gnueabi-`` can be
overwritten using the environment variable ``CROSS_CM3``.
Example for BASH shell
.. code:: shell
> export CROSS_CM3=/opt/arm-cross/bin/arm-linux-gnueabi
(2) DDR initialization library sources (mv_ddr) available at the following repository
(use the "master" branch):
https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git
(3) Armada3700 tools available at the following repository
(use the "master" branch):
https://github.com/MarvellEmbeddedProcessors/A3700-utils-marvell.git
(4) Crypto++ library available at the following repository:
https://github.com/weidai11/cryptopp.git
(5) Optional CZ.NIC's Armada 3720 Secure Firmware:
https://gitlab.nic.cz/turris/mox-boot-builder.git
Armada70x0, Armada80x0 and CN913x Builds require installation of additional components
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(1) DDR initialization library sources (mv_ddr) available at the following repository
(use the "master" branch):
https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git
(2) MSS Management SubSystem Firmware available at the following repository
(use the "binaries-marvell-armada-SDK10.0.1.0" branch):
https://github.com/MarvellEmbeddedProcessors/binaries-marvell.git

View File

@@ -0,0 +1,49 @@
Address decoding flow and address translation units of Marvell Armada 8K SoC family
===================================================================================
::
+--------------------------------------------------------------------------------------------------+
| +-------------+ +--------------+ |
| | Memory +----- DRAM CS | |
|+------------+ +-----------+ +-----------+ | Controller | +--------------+ |
|| AP DMA | | | | | +-------------+ |
|| SD/eMMC | | CA72 CPUs | | AP MSS | +-------------+ |
|| MCI-0/1 | | | | | | Memory | |
|+------+-----+ +--+--------+ +--------+--+ +------------+ | Controller | +-------------+ |
| | | | | +----- Translaton | |AP | |
| | | | | | +-------------+ |Configuration| |
| | | +-----+ +-------------------------Space | |
| | | +-------------+ | CCU | +-------------+ |
| | | | MMU +---------+ Windows | +-----------+ +-------------+ |
| | +-| translation | | Lookup +---- +--------- AP SPI | |
| | +-------------+ | | | | +-------------+ |
| | +-------------+ | | | IO | +-------------+ |
| +------------| SMMU +---------+ | | Windows +--------- AP MCI0/1 | |
| | translation | +------------+ | Lookup | +-------------+ |
| +---------+---+ | | +-------------+ |
| - | | +--------- AP STM | |
| +----------------- | | +-------------+ |
| AP | | +-+---------+ |
+---------------------------------------------------------------|----------------------------------+
+-------------|-------------------------------------------------|----------------------------------+
| CP | +-------------+ +------+-----+ +-------------------+ |
| | | | | +------- SB CFG Space | |
| | | DIOB | | | +-------------------+ |
| | | Windows ----------------- IOB | +-------------------+ |
| | | Control | | Windows +------| SB PCIe-0 - PCIe2 | |
| | | | | Lookup | +-------------------+ |
| | +------+------+ | | +-------------------+ |
| | | | +------+ SB NAND | |
| | | +------+-----+ +-------------------+ |
| | | | |
| | | | |
| +------------------+ +------------+ +------+-----+ +-------------------+ |
| | Network Engine | | | | +------- SB SPI-0/SPI-1 | |
| | Security Engine | | PCIe, MSS | | RUNIT | +-------------------+ |
| | SATA, USB | | DMA | | Windows | +-------------------+ |
| | SD/eMMC | | | | Lookup +------- SB Device Bus | |
| | TDM, I2C | | | | | +-------------------+ |
| +------------------+ +------------+ +------------+ |
| |
+--------------------------------------------------------------------------------------------------+

View File

@@ -0,0 +1,58 @@
AMB - AXI MBUS address decoding
===============================
AXI to M-bridge decoding unit driver for Marvell Armada 8K and 8K+ SoCs.
The Runit offers a second level of address windows lookup. It is used to map
transaction towards the CD BootROM, SPI0, SPI1 and Device bus (NOR).
The Runit contains eight configurable windows. Each window defines a contiguous,
address space and the properties associated with that address space.
::
Unit Bank ATTR
Device-Bus DEV_BOOT_CS 0x2F
DEV_CS0 0x3E
DEV_CS1 0x3D
DEV_CS2 0x3B
DEV_CS3 0x37
SPI-0 SPI_A_CS0 0x1E
SPI_A_CS1 0x5E
SPI_A_CS2 0x9E
SPI_A_CS3 0xDE
SPI_A_CS4 0x1F
SPI_A_CS5 0x5F
SPI_A_CS6 0x9F
SPI_A_CS7 0xDF
SPI SPI_B_CS0 0x1A
SPI_B_CS1 0x5A
SPI_B_CS2 0x9A
SPI_B_CS3 0xDA
BOOT_ROM BOOT_ROM 0x1D
UART UART 0x01
Mandatory functions
-------------------
- marvell_get_amb_memory_map
Returns the AMB windows configuration and the number of windows
Mandatory structures
--------------------
- amb_memory_map
Array that include the configuration of the windows. Every window/entry is a
struct which has 2 parameters:
- Base address of the window
- Attribute of the window
Examples
--------
.. code:: c
struct addr_map_win amb_memory_map[] = {
{0xf900, AMB_DEV_CS0_ID},
};

View File

@@ -0,0 +1,33 @@
Marvell CCU address decoding bindings
=====================================
CCU configuration driver (1st stage address translation) for Marvell Armada 8K and 8K+ SoCs.
The CCU node includes a description of the address decoding configuration.
Mandatory functions
-------------------
- marvell_get_ccu_memory_map
Return the CCU windows configuration and the number of windows of the
specific AP.
Mandatory structures
--------------------
- ccu_memory_map
Array that includes the configuration of the windows. Every window/entry is
a struct which has 3 parameters:
- Base address of the window
- Size of the window
- Target-ID of the window
Example
-------
.. code:: c
struct addr_map_win ccu_memory_map[] = {
{0x00000000f2000000, 0x00000000e000000, IO_0_TID}, /* IO window */
};

View File

@@ -0,0 +1,46 @@
Marvell IO WIN address decoding bindings
========================================
IO Window configuration driver (2nd stage address translation) for Marvell Armada 8K and 8K+ SoCs.
The IO WIN includes a description of the address decoding configuration.
Transactions that are decoded by CCU windows as IO peripheral, have an additional
layer of decoding. This additional address decoding layer defines one of the
following targets:
- **0x0** = BootRom
- **0x1** = STM (Serial Trace Macro-cell, a programmer's port into trace stream)
- **0x2** = SPI direct access
- **0x3** = PCIe registers
- **0x4** = MCI Port
- **0x5** = PCIe port
Mandatory functions
-------------------
- marvell_get_io_win_memory_map
Returns the IO windows configuration and the number of windows of the
specific AP.
Mandatory structures
--------------------
- io_win_memory_map
Array that include the configuration of the windows. Every window/entry is
a struct which has 3 parameters:
- Base address of the window
- Size of the window
- Target-ID of the window
Example
-------
.. code:: c
struct addr_map_win io_win_memory_map[] = {
{0x00000000fe000000, 0x000000001f00000, PCIE_PORT_TID}, /* PCIe window 31Mb for PCIe port*/
{0x00000000ffe00000, 0x000000000100000, PCIE_REGS_TID}, /* PCI-REG window 64Kb for PCIe-reg*/
{0x00000000f6000000, 0x000000000100000, MCIPHY_TID}, /* MCI window 1Mb for PHY-reg*/
};

View File

@@ -0,0 +1,52 @@
Marvell IOB address decoding bindings
=====================================
IO bridge configuration driver (3rd stage address translation) for Marvell Armada 8K and 8K+ SoCs.
The IOB includes a description of the address decoding configuration.
IOB supports up to n (in CP110 n=24) windows for external memory transaction.
When a transaction passes through the IOB, its address is compared to each of
the enabled windows. If there is a hit and it passes the security checks, it is
advanced to the target port.
Mandatory functions
-------------------
- marvell_get_iob_memory_map
Returns the IOB windows configuration and the number of windows
Mandatory structures
--------------------
- iob_memory_map
Array that includes the configuration of the windows. Every window/entry is
a struct which has 3 parameters:
- Base address of the window
- Size of the window
- Target-ID of the window
Target ID options
-----------------
- **0x0** = Internal configuration space
- **0x1** = MCI0
- **0x2** = PEX1_X1
- **0x3** = PEX2_X1
- **0x4** = PEX0_X4
- **0x5** = NAND flash
- **0x6** = RUNIT (NOR/SPI/BootRoom)
- **0x7** = MCI1
Example
-------
.. code:: c
struct addr_map_win iob_memory_map[] = {
{0x00000000f7000000, 0x0000000001000000, PEX1_TID}, /* PEX1_X1 window */
{0x00000000f8000000, 0x0000000001000000, PEX2_TID}, /* PEX2_X1 window */
{0x00000000f6000000, 0x0000000001000000, PEX0_TID}, /* PEX0_X4 window */
{0x00000000f9000000, 0x0000000001000000, NAND_TID} /* NAND window */
};

View File

@@ -0,0 +1,158 @@
TF-A Porting Guide for Marvell Platforms
========================================
This section describes how to port TF-A to a customer board, assuming that the
SoC being used is already supported in TF-A.
Source Code Structure
---------------------
- The customer platform specific code shall reside under ``plat/marvell/armada/<soc family>/<soc>_cust``
(e.g. 'plat/marvell/armada/a8k/a7040_cust').
- The platform name for build purposes is called ``<soc>_cust`` (e.g. ``a7040_cust``).
- The build system will reuse all files from within the soc directory, and take only the porting
files from the customer platform directory.
Files that require porting are located at ``plat/marvell/armada/<soc family>/<soc>_cust`` directory.
Armada-70x0/Armada-80x0 Porting
-------------------------------
SoC Physical Address Map (marvell_plat_config.c)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This file describes the SoC physical memory mapping to be used for the CCU,
IOWIN, AXI-MBUS and IOB address decode units (Refer to the functional spec for
more details).
In most cases, using the default address decode windows should work OK.
In cases where a special physical address map is needed (e.g. Special size for
PCIe MEM windows, large memory mapped SPI flash...), then porting of the SoC
memory map is required.
.. note::
For a detailed information on how CCU, IOWIN, AXI-MBUS & IOB work, please
refer to the SoC functional spec, and under
``docs/plat/marvell/armada/misc/mvebu-[ccu/iob/amb/io-win].rst`` files.
boot loader recovery (marvell_plat_config.c)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Background:
Boot rom can skip the current image and choose to boot from next position if a
specific value (``0xDEADB002``) is returned by the ble main function. This
feature is used for boot loader recovery by booting from a valid flash-image
saved in next position on flash (e.g. address 2M in SPI flash).
Supported options to implement the skip request are:
- GPIO
- I2C
- User defined
- Porting:
Under marvell_plat_config.c, implement struct skip_image that includes
specific board parameters.
.. warning::
To disable this feature make sure the struct skip_image is not implemented.
- Example:
In A7040-DB specific implementation
(``plat/marvell/armada/a8k/a70x0/board/marvell_plat_config.c``), the image skip is
implemented using GPIO: mpp 33 (SW5).
Before resetting the board make sure there is a valid image on the next flash
address:
-tftp [valid address] flash-image.bin
-sf update [valid address] 0x2000000 [size]
Press reset and keep pressing the button connected to the chosen GPIO pin. A
skip image request message is printed on the screen and boot rom boots from the
saved image at the next position.
DDR Porting (dram_port.c)
~~~~~~~~~~~~~~~~~~~~~~~~~
This file defines the dram topology and parameters of the target board.
The DDR code is part of the BLE component, which is an extension of ARM Trusted
Firmware (TF-A).
The DDR driver called mv_ddr is released separately apart from TF-A sources.
The BLE and consequently, the DDR init code is executed at the early stage of
the boot process.
Each supported platform of the TF-A has its own DDR porting file called
dram_port.c located at ``atf/plat/marvell/armada/a8k/<platform>/board`` directory.
Please refer to '<path_to_mv_ddr_sources>/doc/porting_guide.txt' for detailed
porting description.
The build target directory is "build/<platform>/release/ble".
Comphy Porting (phy-porting-layer.h or phy-default-porting-layer.h)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- Background:
Some of the comphy's parameters value depend on the HW connection between
the SoC and the PHY. Every board type has specific HW characteristics like
wire length. Due to those differences some comphy parameters vary between
board types. Therefore each board type can have its own list of values for
all relevant comphy parameters. The PHY porting layer specifies which
parameters need to be suited and the board designer should provide relevant
values.
The PHY porting layer simplifies updating static values per board type,
which are now grouped in one place.
.. note::
The parameters for the same type of comphy may vary even for the same
board type, it is because the lanes from comphy-x to some PHY may have
different HW characteristic than lanes from comphy-y to the same
(multiplexed) or other PHY.
- Porting:
The porting layer for PHY was introduced in TF-A. There is one file
``drivers/marvell/comphy/phy-default-porting-layer.h`` which contains the
defaults. Those default parameters are used only if there is no appropriate
phy-porting-layer.h file under: ``plat/marvell/armada/<soc
family>/<platform>/board/phy-porting-layer.h``. If the phy-porting-layer.h
exists, the phy-default-porting-layer.h is not going to be included.
.. warning::
Not all comphy types are already reworked to support the PHY porting
layer, currently the porting layer is supported for XFI/SFI and SATA
comphy types.
The easiest way to prepare the PHY porting layer for custom board is to copy
existing example to a new platform:
- cp ``plat/marvell/armada/a8k/a80x0/board/phy-porting-layer.h`` "plat/marvell/armada/<soc family>/<platform>/board/phy-porting-layer.h"
- adjust relevant parameters or
- if different comphy index is used for specific feature, move it to proper table entry and then adjust.
.. note::
The final table size with comphy parameters can be different, depending
on the CP module count for given SoC type.
- Example:
Example porting layer for armada-8040-db is under:
``plat/marvell/armada/a8k/a80x0/board/phy-porting-layer.h``
.. note::
If there is no PHY porting layer for new platform (missing
phy-porting-layer.h), the default values are used
(drivers/marvell/comphy/phy-default-porting-layer.h) and the user is
warned:
.. warning::
"Using default comphy parameters - it may be required to suit them for
your board".

View File

@@ -0,0 +1,14 @@
Marvell
=======
.. toctree::
:maxdepth: 1
:caption: Contents
armada/build
armada/porting
armada/misc/mvebu-a8k-addr-map
armada/misc/mvebu-amb
armada/misc/mvebu-ccu
armada/misc/mvebu-io-win
armada/misc/mvebu-iob

View File

@@ -0,0 +1,27 @@
Amlogic Meson A113D (AXG)
===========================
The Amlogic Meson A113D is a SoC with a quad core Arm Cortex-A53 running at
~1.2GHz. It also contains a Cortex-M3 used as SCP.
This port is a minimal implementation of BL31 capable of booting mainline U-Boot
and Linux:
- SCPI support.
- Basic PSCI support (CPU_ON, CPU_OFF, SYSTEM_RESET, SYSTEM_OFF). Note that CPU0
can't be turned off, so there is a workaround to hide this from the caller.
- GICv2 driver set up.
- Basic SIP services (read efuse data, enable/disable JTAG).
In order to build it:
.. code:: shell
CROSS_COMPILE=aarch64-none-elf- make DEBUG=1 PLAT=axg [SPD=opteed]
[AML_USE_ATOS=1 when using ATOS as BL32]
This port has been tested on a A113D board. After building it, follow the
instructions in the `U-Boot repository`_, replacing the mentioned **bl31.img**
by the one built from this port.
.. _U-Boot repository: https://github.com/u-boot/u-boot/blob/master/doc/board/amlogic/s400.rst

View File

@@ -0,0 +1,27 @@
Amlogic Meson S905X2 (G12A)
===========================
The Amlogic Meson S905X2 is a SoC with a quad core Arm Cortex-A53 running at
~1.8GHz. It also contains a Cortex-M3 used as SCP.
This port is a minimal implementation of BL31 capable of booting mainline U-Boot
and Linux:
- SCPI support.
- Basic PSCI support (CPU_ON, CPU_OFF, SYSTEM_RESET, SYSTEM_OFF). Note that CPU0
can't be turned off, so there is a workaround to hide this from the caller.
- GICv2 driver set up.
- Basic SIP services (read efuse data, enable/disable JTAG).
In order to build it:
.. code:: shell
CROSS_COMPILE=aarch64-linux-gnu- make DEBUG=1 PLAT=g12a
This port has been tested on a SEI510 board. After building it, follow the
instructions in the `gxlimg repository`_ or `U-Boot repository`_, replacing the
mentioned **bl31.img** by the one built from this port.
.. _gxlimg repository: https://github.com/repk/gxlimg/blob/master/README.g12a
.. _U-Boot repository: https://github.com/u-boot/u-boot/blob/master/doc/board/amlogic/sei510.rst

Some files were not shown because too many files have changed in this diff Show More