// SPDX-License-Identifier: GPL-2.0-only
/*
################################################################################
#
# r8126 is the Linux device driver released for Realtek 5 Gigabit Ethernet
# controllers with PCI-Express interface.
#
# Copyright(c) 2024 Realtek Semiconductor Corp. All rights reserved.
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, see .
#
# Author:
# Realtek NIC software team
# No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan
#
################################################################################
*/
/************************************************************************************
* This product is covered by one or more of the following patents:
* US6,570,884, US6,115,776, and US6,327,625.
***********************************************************************************/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "r8126.h"
#include "r8126_ptp.h"
static void rtl8126_wait_clkadj_ready(struct rtl8126_private *tp)
{
int i;
for (i = 0; i < R8126_CHANNEL_WAIT_COUNT; i++)
if (!(rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CLK_CFG_8126) & CLKADJ_MODE_SET))
break;
}
static void rtl8126_set_clkadj_mode(struct rtl8126_private *tp, u16 cmd)
{
rtl8126_clear_and_set_eth_phy_ocp_bit(tp,
PTP_CLK_CFG_8126,
BIT_3 | BIT_2 | BIT_1,
CLKADJ_MODE_SET | cmd);
rtl8126_wait_clkadj_ready(tp);
}
static int _rtl8126_phc_gettime(struct rtl8126_private *tp, struct timespec64 *ts64)
{
unsigned long flags;
spin_lock_irqsave(&tp->phy_lock, flags);
//Direct Read
rtl8126_set_clkadj_mode(tp, DIRECT_READ);
/* nanoseconds */
//Ns[29:16] E414[13:0]
ts64->tv_nsec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_NS_HI_8126) & 0x3fff;
ts64->tv_nsec <<= 16;
//Ns[15:0] E412[15:0]
ts64->tv_nsec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_NS_LO_8126);
/* seconds */
//S[47:32] E41A[15:0]
ts64->tv_sec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_S_HI_8126);
ts64->tv_sec <<= 16;
//S[31:16] E418[15:0]
ts64->tv_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_S_MI_8126);
ts64->tv_sec <<= 16;
//S[15:0] E416[15:0]
ts64->tv_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_S_LO_8126);
spin_unlock_irqrestore(&tp->phy_lock, flags);
return 0;
}
static int _rtl8126_phc_settime(struct rtl8126_private *tp, const struct timespec64 *ts64)
{
unsigned long flags;
spin_lock_irqsave(&tp->phy_lock, flags);
/* nanoseconds */
//Ns[15:0] E412[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_NS_LO_8126, ts64->tv_nsec);
//Ns[29:16] E414[13:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_NS_HI_8126, (ts64->tv_nsec & 0x3fff0000) >> 16);
/* seconds */
//S[15:0] E416[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_S_LO_8126, ts64->tv_sec);
//S[31:16] E418[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_S_MI_8126, (ts64->tv_sec >> 16));
//S[47:32] E41A[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_S_HI_8126, (ts64->tv_sec >> 32));
//Direct Write
rtl8126_set_clkadj_mode(tp, DIRECT_WRITE);
spin_unlock_irqrestore(&tp->phy_lock, flags);
return 0;
}
static int _rtl8126_phc_adjtime(struct rtl8126_private *tp, s64 delta)
{
unsigned long flags;
struct timespec64 d;
bool negative;
u64 tohw;
u32 nsec;
u64 sec;
if (delta < 0) {
negative = true;
tohw = -delta;
} else {
negative = false;
tohw = delta;
}
d = ns_to_timespec64(tohw);
nsec = d.tv_nsec;
sec = d.tv_sec;
nsec &= 0x3fffffff;
sec &= 0x0000ffffffffffff;
spin_lock_irqsave(&tp->phy_lock, flags);
/* nanoseconds */
//Ns[15:0] E412[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_NS_LO_8126, nsec);
//Ns[29:16] E414[13:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_NS_HI_8126, (nsec >> 16));
/* seconds */
//S[15:0] E416[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_S_LO_8126, sec);
//S[31:16] E418[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_S_MI_8126, (sec >> 16));
//S[47:32] E41A[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_S_HI_8126, (sec >> 32));
if (negative)
rtl8126_set_clkadj_mode(tp, DECREMENT_STEP);
else
rtl8126_set_clkadj_mode(tp, INCREMENT_STEP);
spin_unlock_irqrestore(&tp->phy_lock, flags);
return 0;
}
static int rtl8126_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
int ret;
//netif_info(tp, drv, tp->dev, "phc adjust time\n");
ret = _rtl8126_phc_adjtime(tp, delta);
return ret;
}
/*
* delta = delta * 10^6 ppm = delta * 10^9 ppb (in this equation ppm and ppb are not variable)
*
* in adjfreq ppb is a variable
* ppb = delta * 10^9
* delta = ppb / 10^9
* rate_value = |delta| * 2^32 = |ppb| / 10^9 * 2^32 = (|ppb| << 32) / 10^9
*/
static int _rtl8126_phc_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
unsigned long flags;
u32 rate_value;
if (ppb < 0) {
rate_value = ((u64)-ppb << 32) / 1000000000;
rate_value = ~rate_value + 1;
} else
rate_value = ((u64)ppb << 32) / 1000000000;
spin_lock_irqsave(&tp->phy_lock, flags);
/* nanoseconds */
//Ns[15:0] E412[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_NS_LO_8126, rate_value);
//Ns[22:16] E414[13:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CFG_NS_HI_8126, (rate_value & 0x003f0000) >> 16);
rtl8126_set_clkadj_mode(tp, RATE_WRITE);
spin_unlock_irqrestore(&tp->phy_lock, flags);
return 0;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(6,2,0)
static int rtl8126_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
if (ppb > ptp->max_adj || ppb < -ptp->max_adj)
return -EINVAL;
_rtl8126_phc_adjfreq(ptp, ppb);
return 0;
}
#else
static int rtl8126_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
{
//struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
//netif_info(tp, drv, tp->dev, "phc adjust freq\n");
if (delta > ptp->max_adj || delta < -ptp->max_adj)
return -EINVAL;
_rtl8126_phc_adjfreq(ptp, delta);
return 0;
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(6,2,0) */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0)
static int rtl8126_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts64,
struct ptp_system_timestamp *sts)
{
struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
int ret;
//netif_info(tp, drv, tp->dev, "phc get ts\n");
ptp_read_system_prets(sts);
ret = _rtl8126_phc_gettime(tp, ts64);
ptp_read_system_postts(sts);
return ret;
}
#else
static int rtl8126_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts64)
{
struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
int ret;
//netif_info(tp, drv, tp->dev, "phc get ts\n");
ret = _rtl8126_phc_gettime(tp, ts64);
return ret;
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0) */
static int rtl8126_phc_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts64)
{
struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
int ret;
//netif_info(tp, drv, tp->dev, "phc set ts\n");
ret = _rtl8126_phc_settime(tp, ts64);
return ret;
}
static void _rtl8126_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct rtl8126_private *tp = container_of(ptp, struct rtl8126_private, ptp_clock_info);
unsigned long flags;
u16 phy_ocp_data;
if (on) {
tp->pps_enable = 1;
rtl8126_clear_mac_ocp_bit(tp, 0xDC00, BIT_6);
rtl8126_clear_mac_ocp_bit(tp, 0xDC20, BIT_1);
spin_lock_irqsave(&tp->phy_lock, flags);
/* Set periodic pulse 1pps */
/* E432[8:0] = 0x017d */
phy_ocp_data = rtl8126_mdio_direct_read_phy_ocp(tp, 0xE432);
phy_ocp_data &= 0xFE00;
phy_ocp_data |= 0x017d;
rtl8126_mdio_direct_write_phy_ocp(tp, 0xE432, phy_ocp_data);
rtl8126_mdio_direct_write_phy_ocp(tp, 0xE434, 0x7840);
/* E436[8:0] = 0xbe */
phy_ocp_data = rtl8126_mdio_direct_read_phy_ocp(tp, 0xE436);
phy_ocp_data &= 0xFE00;
phy_ocp_data |= 0xbe;
rtl8126_mdio_direct_write_phy_ocp(tp, 0xE436, phy_ocp_data);
rtl8126_mdio_direct_write_phy_ocp(tp, 0xE438, 0xbc20);
spin_unlock_irqrestore(&tp->phy_lock, flags);
/* start hrtimer */
hrtimer_start(&tp->pps_timer, 1000000000, HRTIMER_MODE_REL);
} else
tp->pps_enable = 0;
}
static int rtl8126_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
switch (rq->type) {
case PTP_CLK_REQ_PPS:
_rtl8126_phc_enable(ptp, rq, on);
return 0;
default:
return -EOPNOTSUPP;
}
}
static void rtl8126_ptp_enable_config(struct rtl8126_private *tp)
{
u16 ptp_ctrl;
if (tp->syncE_en)
rtl8126_set_eth_phy_ocp_bit(tp, PTP_SYNCE_CTL, BIT_0);
else
rtl8126_clear_eth_phy_ocp_bit(tp, PTP_SYNCE_CTL, BIT_0);
ptp_ctrl = BIT_0 | BIT_1 | BIT_2 | BIT_3 | BIT_4 | BIT_5 | BIT_6 | BIT_7 | BIT_12;
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_CTL, ptp_ctrl);
rtl8126_set_eth_phy_ocp_bit(tp, 0xA640, BIT_15);
}
int rtl8126_get_ts_info(struct net_device *netdev,
struct ethtool_ts_info *info)
{
struct rtl8126_private *tp = netdev_priv(netdev);
/* we always support timestamping disabled */
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
if (tp->HwSuppPtpVer == 0)
return ethtool_op_get_ts_info(netdev, info);
info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE |
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
if (tp->ptp_clock)
info->phc_index = ptp_clock_index(tp->ptp_clock);
else
info->phc_index = -1;
info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
return 0;
}
static const struct ptp_clock_info rtl_ptp_clock_info = {
.owner = THIS_MODULE,
.n_alarm = 0,
.n_ext_ts = 0,
.n_per_out = 0,
.n_pins = 0,
.pps = 1,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(6,2,0)
.adjfine = rtl8126_ptp_adjfine,
#else
.adjfreq = rtl8126_phc_adjfreq,
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(6,2,0) */
.adjtime = rtl8126_phc_adjtime,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0)
.gettimex64 = rtl8126_phc_gettime,
#else
.gettime64 = rtl8126_phc_gettime,
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0) */
.settime64 = rtl8126_phc_settime,
.enable = rtl8126_phc_enable,
};
static u16 rtl8126_ptp_get_tx_msgtype(struct rtl8126_private *tp)
{
u16 tx_ts_ready = 0;
int i;
for (i = 0; i < R8126_CHANNEL_WAIT_COUNT; i++) {
tx_ts_ready = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_STA) & 0xF000;
if (tx_ts_ready)
break;
}
switch (tx_ts_ready) {
case TX_TS_PDLYRSP_RDY:
return 3;
case TX_TS_PDLYREQ_RDY:
return 2;
case TX_TS_DLYREQ_RDY:
return 1;
case TX_TS_SYNC_RDY:
default:
return 0;
}
}
static u16 rtl8126_ptp_get_rx_msgtype(struct rtl8126_private *tp)
{
u16 rx_ts_ready = 0;
int i;
for (i = 0; i < R8126_CHANNEL_WAIT_COUNT; i++) {
rx_ts_ready = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_STA) & 0x0F00;
if (rx_ts_ready)
break;
}
switch (rx_ts_ready) {
case RX_TS_PDLYRSP_RDY:
return 3;
case RX_TS_PDLYREQ_RDY:
return 2;
case RX_TS_DLYREQ_RDY:
return 1;
case RX_TS_SYNC_RDY:
default:
return 0;
}
}
static void rtl8126_wait_trx_ts_ready(struct rtl8126_private *tp)
{
int i;
for (i = 0; i < R8126_CHANNEL_WAIT_COUNT; i++)
if (!(rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_STA) & TRX_TS_RD))
break;
}
static void rtl8126_set_trx_ts_cmd(struct rtl8126_private *tp, u16 cmd)
{
rtl8126_clear_and_set_eth_phy_ocp_bit(tp,
PTP_TRX_TS_STA,
TRXTS_SEL | BIT_3 | BIT_2,
TRX_TS_RD | cmd);
rtl8126_wait_trx_ts_ready(tp);
}
static void rtl8126_ptp_egresstime(struct rtl8126_private *tp, struct timespec64 *ts64)
{
u16 msgtype;
msgtype = rtl8126_ptp_get_tx_msgtype(tp);
msgtype <<= 2;
rtl8126_set_trx_ts_cmd(tp, (msgtype | BIT_4));
/* nanoseconds */
//Ns[29:16] E448[13:0]
ts64->tv_nsec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_NS_HI) & 0x3fff;
ts64->tv_nsec <<= 16;
//Ns[15:0] E446[15:0]
ts64->tv_nsec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_NS_LO);
/* seconds */
//S[47:32] E44E[15:0]
ts64->tv_sec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_S_HI);
ts64->tv_sec <<= 16;
//S[31:16] E44C[15:0]
ts64->tv_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_S_MI);
ts64->tv_sec <<= 16;
//S[15:0] E44A[15:0]
ts64->tv_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_S_LO);
}
static void rtl8126_ptp_ingresstime(struct rtl8126_private *tp, struct timespec64 *ts64)
{
u16 msgtype;
msgtype = rtl8126_ptp_get_rx_msgtype(tp);
msgtype <<= 2;
rtl8126_set_trx_ts_cmd(tp, (TRXTS_SEL | msgtype | BIT_4));
/* nanoseconds */
//Ns[29:16] E448[13:0]
ts64->tv_nsec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_NS_HI) & 0x3fff;
ts64->tv_nsec <<= 16;
//Ns[15:0] E446[15:0]
ts64->tv_nsec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_NS_LO);
/* seconds */
//S[47:32] E44E[15:0]
ts64->tv_sec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_S_HI);
ts64->tv_sec <<= 16;
//S[31:16] E44C[15:0]
ts64->tv_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_S_MI);
ts64->tv_sec <<= 16;
//S[15:0] E44A[15:0]
ts64->tv_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_TRX_TS_S_LO);
}
static void rtl8126_ptp_tx_hwtstamp(struct rtl8126_private *tp)
{
struct sk_buff *skb = tp->ptp_tx_skb;
struct skb_shared_hwtstamps shhwtstamps = { 0 };
struct timespec64 ts64;
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_INSR, TX_TX_INTR);
rtl8126_ptp_egresstime(tp, &ts64);
/* Upper 32 bits contain s, lower 32 bits contain ns. */
shhwtstamps.hwtstamp = ktime_set(ts64.tv_sec,
ts64.tv_nsec);
/* Clear the lock early before calling skb_tstamp_tx so that
* applications are not woken up before the lock bit is clear. We use
* a copy of the skb pointer to ensure other threads can't change it
* while we're notifying the stack.
*/
tp->ptp_tx_skb = NULL;
clear_bit_unlock(__RTL8126_PTP_TX_IN_PROGRESS, &tp->state);
/* Notify the stack and free the skb after we've unlocked */
skb_tstamp_tx(skb, &shhwtstamps);
dev_kfree_skb_any(skb);
}
#define RTL8126_PTP_TX_TIMEOUT (HZ * 15)
static void rtl8126_ptp_tx_work(struct work_struct *work)
{
struct rtl8126_private *tp = container_of(work, struct rtl8126_private,
ptp_tx_work);
unsigned long flags;
if (!tp->ptp_tx_skb)
return;
if (time_is_before_jiffies(tp->ptp_tx_start +
RTL8126_PTP_TX_TIMEOUT)) {
dev_kfree_skb_any(tp->ptp_tx_skb);
tp->ptp_tx_skb = NULL;
clear_bit_unlock(__RTL8126_PTP_TX_IN_PROGRESS, &tp->state);
tp->tx_hwtstamp_timeouts++;
/* Clear the tx valid bit in TSYNCTXCTL register to enable
* interrupt
*/
spin_lock_irqsave(&tp->phy_lock, flags);
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_INSR, TX_TX_INTR);
spin_unlock_irqrestore(&tp->phy_lock, flags);
return;
}
spin_lock_irqsave(&tp->phy_lock, flags);
if (rtl8126_mdio_direct_read_phy_ocp(tp, PTP_INSR) & TX_TX_INTR) {
rtl8126_ptp_tx_hwtstamp(tp);
spin_unlock_irqrestore(&tp->phy_lock, flags);
} else {
spin_unlock_irqrestore(&tp->phy_lock, flags);
/* reschedule to check later */
schedule_work(&tp->ptp_tx_work);
}
}
static int rtl8126_hwtstamp_enable(struct rtl8126_private *tp, bool enable)
{
unsigned long flags;
spin_lock_irqsave(&tp->phy_lock, flags);
if (enable) {
//trx timestamp interrupt enable
rtl8126_set_eth_phy_ocp_bit(tp, PTP_INER, BIT_2 | BIT_3);
//set isr clear mode
rtl8126_set_eth_phy_ocp_bit(tp, PTP_GEN_CFG, BIT_0);
//clear ptp isr
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_INSR, 0xFFFF);
//enable ptp
rtl8126_ptp_enable_config(tp);
//rtl8126_set_local_time(tp);
} else {
/* trx timestamp interrupt disable */
rtl8126_clear_eth_phy_ocp_bit(tp, PTP_INER, BIT_2 | BIT_3);
/* disable ptp */
rtl8126_clear_eth_phy_ocp_bit(tp, PTP_SYNCE_CTL, BIT_0);
rtl8126_clear_eth_phy_ocp_bit(tp, PTP_CTL, BIT_0);
rtl8126_set_eth_phy_ocp_bit(tp, 0xA640, BIT_15);
}
spin_unlock_irqrestore(&tp->phy_lock, flags);
return 0;
}
void rtl8126_set_local_time(struct rtl8126_private *tp)
{
struct timespec64 ts64;
//set system time
ktime_get_real_ts64(&ts64);
_rtl8126_phc_settime(tp, &ts64);
}
static long rtl8126_ptp_create_clock(struct rtl8126_private *tp)
{
struct net_device *netdev = tp->dev;
long err;
if (!IS_ERR_OR_NULL(tp->ptp_clock))
return 0;
if (tp->HwSuppPtpVer == 0) {
tp->ptp_clock = NULL;
return -EOPNOTSUPP;
}
tp->ptp_clock_info = rtl_ptp_clock_info;
tp->ptp_clock_info.max_adj = 488281;//0x1FFFFF * 10^9 / 2^32
snprintf(tp->ptp_clock_info.name, sizeof(tp->ptp_clock_info.name),
"%pm", tp->dev->dev_addr);
tp->ptp_clock = ptp_clock_register(&tp->ptp_clock_info, &tp->pci_dev->dev);
if (IS_ERR(tp->ptp_clock)) {
err = PTR_ERR(tp->ptp_clock);
tp->ptp_clock = NULL;
netif_err(tp, drv, tp->dev, "ptp_clock_register failed\n");
return err;
} else
netif_info(tp, drv, tp->dev, "registered PHC device on %s\n", netdev->name);
return 0;
}
static enum hrtimer_restart
rtl8126_hrtimer_for_pps(struct hrtimer *timer) {
struct rtl8126_private *tp = container_of(timer, struct rtl8126_private, pps_timer);
u16 tai_cfg = BIT_8 | BIT_3 | BIT_1 | BIT_0;
s64 pps_sec;
if (tp->pps_enable)
{
unsigned long flags;
spin_lock_irqsave(&tp->phy_lock, flags);
//Direct Read
rtl8126_set_clkadj_mode(tp, DIRECT_READ);
pps_sec = rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_S_HI_8126);
pps_sec <<= 16;
pps_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_S_MI_8126);
pps_sec <<= 16;
pps_sec |= rtl8126_mdio_direct_read_phy_ocp(tp, PTP_CFG_S_LO_8126);
pps_sec++;
//E42A[15:0]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_TAI_TS_S_LO, pps_sec & 0xffff);
//E42C[31:16]
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_TAI_TS_S_HI, (pps_sec & 0xffff0000) >> 16);
//Periodic Tai start
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_TAI_CFG, tai_cfg);
spin_unlock_irqrestore(&tp->phy_lock, flags);
hrtimer_forward_now(&tp->pps_timer, 1000000000); //rekick
return HRTIMER_RESTART;
} else
return HRTIMER_NORESTART;
}
void rtl8126_ptp_reset(struct rtl8126_private *tp)
{
if (!tp->ptp_clock)
return;
netif_info(tp, drv, tp->dev, "reset PHC clock\n");
rtl8126_hwtstamp_enable(tp, false);
}
void rtl8126_ptp_init(struct rtl8126_private *tp)
{
/* obtain a PTP device, or re-use an existing device */
if (rtl8126_ptp_create_clock(tp))
return;
/* we have a clock so we can initialize work now */
INIT_WORK(&tp->ptp_tx_work, rtl8126_ptp_tx_work);
/* init a hrtimer for pps */
tp->pps_enable = 0;
hrtimer_init(&tp->pps_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tp->pps_timer.function = rtl8126_hrtimer_for_pps;
/* reset the PTP related hardware bits */
rtl8126_ptp_reset(tp);
return;
}
void rtl8126_ptp_suspend(struct rtl8126_private *tp)
{
if (!tp->ptp_clock)
return;
netif_info(tp, drv, tp->dev, "suspend PHC clock\n");
rtl8126_hwtstamp_enable(tp, false);
/* ensure that we cancel any pending PTP Tx work item in progress */
cancel_work_sync(&tp->ptp_tx_work);
hrtimer_cancel(&tp->pps_timer);
}
void rtl8126_ptp_stop(struct rtl8126_private *tp)
{
struct net_device *netdev = tp->dev;
netif_info(tp, drv, tp->dev, "stop PHC clock\n");
/* first, suspend PTP activity */
rtl8126_ptp_suspend(tp);
/* disable the PTP clock device */
if (tp->ptp_clock) {
ptp_clock_unregister(tp->ptp_clock);
tp->ptp_clock = NULL;
netif_info(tp, drv, tp->dev, "removed PHC on %s\n",
netdev->name);
}
}
static int rtl8126_set_tstamp(struct net_device *netdev, struct ifreq *ifr)
{
struct rtl8126_private *tp = netdev_priv(netdev);
struct hwtstamp_config config;
bool hwtstamp = 0;
//netif_info(tp, drv, tp->dev, "ptp set ts\n");
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
if (config.flags)
return -EINVAL;
switch (config.tx_type) {
case HWTSTAMP_TX_ON:
hwtstamp = 1;
break;
case HWTSTAMP_TX_OFF:
break;
case HWTSTAMP_TX_ONESTEP_SYNC:
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
hwtstamp = 1;
tp->flags |= RTL_FLAG_RX_HWTSTAMP_ENABLED;
break;
case HWTSTAMP_FILTER_NONE:
tp->flags &= ~RTL_FLAG_RX_HWTSTAMP_ENABLED;
break;
default:
tp->flags &= ~RTL_FLAG_RX_HWTSTAMP_ENABLED;
return -ERANGE;
}
if (tp->hwtstamp_config.tx_type != config.tx_type ||
tp->hwtstamp_config.rx_filter != config.rx_filter) {
tp->hwtstamp_config = config;
rtl8126_hwtstamp_enable(tp, hwtstamp);
}
return copy_to_user(ifr->ifr_data, &config,
sizeof(config)) ? -EFAULT : 0;
}
static int rtl8126_get_tstamp(struct net_device *netdev, struct ifreq *ifr)
{
struct rtl8126_private *tp = netdev_priv(netdev);
//netif_info(tp, drv, tp->dev, "ptp get ts\n");
return copy_to_user(ifr->ifr_data, &tp->hwtstamp_config,
sizeof(tp->hwtstamp_config)) ? -EFAULT : 0;
}
int rtl8126_ptp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
int ret;
//netif_info(tp, drv, tp->dev, "ptp ioctl\n");
switch (cmd) {
#ifdef ENABLE_PTP_SUPPORT
case SIOCSHWTSTAMP:
ret = rtl8126_set_tstamp(netdev, ifr);
break;
case SIOCGHWTSTAMP:
ret = rtl8126_get_tstamp(netdev, ifr);
break;
#endif
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
void rtl8126_rx_ptp_pktstamp(struct rtl8126_private *tp, struct sk_buff *skb)
{
struct timespec64 ts64;
unsigned long flags;
spin_lock_irqsave(&tp->phy_lock, flags);
if (!(rtl8126_mdio_direct_read_phy_ocp(tp, PTP_INSR) & RX_TS_INTR)) {
spin_unlock_irqrestore(&tp->phy_lock, flags);
return;
}
rtl8126_mdio_direct_write_phy_ocp(tp, PTP_INSR, RX_TS_INTR);
rtl8126_ptp_ingresstime(tp, &ts64);
spin_unlock_irqrestore(&tp->phy_lock, flags);
skb_hwtstamps(skb)->hwtstamp = ktime_set(ts64.tv_sec, ts64.tv_nsec);
return;
}