nvidia-oot: bmi088: Use HTE driver

Refactor BMI088 driver to use HTE APIs instead of GTE

Bug 3961133

Change-Id: Idc87574399b5e9d2f907e37b2615ea3d540ceba7
Signed-off-by: Gautham Srinivasan <gauthams@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nv-oot/+/3062386
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Reviewed-by: Dipen Patel <dipenp@nvidia.com>
GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
This commit is contained in:
Gautham Srinivasan
2024-01-25 00:39:19 +00:00
committed by mobile promotions
parent 17e0946ce0
commit cccf65a229
3 changed files with 138 additions and 267 deletions

View File

@@ -1,5 +1,5 @@
// SPDX-License-Identifier: GPL-2.0-only // SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // SPDX-FileCopyrightText: Copyright (c) 2023-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
/* Device tree example: /* Device tree example:
* *
@@ -7,8 +7,8 @@
* compatible = "bmi,bmi088"; * compatible = "bmi,bmi088";
* reg = <0x69>; // <-- Must be gyroscope I2C address * reg = <0x69>; // <-- Must be gyroscope I2C address
* accel_i2c_addr = <0x19>; // Must be specified * accel_i2c_addr = <0x19>; // Must be specified
* accel_irq_gpio = <&tegra_gpio TEGRA_GPIO(BB, 0) GPIO_ACTIVE_HIGH>; * accel_irq-gpios = <&tegra_gpio TEGRA_GPIO(BB, 0) GPIO_ACTIVE_HIGH>;
* gyro_irq_gpio = <&tegra_gpio TEGRA_GPIO(BB, 1) GPIO_ACTIVE_HIGH>; * gyro_irq-gpios = <&tegra_gpio TEGRA_GPIO(BB, 1) GPIO_ACTIVE_HIGH>;
* accel_matrix = [01 00 00 00 01 00 00 00 01]; * accel_matrix = [01 00 00 00 01 00 00 00 01];
* gyro_matrix = [01 00 00 00 01 00 00 00 01]; * gyro_matrix = [01 00 00 00 01 00 00 00 01];
* }; * };
@@ -27,8 +27,8 @@
#include <linux/gpio.h> #include <linux/gpio.h>
#include <linux/of_gpio.h> #include <linux/of_gpio.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/tegra-gte.h>
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/hte.h>
#include "bmi_iio.h" #include "bmi_iio.h"
#define BMI_NAME "bmi088" #define BMI_NAME "bmi088"
@@ -109,22 +109,17 @@
#define BMI_PART_BMI088 (0) #define BMI_PART_BMI088 (0)
#define HTE_TIMEOUT (msecs_to_jiffies(100))
static const struct i2c_device_id bmi_i2c_device_ids[] = { static const struct i2c_device_id bmi_i2c_device_ids[] = {
{ BMI_NAME, BMI_PART_BMI088 }, { BMI_NAME, BMI_PART_BMI088 },
{}, {},
}; };
static char *gte_hw_str_t194 = "nvidia,tegra194-gte-aon"; struct bmi_gpio_irq {
static char *gte_hw_str_t234 = "nvidia,tegra234-gte-aon"; struct gpio_desc *gpio_in;
static struct device_node *gte_nd;
struct bmi_gte_irq {
struct tegra_gte_ev_desc *gte;
const char *dev_name; const char *dev_name;
int gpio;
int irq; int irq;
u64 irq_ts;
u64 irq_ts_old;
}; };
struct bmi_reg_rd { struct bmi_reg_rd {
@@ -413,18 +408,21 @@ struct bmi_snsr {
struct sensor_cfg cfg; struct sensor_cfg cfg;
unsigned int usr_cfg; unsigned int usr_cfg;
unsigned int period_us; unsigned int period_us;
u64 irq_ts;
u64 irq_ts_old;
u64 seq;
struct completion hte_ts_cmpl;
struct bmi_gpio_irq gis;
struct bmi_state *st;
}; };
struct bmi_state { struct bmi_state {
struct i2c_client *i2c; struct i2c_client *i2c;
struct bmi_snsr snsrs[BMI_HW_N]; struct bmi_snsr snsrs[BMI_HW_N];
struct bmi_gte_irq gis[BMI_HW_N];
bool iio_init_done[BMI_HW_N]; bool iio_init_done[BMI_HW_N];
unsigned int part; unsigned int part;
unsigned int sts; unsigned int sts;
unsigned int errs_bus[BMI_HW_N]; unsigned int errs_bus[BMI_HW_N];
unsigned int err_ts_thread[BMI_HW_N];
unsigned int sam_dropped[BMI_HW_N];
unsigned int enabled; unsigned int enabled;
unsigned int suspend_en_st; unsigned int suspend_en_st;
unsigned int hw_n; unsigned int hw_n;
@@ -539,141 +537,36 @@ static int bmi_i2c_wr(struct bmi_state *st, unsigned int hw, u8 reg, u8 val)
return ret; return ret;
} }
static void bmi_gte_exit_gpio(struct bmi_gte_irq *ngi, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++) {
if (ngi[i].gpio >= 0)
gpio_free(ngi[i].gpio);
}
}
static int bmi_gte_init_gpio2irq(struct device *dev, struct bmi_gte_irq *ngi,
unsigned int n)
{
unsigned int i;
unsigned int prev;
int ret;
for (i = 0; i < n; i++) {
if (!gpio_is_valid(ngi[i].gpio) ||
gpio_request(ngi[i].gpio, ngi[i].dev_name)) {
ret = -EPROBE_DEFER;
if (!i) {
goto out_no_prev;
} else {
prev = i - 1;
goto out;
}
}
ret = gpio_direction_input(ngi[i].gpio);
if (ret < 0) {
dev_err(dev, "%s gpio_dir_input(%d) ERR:%d\n",
ngi[i].dev_name, ngi[i].gpio, ret);
ret = -ENODEV;
if (!i)
prev = i;
else
prev = i - 1;
goto out;
}
ret = gpio_to_irq(ngi[i].gpio);
if (ret <= 0) {
dev_err(dev, "%s gpio_to_irq(%d) ERR:%d\n",
ngi[i].dev_name, ngi[i].gpio, ret);
ret = -ENODEV;
if (!i)
prev = i;
else
prev = i - 1;
goto out;
}
ngi[i].irq = ret;
ret = 0;
}
return ret;
out:
bmi_gte_exit_gpio(ngi, prev);
out_no_prev:
return ret;
}
static int bmi_gte_ts(struct bmi_gte_irq *ngi)
{
struct tegra_gte_ev_desc *desc = (struct tegra_gte_ev_desc *)ngi->gte;
struct tegra_gte_ev_detail dtl;
int ret;
ret = tegra_gte_retrieve_event(desc, &dtl);
if (!ret)
ngi->irq_ts = dtl.ts_ns;
return ret;
}
static inline int bmi_gte_deinit(struct bmi_gte_irq *ngi)
{
int ret = 0;
if (ngi->gte) {
ret = tegra_gte_unregister_event(ngi->gte);
ngi->gte = NULL;
}
return ret;
}
static void bmi_gte_gpio_exit(struct bmi_state *st, unsigned int n)
{
unsigned int i;
struct bmi_gte_irq *ngi = st->gis;
if (gte_nd) {
of_node_put(gte_nd);
gte_nd = NULL;
}
for (i = 0; i < n; i++) {
bmi_gte_deinit(&ngi[i]);
if (ngi[i].gpio >= 0)
gpio_free(ngi[i].gpio);
}
}
static int bmi_gte_init(struct bmi_state *st, unsigned int id)
{
int ret = 0;
struct bmi_gte_irq *ngi = st->gis;
if (!ngi[id].gte) {
ngi[id].gte = tegra_gte_register_event(gte_nd, ngi[id].gpio);
if (!ngi[id].gte)
ret = -ENODEV;
}
return ret;
}
static int bmi_setup_gpio(struct device *dev, struct bmi_state *st, static int bmi_setup_gpio(struct device *dev, struct bmi_state *st,
unsigned int n) unsigned int n)
{ {
unsigned int i; unsigned int i;
struct bmi_gte_irq *ngi = st->gis; struct bmi_snsr *snsrs = st->snsrs;
int ret;
for (i = 0; i < n; i++) for (i = 0; i < n; i++) {
ngi[i].irq = -1; snsrs[i].gis.irq = -1;
if ((snsrs[i].gis.gpio_in)) {
ret = gpiod_direction_input(snsrs[i].gis.gpio_in);
return bmi_gte_init_gpio2irq(dev, ngi, n); if (ret < 0) {
dev_err(dev, "%s gpio_dir_input ERR:%d\n",
snsrs[i].gis.dev_name, ret);
return ret;
}
ret = gpiod_to_irq(snsrs[i].gis.gpio_in);
if (ret < 0) {
dev_err(dev, "%s gpio_to_irq ERR:%d\n",
snsrs[i].gis.dev_name, ret);
return ret;
}
snsrs[i].gis.irq = ret;
}
}
return 0;
} }
static int bmi_pm(struct bmi_state *st, int snsr_id, bool en) static int bmi_pm(struct bmi_state *st, int snsr_id, bool en)
@@ -969,17 +862,32 @@ static unsigned long bmi_gyr_irqflags(struct bmi_state *st)
return irqflags; return irqflags;
} }
static enum hte_return process_hw_ts(struct hte_ts_data *ts, void *p)
{
struct bmi_snsr *sensor = (struct bmi_snsr *)p;
struct bmi_state *st = sensor->st;
sensor->irq_ts = ts->tsc;
sensor->seq = ts->seq;
complete(&sensor->hte_ts_cmpl);
dev_dbg_ratelimited(&st->i2c->dev, "%s: seq %llu, ts:%llu\n",
__func__, sensor->seq, sensor->irq_ts);
return HTE_CB_HANDLED;
}
static irqreturn_t bmi_irq_thread(int irq, void *dev_id) static irqreturn_t bmi_irq_thread(int irq, void *dev_id)
{ {
struct bmi_state *st = (struct bmi_state *)dev_id; struct bmi_snsr *sensor = (struct bmi_snsr *)dev_id;
struct bmi_state *st = sensor->st;
unsigned int hw; unsigned int hw;
int ret; int ret;
u8 reg; u8 reg;
u8 sample[BMI_IMU_DATA]; u8 sample[BMI_IMU_DATA];
int cnt = 0;
u64 ts_old;
if (irq == st->gis[BMI_HW_GYR].irq) { if (irq == st->snsrs[BMI_HW_GYR].gis.irq) {
hw = BMI_HW_GYR; hw = BMI_HW_GYR;
reg = BMI_REG_GYR_DATA; reg = BMI_REG_GYR_DATA;
} else { } else {
@@ -987,7 +895,7 @@ static irqreturn_t bmi_irq_thread(int irq, void *dev_id)
reg = BMI_REG_ACC_DATA; reg = BMI_REG_ACC_DATA;
} }
/* Disbale data ready interrupt before we read out data */ /* Disable data ready interrupt before we read out data */
ret = bmi_hws[hw].fn_able(st, 0, true); ret = bmi_hws[hw].fn_able(st, 0, true);
if (unlikely(ret)) { if (unlikely(ret)) {
dev_err_ratelimited(&st->i2c->dev, dev_err_ratelimited(&st->i2c->dev,
@@ -995,71 +903,31 @@ static irqreturn_t bmi_irq_thread(int irq, void *dev_id)
goto err; goto err;
} }
ts_old = st->gis[hw].irq_ts_old; /* Wait for HTE IRQ to fetch the latest timestamp */
ret = wait_for_completion_interruptible_timeout(&sensor->hte_ts_cmpl, HTE_TIMEOUT);
/* if (!ret) {
* There is a possibility that data ready IRQ may have caused GTE to dev_dbg_ratelimited(&st->i2c->dev,
* store the timestamps by the time this thread got a chance to run "sample dropped due to timeout");
* and disable IRQ especially for the high data rate, in that case, goto err;
* drain the GTE till it returns error and use last timestamp to
* associate the data to be read.
*/
while (bmi_gte_ts(&st->gis[hw]) == 0)
cnt++;
/* Means we failed to get the ts in the first go */
if (!st->gis[hw].irq_ts && !cnt) {
dev_dbg(&st->i2c->dev, "sample dropped, gte get ts failed\n");
st->sam_dropped[hw]++;
goto out;
}
/*
* If ts is same as old or 0, something is seriously wrong,
* re-register with gte
*/
if ((st->gis[hw].irq_ts_old == st->gis[hw].irq_ts) ||
(!st->gis[hw].irq_ts && cnt)) {
dev_dbg(&st->i2c->dev,
"ts issue for: %d, ts old: %llu, new: %llu\n",
hw, st->gis[hw].irq_ts_old, st->gis[hw].irq_ts);
st->err_ts_thread[hw]++;
st->sam_dropped[hw]++;
dev_dbg(&st->i2c->dev, "sample dropped due to ts issues\n");
/* Re-register with GTE */
bmi_gte_deinit(&st->gis[hw]);
ret = bmi_gte_init(st, hw);
if (ret) {
dev_err_ratelimited(&st->i2c->dev,
"GTE re-registration failed: %d\n",
hw);
goto err;
}
goto out;
} }
mutex_lock(BMI_MUTEX(st->snsrs[hw].bmi_iio)); mutex_lock(BMI_MUTEX(st->snsrs[hw].bmi_iio));
ret = bmi_i2c_rd(st, hw, reg, sizeof(sample), sample); ret = bmi_i2c_rd(st, hw, reg, sizeof(sample), sample);
mutex_unlock(BMI_MUTEX(st->snsrs[hw].bmi_iio));
if (!ret) { if (!ret) {
bmi_iio_push_buf(st->snsrs[hw].bmi_iio, sample, bmi_iio_push_buf(st->snsrs[hw].bmi_iio, sample,
st->gis[hw].irq_ts); sensor->irq_ts);
st->gis[hw].irq_ts_old = st->gis[hw].irq_ts; dev_dbg(&st->i2c->dev, "%d, ts= %lld ts_old= %lld\n",
hw, sensor->irq_ts, sensor->irq_ts_old);
sensor->irq_ts_old = sensor->irq_ts;
} }
dev_dbg(&st->i2c->dev, "%d, ts= %lld, ts_old=%lld\n", mutex_unlock(BMI_MUTEX(st->snsrs[hw].bmi_iio));
hw, st->gis[hw].irq_ts, ts_old);
out: /* Enable data ready interrupt */
st->gis[hw].irq_ts = 0;
bmi_hws[hw].fn_able(st, 1, true); bmi_hws[hw].fn_able(st, 1, true);
err: err:
return IRQ_HANDLED; return IRQ_HANDLED;
} }
@@ -1074,7 +942,7 @@ static int bmi_period(struct bmi_state *st, int snsr_id, bool range)
range); range);
} }
static int bmi_enable(void *client, int snsr_id, int enable, bool is_gte) static int bmi_enable(void *client, int snsr_id, int enable)
{ {
struct bmi_state *st = (struct bmi_state *)client; struct bmi_state *st = (struct bmi_state *)client;
int ret; int ret;
@@ -1086,20 +954,10 @@ static int bmi_enable(void *client, int snsr_id, int enable, bool is_gte)
return (st->enabled & (1 << snsr_id)); return (st->enabled & (1 << snsr_id));
if (enable) { if (enable) {
if (is_gte) {
ret = bmi_gte_init(st, snsr_id);
if (ret)
return ret;
}
enable = st->enabled | (1 << snsr_id); enable = st->enabled | (1 << snsr_id);
ret = bmi_pm(st, snsr_id, true); ret = bmi_pm(st, snsr_id, true);
if (ret < 0) { if (ret < 0)
if (is_gte)
bmi_gte_deinit(&st->gis[snsr_id]);
return ret; return ret;
}
ret = bmi_period(st, snsr_id, true); ret = bmi_period(st, snsr_id, true);
ret |= bmi_hws[snsr_id].fn_able(st, 1, false); ret |= bmi_hws[snsr_id].fn_able(st, 1, false);
@@ -1109,9 +967,6 @@ static int bmi_enable(void *client, int snsr_id, int enable, bool is_gte)
} }
} }
if (is_gte)
bmi_gte_deinit(&st->gis[snsr_id]);
ret = bmi_hws[snsr_id].fn_able(st, 0, false); ret = bmi_hws[snsr_id].fn_able(st, 0, false);
ret |= bmi_pm(st, snsr_id, false); ret |= bmi_pm(st, snsr_id, false);
@@ -1304,11 +1159,6 @@ static int bmi_read_err(void *client, int snsr_id, char *buf)
t += snprintf(buf, PAGE_SIZE, "%s:\n", st->snsrs[snsr_id].cfg.name); t += snprintf(buf, PAGE_SIZE, "%s:\n", st->snsrs[snsr_id].cfg.name);
t += snprintf(buf + t, PAGE_SIZE - t, t += snprintf(buf + t, PAGE_SIZE - t,
"I2C Bus Errors:%u\n", st->errs_bus[snsr_id]); "I2C Bus Errors:%u\n", st->errs_bus[snsr_id]);
t += snprintf(buf + t, PAGE_SIZE - t,
"GTE Timestamp Errors:%u\n", st->err_ts_thread[snsr_id]);
t += snprintf(buf + t, PAGE_SIZE - t,
"Sample dropped:%u\n", st->sam_dropped[snsr_id]);
return t; return t;
} }
@@ -1391,11 +1241,9 @@ static int __maybe_unused bmi_suspend(struct device *dev)
for (i = 0; i < st->hw_n; i++) { for (i = 0; i < st->hw_n; i++) {
mutex_lock(BMI_MUTEX(st->snsrs[i].bmi_iio)); mutex_lock(BMI_MUTEX(st->snsrs[i].bmi_iio));
/* check if sensor is enabled to begin with */ /* check if sensor is enabled to begin with */
old_en_st = bmi_enable(st, st->snsrs[i].cfg.snsr_id, -1, old_en_st = bmi_enable(st, st->snsrs[i].cfg.snsr_id, -1);
false);
if (old_en_st) { if (old_en_st) {
temp_ret = bmi_enable(st, st->snsrs[i].cfg.snsr_id, 0, temp_ret = bmi_enable(st, st->snsrs[i].cfg.snsr_id, 0);
false);
if (!temp_ret) if (!temp_ret)
st->suspend_en_st |= old_en_st; st->suspend_en_st |= old_en_st;
@@ -1417,8 +1265,7 @@ static int __maybe_unused bmi_resume(struct device *dev)
for (i = 0; i < st->hw_n; i++) { for (i = 0; i < st->hw_n; i++) {
mutex_lock(BMI_MUTEX(st->snsrs[i].bmi_iio)); mutex_lock(BMI_MUTEX(st->snsrs[i].bmi_iio));
if (st->suspend_en_st & (1 << st->snsrs[i].cfg.snsr_id)) if (st->suspend_en_st & (1 << st->snsrs[i].cfg.snsr_id))
ret |= bmi_enable(st, st->snsrs[i].cfg.snsr_id, 1, ret |= bmi_enable(st, st->snsrs[i].cfg.snsr_id, 1);
false);
mutex_unlock(BMI_MUTEX(st->snsrs[i].bmi_iio)); mutex_unlock(BMI_MUTEX(st->snsrs[i].bmi_iio));
} }
@@ -1439,8 +1286,8 @@ static void bmi_shutdown(struct i2c_client *client)
if (st->iio_init_done[i]) if (st->iio_init_done[i])
mutex_lock(BMI_MUTEX(st->snsrs[i].bmi_iio)); mutex_lock(BMI_MUTEX(st->snsrs[i].bmi_iio));
if (bmi_enable(st, st->snsrs[i].cfg.snsr_id, -1, false)) if (bmi_enable(st, st->snsrs[i].cfg.snsr_id, -1))
bmi_enable(st, st->snsrs[i].cfg.snsr_id, 0, false); bmi_enable(st, st->snsrs[i].cfg.snsr_id, 0);
if (st->iio_init_done[i]) { if (st->iio_init_done[i]) {
mutex_unlock(BMI_MUTEX(st->snsrs[i].bmi_iio)); mutex_unlock(BMI_MUTEX(st->snsrs[i].bmi_iio));
@@ -1456,7 +1303,6 @@ static void bmi_remove(void *data)
if (st != NULL) { if (st != NULL) {
bmi_shutdown(client); bmi_shutdown(client);
bmi_gte_gpio_exit(st, BMI_HW_N);
for (i = 0; i < st->hw_n; i++) { for (i = 0; i < st->hw_n; i++) {
if (st->iio_init_done[i]) if (st->iio_init_done[i])
bmi_iio_remove(st->snsrs[i].bmi_iio); bmi_iio_remove(st->snsrs[i].bmi_iio);
@@ -1482,8 +1328,18 @@ static int bmi_of_dt(struct bmi_state *st, struct device_node *dn)
return -ENODEV; return -ENODEV;
} }
st->gis[BMI_HW_ACC].gpio = of_get_named_gpio(dn, "accel_irq_gpio", 0);
st->gis[BMI_HW_GYR].gpio = of_get_named_gpio(dn, "gyro_irq_gpio", 0); st->snsrs[BMI_HW_ACC].gis.gpio_in = devm_gpiod_get(&st->i2c->dev, "accel_irq", 0);
if (IS_ERR(st->snsrs[BMI_HW_ACC].gis.gpio_in)) {
dev_err(&st->i2c->dev, "accel_irq is not set in DT\n");
return PTR_ERR(st->snsrs[BMI_HW_ACC].gis.gpio_in);
}
st->snsrs[BMI_HW_GYR].gis.gpio_in = devm_gpiod_get(&st->i2c->dev, "gyro_irq", 0);
if (IS_ERR(st->snsrs[BMI_HW_GYR].gis.gpio_in)) {
dev_err(&st->i2c->dev, "gyro_irq is not set in DT\n");
return PTR_ERR(st->snsrs[BMI_HW_GYR].gis.gpio_in);
}
if (!of_property_read_u32(dn, "accel_reg_0x53", &val32)) if (!of_property_read_u32(dn, "accel_reg_0x53", &val32))
st->ra_0x53 = (u8)val32; st->ra_0x53 = (u8)val32;
@@ -1523,14 +1379,11 @@ static int bmi_init(struct bmi_state *st, const struct i2c_device_id *id)
unsigned long irqflags; unsigned long irqflags;
unsigned int i; unsigned int i;
int ret; int ret;
struct hte_ts_desc *desc;
if (id == NULL) if (id == NULL)
return -EINVAL; return -EINVAL;
/* driver specific defaults */
for (i = 0; i < BMI_HW_N; i++)
st->gis[i].gpio = -1;
st->ra_0x53 = BMI_INT1_OUT_ACTIVE_HIGH; st->ra_0x53 = BMI_INT1_OUT_ACTIVE_HIGH;
st->ra_0x54 = 0x00; st->ra_0x54 = 0x00;
st->ra_0x58 = BMI_INT1_DTRDY; st->ra_0x58 = BMI_INT1_DTRDY;
@@ -1547,13 +1400,6 @@ static int bmi_init(struct bmi_state *st, const struct i2c_device_id *id)
return ret; return ret;
} }
/*
* Only interrupt mode is supported as we want hardware timestamps
* from GTE.
*/
if (st->gis[BMI_HW_ACC].gpio < 0 || st->gis[BMI_HW_GYR].gpio < 0)
return -EINVAL;
st->part = id->driver_data; st->part = id->driver_data;
st->i2c_addrs[BMI_HW_GYR] = st->i2c->addr; st->i2c_addrs[BMI_HW_GYR] = st->i2c->addr;
ret = bmi_reset_all(st); ret = bmi_reset_all(st);
@@ -1582,31 +1428,63 @@ static int bmi_init(struct bmi_state *st, const struct i2c_device_id *id)
st->snsrs[i].cfg.part = bmi_i2c_device_ids[st->part].name; st->snsrs[i].cfg.part = bmi_i2c_device_ids[st->part].name;
st->snsrs[i].rrs = &bmi_hws[i].rrs[st->part]; st->snsrs[i].rrs = &bmi_hws[i].rrs[st->part];
bmi_max_range(st, i, st->snsrs[i].cfg.max_range.ival); bmi_max_range(st, i, st->snsrs[i].cfg.max_range.ival);
st->gis[i].dev_name = st->snsrs[i].cfg.name; st->snsrs[i].gis.dev_name = st->snsrs[i].cfg.name;
st->gis[i].gte = NULL;
st->iio_init_done[i] = true; st->iio_init_done[i] = true;
st->snsrs[i].st = st;
init_completion(&st->snsrs[i].hte_ts_cmpl);
} }
ret = bmi_setup_gpio(&st->i2c->dev, st, st->hw_n); ret = bmi_setup_gpio(&st->i2c->dev, st, st->hw_n);
if (ret < 0) if (ret < 0)
return ret; return ret;
for (i = 0; i < st->hw_n; i++) {
desc = devm_kzalloc(&st->i2c->dev, sizeof(*desc)*BMI_HW_N, GFP_KERNEL);
if (!desc)
return -ENOMEM;
for (i = 0; i < BMI_HW_N; i++) {
if (bmi_hws[i].fn_irqflags) { if (bmi_hws[i].fn_irqflags) {
irqflags = bmi_hws[i].fn_irqflags(st); irqflags = bmi_hws[i].fn_irqflags(st);
ret = devm_request_threaded_irq(&st->i2c->dev, ret = devm_request_threaded_irq(&st->i2c->dev,
st->gis[i].irq, st->snsrs[i].gis.irq,
NULL, NULL,
bmi_irq_thread, bmi_irq_thread,
irqflags, irqflags,
st->gis[i].dev_name, st->snsrs[i].gis.dev_name,
st); &st->snsrs[i]);
if (ret) { if (ret) {
dev_err(&st->i2c->dev, dev_err(&st->i2c->dev,
"req_threaded_irq ERR %d\n", ret); "req_threaded_irq ERR %d\n", ret);
return ret; return ret;
} }
} }
ret = hte_init_line_attr(&desc[i], 0, 0, NULL,
st->snsrs[i].gis.gpio_in);
if (ret) {
dev_err(&st->i2c->dev,
"hte_init_line_attr ERR %d\n", ret);
return ret;
}
ret = hte_ts_get(&st->i2c->dev, &desc[i], i);
if (ret) {
dev_err(&st->i2c->dev,
"hte_ts_get ERR %d\n", ret);
return ret;
}
ret = devm_hte_request_ts_ns(&st->i2c->dev, &desc[i],
process_hw_ts, NULL,
&st->snsrs[i]);
if (ret) {
dev_err(&st->i2c->dev,
"devm_hte_request_ts_ns ERR %d\n", ret);
return ret;
}
} }
/* /*
@@ -1616,15 +1494,6 @@ static int bmi_init(struct bmi_state *st, const struct i2c_device_id *id)
for (i = 0; i < st->hw_n; i++) for (i = 0; i < st->hw_n; i++)
st->snsrs[i].period_us = st->snsrs[i].cfg.delay_us_max; st->snsrs[i].period_us = st->snsrs[i].cfg.delay_us_max;
gte_nd = of_find_compatible_node(NULL, NULL, gte_hw_str_t194);
if (!gte_nd)
gte_nd = of_find_compatible_node(NULL, NULL, gte_hw_str_t234);
if (!gte_nd) {
dev_err(&st->i2c->dev, "Failed to find GTE node\n");
return -ENODEV;
}
return ret; return ret;
} }

View File

@@ -1,5 +1,5 @@
// SPDX-License-Identifier: GPL-2.0-only // SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // SPDX-FileCopyrightText: Copyright (c) 2023-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#include <linux/init.h> #include <linux/init.h>
#include <linux/module.h> #include <linux/module.h>
@@ -164,6 +164,9 @@ int bmi_iio_push_buf(struct iio_dev *indio_dev, unsigned char *data, u64 ts)
if (!indio_dev || !data) if (!indio_dev || !data)
return -EINVAL; return -EINVAL;
if (!indio_dev->active_scan_mask)
return -EINVAL;
st = iio_priv(indio_dev); st = iio_priv(indio_dev);
if (!st) if (!st)
return -EINVAL; return -EINVAL;
@@ -201,8 +204,7 @@ static int bmi_iio_enable(struct iio_dev *indio_dev, bool en)
int bit; int bit;
if (!en) if (!en)
return st->fn_dev->enable(st->client, st->cfg->snsr_id, return st->fn_dev->enable(st->client, st->cfg->snsr_id, 0);
0, true);
if (indio_dev->num_channels > 1) { if (indio_dev->num_channels > 1) {
for_each_set_bit(bit, indio_dev->active_scan_mask, for_each_set_bit(bit, indio_dev->active_scan_mask,
@@ -213,7 +215,7 @@ static int bmi_iio_enable(struct iio_dev *indio_dev, bool en)
} }
return st->fn_dev->enable(st->client, st->cfg->snsr_id, enable, true); return st->fn_dev->enable(st->client, st->cfg->snsr_id, enable);
} }
static ssize_t bmi_iio_attr_store(struct device *dev, static ssize_t bmi_iio_attr_store(struct device *dev,
@@ -350,7 +352,7 @@ static inline int bmi_iio_check_enable(struct bmi_iio_state *st)
if (!st->fn_dev->enable) if (!st->fn_dev->enable)
return -EINVAL; return -EINVAL;
return st->fn_dev->enable(st->client, st->cfg->snsr_id, -1, false); return st->fn_dev->enable(st->client, st->cfg->snsr_id, -1);
} }
static int bmi_iio_read_raw(struct iio_dev *indio_dev, static int bmi_iio_read_raw(struct iio_dev *indio_dev,

View File

@@ -1,5 +1,5 @@
// SPDX-License-Identifier: GPL-2.0-only // SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // SPDX-FileCopyrightText: Copyright (c) 2023-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#ifndef _BMI_IIO_H_ #ifndef _BMI_IIO_H_
@@ -39,7 +39,7 @@ struct sensor_cfg {
struct iio_fn_dev { struct iio_fn_dev {
unsigned int *sts; unsigned int *sts;
int (*enable)(void *client, int snsr_id, int enable, bool is_gte); int (*enable)(void *client, int snsr_id, int enable);
int (*freq_read)(void *client, int snsr_id, int *val, int *val2); int (*freq_read)(void *client, int snsr_id, int *val, int *val2);
int (*freq_write)(void *client, int snsr_id, int val, int val2); int (*freq_write)(void *client, int snsr_id, int val, int val2);
int (*scale_write)(void *client, int snsr_id, int val, int val2); int (*scale_write)(void *client, int snsr_id, int val, int val2);