Files
linux-hwpm/common/tegra_hwpm_ip_utils.c
Vedashree Vidwans 25f0737897 tegra: hwpm: combine common functionality
- Many HWPM functions are performed on all apertures of all instances of
all IPs. Define below resource utility functions to perform a task on
all IPs, instances and apertures:
  - tegra_hwpm_func_all_IPs
  - tegra_hwpm_func_single_ip
  - tegra_hwpm_func_all_instance
  - tegra_hwpm_func_single_instance
  - tegra_hwpm_func_all_perfmuxes
  - tegra_hwpm_func_all_perfmons
  - tegra_hwpm_func_single_aperture
- Modify below functions to use above mentioned utility functions:
  - get allowlist size
  - combine allowlist
  - reserve resources
  - bind resources
  - release resources

This will make code more legible and maintainable.

This patch also defines new function that validates all HAL
initializations for the chip.

Jira THWPM-41

Change-Id: Icaeba4d94187b97022c0a6626584e7d61ab6d0e4
Signed-off-by: Vedashree Vidwans <vvidwans@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvidia/+/2705524
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: svc_kernel_abi <svc_kernel_abi@nvidia.com>
Reviewed-by: Vasuki Shankar <vasukis@nvidia.com>
Reviewed-by: Seema Khowala <seemaj@nvidia.com>
GVS: Gerrit_Virtual_Submit
2022-05-17 08:42:51 -07:00

513 lines
14 KiB
C

/*
* Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/slab.h>
#include <uapi/linux/tegra-soc-hwpm-uapi.h>
#include <tegra_hwpm.h>
#include <tegra_hwpm_log.h>
#include <tegra_hwpm_common.h>
#include <tegra_hwpm_static_analysis.h>
static int tegra_hwpm_init_ip_perfmux_apertures(struct tegra_soc_hwpm *hwpm,
struct hwpm_ip *chip_ip)
{
u32 idx = 0U, perfmux_idx = 0U, max_perfmux = 0U;
u64 perfmux_address_range = 0ULL, perfmux_offset = 0ULL;
hwpm_ip_perfmux *perfmux = NULL;
/* Initialize perfmux array */
if (chip_ip->num_perfmux_per_inst == 0U) {
/* no perfmux in this IP */
return 0;
}
perfmux_address_range = tegra_hwpm_safe_add_u64(
tegra_hwpm_safe_sub_u64(chip_ip->perfmux_range_end,
chip_ip->perfmux_range_start), 1ULL);
chip_ip->num_perfmux_slots = tegra_hwpm_safe_cast_u64_to_u32(
perfmux_address_range / chip_ip->inst_perfmux_stride);
chip_ip->ip_perfmux = kzalloc(
sizeof(hwpm_ip_perfmux *) * chip_ip->num_perfmux_slots,
GFP_KERNEL);
if (chip_ip->ip_perfmux == NULL) {
tegra_hwpm_err(hwpm, "Perfmux pointer array allocation failed");
return -ENOMEM;
}
/* Set all perfmux slot pointers to NULL */
for (idx = 0U; idx < chip_ip->num_perfmux_slots; idx++) {
chip_ip->ip_perfmux[idx] = NULL;
}
/* Assign valid perfmuxes to corresponding slot pointers */
max_perfmux = chip_ip->num_instances * chip_ip->num_perfmux_per_inst;
for (perfmux_idx = 0U; perfmux_idx < max_perfmux; perfmux_idx++) {
perfmux = &chip_ip->perfmux_static_array[perfmux_idx];
/* Compute perfmux offset from perfmux range start */
perfmux_offset = tegra_hwpm_safe_sub_u64(
perfmux->start_abs_pa, chip_ip->perfmux_range_start);
/* Compute perfmux slot index */
idx = tegra_hwpm_safe_cast_u64_to_u32(
perfmux_offset / chip_ip->inst_perfmux_stride);
/* Set perfmux slot pointer */
chip_ip->ip_perfmux[idx] = perfmux;
}
return 0;
}
static int tegra_hwpm_init_ip_perfmon_apertures(struct tegra_soc_hwpm *hwpm,
struct hwpm_ip *chip_ip)
{
u32 idx = 0U, perfmon_idx = 0U, max_perfmon = 0U;
u64 perfmon_address_range = 0ULL, perfmon_offset = 0ULL;
hwpm_ip_perfmon *perfmon = NULL;
/* Initialize perfmon array */
if (chip_ip->num_perfmon_per_inst == 0U) {
/* no perfmons in this IP */
return 0;
}
perfmon_address_range = tegra_hwpm_safe_add_u64(
tegra_hwpm_safe_sub_u64(chip_ip->perfmon_range_end,
chip_ip->perfmon_range_start), 1ULL);
chip_ip->num_perfmon_slots = tegra_hwpm_safe_cast_u64_to_u32(
perfmon_address_range / chip_ip->inst_perfmon_stride);
chip_ip->ip_perfmon = kzalloc(
sizeof(hwpm_ip_perfmon *) * chip_ip->num_perfmon_slots,
GFP_KERNEL);
if (chip_ip->ip_perfmon == NULL) {
tegra_hwpm_err(hwpm, "Perfmon pointer array allocation failed");
return -ENOMEM;
}
/* Set all perfmon slot pointers to NULL */
for (idx = 0U; idx < chip_ip->num_perfmon_slots; idx++) {
chip_ip->ip_perfmon[idx] = NULL;
}
/* Assign valid perfmuxes to corresponding slot pointers */
max_perfmon = chip_ip->num_instances * chip_ip->num_perfmon_per_inst;
for (perfmon_idx = 0U; perfmon_idx < max_perfmon; perfmon_idx++) {
perfmon = &chip_ip->perfmon_static_array[perfmon_idx];
/* Compute perfmon offset from perfmon range start */
perfmon_offset = tegra_hwpm_safe_sub_u64(
perfmon->start_abs_pa, chip_ip->perfmon_range_start);
/* Compute perfmon slot index */
idx = tegra_hwpm_safe_cast_u64_to_u32(
perfmon_offset / chip_ip->inst_perfmon_stride);
/* Set perfmon slot pointer */
chip_ip->ip_perfmon[idx] = perfmon;
}
return 0;
}
int tegra_hwpm_init_chip_ip_structures(struct tegra_soc_hwpm *hwpm)
{
struct tegra_soc_hwpm_chip *active_chip = hwpm->active_chip;
struct hwpm_ip *chip_ip = NULL;
u32 ip_idx;
int ret = 0;
for (ip_idx = 0U; ip_idx < active_chip->get_ip_max_idx(hwpm);
ip_idx++) {
chip_ip = active_chip->chip_ips[ip_idx];
ret = tegra_hwpm_init_ip_perfmon_apertures(hwpm, chip_ip);
if (ret != 0) {
tegra_hwpm_err(hwpm, "IP %d perfmon alloc failed",
ip_idx);
return ret;
}
ret = tegra_hwpm_init_ip_perfmux_apertures(hwpm, chip_ip);
if (ret != 0) {
tegra_hwpm_err(hwpm, "IP %d perfmux alloc failed",
ip_idx);
return ret;
}
}
return 0;
}
/*
* This function finds the IP perfmon index corresponding to given base address.
* Perfmon aperture belongs to IP domain and contains IP instance info
* wrt base address.
* Return instance index
*/
static int tegra_hwpm_find_ip_perfmon_index(struct tegra_soc_hwpm *hwpm,
u64 base_addr, u32 ip_index, u32 *ip_perfmon_idx)
{
struct tegra_soc_hwpm_chip *active_chip = hwpm->active_chip;
struct hwpm_ip *chip_ip = active_chip->chip_ips[ip_index];
u32 perfmon_idx;
u64 addr_offset = 0ULL;
hwpm_ip_perfmon *perfmon = NULL;
tegra_hwpm_fn(hwpm, " ");
if (ip_perfmon_idx == NULL) {
tegra_hwpm_err(hwpm, "pointer for ip_perfmon_idx is NULL");
return -EINVAL;
}
/* Validate phys_addr falls in IP address range */
if ((base_addr < chip_ip->perfmon_range_start) ||
(base_addr > chip_ip->perfmon_range_end)) {
tegra_hwpm_dbg(hwpm, hwpm_info,
"phys address 0x%llx not in IP %d",
base_addr, ip_index);
return -ENODEV;
}
/* Find IP instance for given phys_address */
/*
* Since all IP instances are configured to be in consecutive memory,
* instance index can be found using instance physical address stride.
*/
addr_offset = tegra_hwpm_safe_sub_u64(
base_addr, chip_ip->perfmon_range_start);
perfmon_idx = tegra_hwpm_safe_cast_u64_to_u32(
addr_offset / chip_ip->inst_perfmon_stride);
/* Make sure instance index is valid */
if (perfmon_idx >= chip_ip->num_perfmon_slots) {
tegra_hwpm_err(hwpm,
"IP:%d -> base addr 0x%llx is out of bounds",
ip_index, base_addr);
return -EINVAL;
}
/* Validate IP instance perfmon start address = given phys addr */
perfmon = chip_ip->ip_perfmon[perfmon_idx];
if (perfmon == NULL) {
/*
* This a valid case. For example, not all MSS base addresses
* are shared between MSS IPs.
*/
tegra_hwpm_dbg(hwpm, hwpm_info,
"For addr 0x%llx IP %d perfmon_idx %d not populated",
base_addr, ip_index, perfmon_idx);
return -ENODEV;
}
if (base_addr != perfmon->start_abs_pa) {
tegra_hwpm_dbg(hwpm, hwpm_info,
"base addr 0x%llx != perfmon abs addr", base_addr);
return -EINVAL;
}
*ip_perfmon_idx = perfmon_idx;
return 0;
}
/*
* This function finds the IP perfmux index corresponding to given base address.
* Perfmux aperture belongs to IP domain and contains IP instance info
* wrt base address.
* Return instance index
*/
static int tegra_hwpm_find_ip_perfmux_index(struct tegra_soc_hwpm *hwpm,
u64 base_addr, u32 ip_index, u32 *ip_perfmux_idx)
{
struct tegra_soc_hwpm_chip *active_chip = hwpm->active_chip;
struct hwpm_ip *chip_ip = active_chip->chip_ips[ip_index];
u32 perfmux_idx;
u64 addr_offset = 0ULL;
hwpm_ip_perfmux *perfmux = NULL;
tegra_hwpm_fn(hwpm, " ");
if (ip_perfmux_idx == NULL) {
tegra_hwpm_err(hwpm, "pointer for ip_perfmux_idx is NULL");
return -EINVAL;
}
/* Validate phys_addr falls in IP address range */
if ((base_addr < chip_ip->perfmux_range_start) ||
(base_addr > chip_ip->perfmux_range_end)) {
tegra_hwpm_dbg(hwpm, hwpm_info,
"phys address 0x%llx not in IP %d",
base_addr, ip_index);
return -ENODEV;
}
/* Find IP instance for given phys_address */
/*
* Since all IP instances are configured to be in consecutive memory,
* instance index can be found using instance physical address stride.
*/
addr_offset = tegra_hwpm_safe_sub_u64(
base_addr, chip_ip->perfmux_range_start);
perfmux_idx = tegra_hwpm_safe_cast_u64_to_u32(
addr_offset / chip_ip->inst_perfmux_stride);
/* Make sure instance index is valid */
if (perfmux_idx >= chip_ip->num_perfmux_slots) {
tegra_hwpm_err(hwpm,
"IP:%d -> base addr 0x%llx is out of bounds",
ip_index, base_addr);
return -EINVAL;
}
/* Validate IP instance perfmux start address = given phys addr */
perfmux = chip_ip->ip_perfmux[perfmux_idx];
if (perfmux == NULL) {
/*
* This a valid case. For example, not all MSS base addresses
* are shared between MSS IPs.
*/
tegra_hwpm_dbg(hwpm, hwpm_info,
"For addr 0x%llx IP %d perfmux_idx %d not populated",
base_addr, ip_index, perfmux_idx);
return -ENODEV;
}
if (base_addr != perfmux->start_abs_pa) {
tegra_hwpm_dbg(hwpm, hwpm_info,
"base addr 0x%llx != perfmux abs addr", base_addr);
return -EINVAL;
}
*ip_perfmux_idx = perfmux_idx;
return 0;
}
static int tegra_hwpm_update_ip_floorsweep_mask(struct tegra_soc_hwpm *hwpm,
u32 ip_idx, u32 hw_inst_mask, bool available)
{
struct tegra_soc_hwpm_chip *active_chip = hwpm->active_chip;
struct hwpm_ip *chip_ip = active_chip->chip_ips[ip_idx];
tegra_hwpm_fn(hwpm, " ");
/* Update floorsweep info */
if (available) {
chip_ip->fs_mask |= hw_inst_mask;
} else {
chip_ip->fs_mask &= ~(hw_inst_mask);
}
return 0;
}
static int tegra_hwpm_update_ip_ops_info(struct tegra_soc_hwpm *hwpm,
struct tegra_soc_hwpm_ip_ops *hwpm_ip_ops,
u32 ip_idx, u32 ip_perfmux_idx, bool available)
{
u32 perfmux_idx, max_num_perfmux = 0U;
struct tegra_soc_hwpm_chip *active_chip = hwpm->active_chip;
struct hwpm_ip *chip_ip = active_chip->chip_ips[ip_idx];
struct tegra_hwpm_ip_ops *ip_ops;
hwpm_ip_perfmux *given_perfmux = chip_ip->ip_perfmux[ip_perfmux_idx];
hwpm_ip_perfmux *perfmux = NULL;
tegra_hwpm_fn(hwpm, " ");
/* Update IP ops info for all perfmuxes in the instance */
max_num_perfmux = tegra_hwpm_safe_mult_u32(
chip_ip->num_instances, chip_ip->num_perfmux_per_inst);
for (perfmux_idx = 0U; perfmux_idx < max_num_perfmux; perfmux_idx++) {
perfmux = &chip_ip->perfmux_static_array[perfmux_idx];
if (perfmux->hw_inst_mask != given_perfmux->hw_inst_mask) {
continue;
}
ip_ops = &perfmux->ip_ops;
if (available) {
ip_ops->ip_dev = hwpm_ip_ops->ip_dev;
ip_ops->hwpm_ip_pm = hwpm_ip_ops->hwpm_ip_pm;
ip_ops->hwpm_ip_reg_op = hwpm_ip_ops->hwpm_ip_reg_op;
} else {
ip_ops->ip_dev = NULL;
ip_ops->hwpm_ip_pm = NULL;
ip_ops->hwpm_ip_reg_op = NULL;
}
}
return 0;
}
/*
* Find IP hw instance mask and update IP floorsweep info and IP ops.
*/
int tegra_hwpm_set_fs_info_ip_ops(struct tegra_soc_hwpm *hwpm,
struct tegra_soc_hwpm_ip_ops *hwpm_ip_ops,
u64 base_address, u32 ip_idx, bool available)
{
int ret = 0;
u32 perfmux_idx = 0U, perfmon_idx = 0U;
struct tegra_soc_hwpm_chip *active_chip = NULL;
struct hwpm_ip *chip_ip = NULL;
hwpm_ip_perfmux *perfmux = NULL;
hwpm_ip_perfmon *perfmon = NULL;
tegra_hwpm_fn(hwpm, " ");
if (hwpm->active_chip == NULL) {
tegra_hwpm_err(hwpm, "chip struct not populated");
return -ENODEV;
}
active_chip = hwpm->active_chip;
if (ip_idx == TEGRA_SOC_HWPM_IP_INACTIVE) {
tegra_hwpm_err(hwpm, "invalid ip_idx %d", ip_idx);
return -EINVAL;
}
chip_ip = active_chip->chip_ips[ip_idx];
if (chip_ip == NULL) {
tegra_hwpm_err(hwpm, "IP %d not populated", ip_idx);
return -ENODEV;
}
if (chip_ip->override_enable) {
/* This IP should not be configured for HWPM */
tegra_hwpm_dbg(hwpm, hwpm_info,
"IP %d enable override", ip_idx);
return 0; /* Should this be notified to caller or ignored */
}
if (chip_ip->num_perfmux_per_inst != 0U) {
/* Step 1: find IP hw instance mask using perfmux */
ret = tegra_hwpm_find_ip_perfmux_index(hwpm,
base_address, ip_idx, &perfmux_idx);
if (ret != 0) {
/* Error will be printed handled by parent function */
goto fail;
}
perfmux = chip_ip->ip_perfmux[perfmux_idx];
/* Step 2: Update IP floorsweep info */
ret = tegra_hwpm_update_ip_floorsweep_mask(
hwpm, ip_idx, perfmux->hw_inst_mask, available);
if (ret != 0) {
tegra_hwpm_err(hwpm, "IP %d perfmux %d base 0x%llx: "
"FS mask update failed",
ip_idx, perfmux_idx, base_address);
goto fail;
}
if (hwpm_ip_ops != NULL) {
/* Update IP ops */
ret = tegra_hwpm_update_ip_ops_info(hwpm, hwpm_ip_ops,
ip_idx, perfmux_idx, available);
if (ret != 0) {
tegra_hwpm_err(hwpm,
"IP %d perfmux %d: Failed to update ip_ops",
ip_idx, perfmux_idx);
goto fail;
}
}
} else {
/* Step 1: find IP hw instance mask using perfmon */
ret = tegra_hwpm_find_ip_perfmon_index(hwpm,
base_address, ip_idx, &perfmon_idx);
if (ret != 0) {
/* Error will be printed handled by parent function */
goto fail;
}
perfmon = chip_ip->ip_perfmon[perfmon_idx];
/* Step 2: Update IP floorsweep info */
ret = tegra_hwpm_update_ip_floorsweep_mask(
hwpm, ip_idx, perfmon->hw_inst_mask, available);
if (ret != 0) {
tegra_hwpm_err(hwpm, "IP %d perfmon %d base 0x%llx: "
"FS mask update failed",
ip_idx, perfmon_idx, base_address);
goto fail;
}
}
fail:
return ret;
}
static int tegra_hwpm_complete_ip_register(struct tegra_soc_hwpm *hwpm)
{
int ret = 0;
struct hwpm_ip_register_list *node = ip_register_list_head;
tegra_hwpm_fn(hwpm, " ");
while (node != NULL) {
tegra_hwpm_dbg(hwpm, hwpm_info, "IP ext idx %d info",
node->ip_ops.ip_index);
ret = hwpm->active_chip->extract_ip_ops(
hwpm, &node->ip_ops, true);
if (ret != 0) {
tegra_hwpm_err(hwpm, "Failed to extract IP ops");
return ret;
}
node = node->next;
}
return ret;
}
/*
* There are 3 ways to get info about available IPs
* 1. IP register to HWPM driver
* 2. IP register to HWPM before HWPM driver is probed
* 3. Force enabled IPs
*
* This function will handle case 2 and 3
*/
int tegra_hwpm_finalize_chip_info(struct tegra_soc_hwpm *hwpm)
{
int ret = 0;
tegra_hwpm_fn(hwpm, " ");
/*
* Go through IP registration requests received before HWPM
* driver was probed.
*/
ret = tegra_hwpm_complete_ip_register(hwpm);
if (ret != 0) {
tegra_hwpm_err(hwpm, "Failed register IPs");
return ret;
}
ret = hwpm->active_chip->force_enable_ips(hwpm);
if (ret != 0) {
tegra_hwpm_err(hwpm, "Failed to force enable IPs");
return ret;
}
return ret;
}