/* SPDX-License-Identifier: GPL-2.0+ */ /* * PCIe DMA EPF Library for Tegra PCIe * * Copyright (C) 2022 NVIDIA Corporation. All rights reserved. */ #ifndef TEGRA_PCIE_EDMA_TEST_COMMON_H #define TEGRA_PCIE_EDMA_TEST_COMMON_H #include #include #include #define EDMA_ABORT_TEST_EN (edma->edma_ch & 0x40000000) #define IS_EDMA_CH_ENABLED(i) (edma->edma_ch & ((BIT(i) << 4))) #define IS_EDMA_CH_ASYNC(i) (edma->edma_ch & BIT(i)) #define REMOTE_EDMA_TEST_EN (edma->edma_ch & 0x80000000) #define EDMA_PERF (edma->tsz / (diff / 1000)) #define EDMA_CPERF ((edma->tsz * (edma->nents / edma->nents_per_ch)) / (diff / 1000)) #define EDMA_PRIV_CH_OFF 16 #define EDMA_PRIV_LR_OFF 20 #define EDMA_PRIV_XF_OFF 21 struct edmalib_common { struct device *fdev; void *bar0_virt; void *src_virt; void __iomem *dma_base; u32 dma_size; dma_addr_t src_dma_addr; dma_addr_t dst_dma_addr; dma_addr_t bar0_phy; u32 stress_count; void *cookie; struct device_node *of_node; wait_queue_head_t wr_wq[DMA_WR_CHNL_NUM]; wait_queue_head_t rd_wq[DMA_RD_CHNL_NUM]; unsigned long wr_busy; unsigned long rd_busy; ktime_t edma_start_time[DMA_WR_CHNL_NUM]; u64 tsz; u32 edma_ch; u32 prev_edma_ch; u32 nents; struct tegra_pcie_edma_desc *ll_desc; int priv_iter[DMA_WR_CHNL_NUM]; struct pcie_tegra_edma_remote_info edma_remote; u32 nents_per_ch; u32 st_as_ch; u32 ls_as_ch; }; static struct edmalib_common *l_edma; static void edma_final_complete(void *priv, edma_xfer_status_t status, struct tegra_pcie_edma_desc *desc) { struct edmalib_common *edma = l_edma; int cb = *(int *)priv; u32 ch = (cb >> EDMA_PRIV_CH_OFF) & 0xF; edma_xfer_type_t xfer_type = (cb >> EDMA_PRIV_XF_OFF) & 0x1; char *xfer_str[2] = {"WR", "RD"}; u32 l_r = (cb >> EDMA_PRIV_LR_OFF) & 0x1; char *l_r_str[2] = {"local", "remote"}; u64 diff = ktime_to_ns(ktime_get()) - ktime_to_ns(edma->edma_start_time[ch]); u64 cdiff = ktime_to_ns(ktime_get()) - ktime_to_ns(edma->edma_start_time[edma->st_as_ch]); cb = cb & 0xFFFF; if (EDMA_ABORT_TEST_EN && status == EDMA_XFER_SUCCESS) dma_common_wr(edma->dma_base, DMA_WRITE_DOORBELL_OFF_WR_STOP | (ch + 1), DMA_WRITE_DOORBELL_OFF); dev_info(edma->fdev, "%s: %s-%s-Async complete for chan %d with status %d. Total desc %d of Sz %d Bytes done in time %llu nsec. Perf is %llu Mbps\n", __func__, xfer_str[xfer_type], l_r_str[l_r], ch, status, edma->nents_per_ch*(cb+1), edma->dma_size, diff, EDMA_PERF); if (ch == edma->ls_as_ch) dev_info(edma->fdev, "%s: All Async channels. Cumulative Perf %llu Mbps, time %llu nsec\n", __func__, EDMA_CPERF, cdiff); } static void edma_complete(void *priv, edma_xfer_status_t status, struct tegra_pcie_edma_desc *desc) { struct edmalib_common *edma = l_edma; int cb = *(int *)priv; u32 ch = (cb >> 16); if (BIT(ch) & edma->wr_busy) { edma->wr_busy &= ~(BIT(ch)); wake_up(&edma->wr_wq[ch]); } if (status == 0) dev_dbg(edma->fdev, "%s: status %d, cb %d\n", __func__, status, cb); } /* debugfs to perform eDMA lib transfers and do CRC check */ static int edmalib_common_test(struct edmalib_common *edma) { struct tegra_pcie_edma_desc *ll_desc = edma->ll_desc; dma_addr_t src_dma_addr = edma->src_dma_addr; dma_addr_t dst_dma_addr = edma->dst_dma_addr; u32 nents = edma->nents, num_chans = 0, nents_per_ch = 0, nent_id = 0, chan_count; u32 i, j, k, max_size, db_off, num_descriptors; edma_xfer_status_t ret; struct tegra_pcie_edma_init_info info = {}; struct tegra_pcie_edma_chans_info *chan_info; struct tegra_pcie_edma_xfer_info tx_info = {}; u64 diff; edma_xfer_type_t xfer_type; char *xfer_str[2] = {"WR", "RD"}; u32 l_r; char *l_r_str[2] = {"local", "remote"}; if (!edma->stress_count) { tegra_pcie_edma_deinit(edma->cookie); edma->cookie = NULL; return 0; } l_edma = edma; if (EDMA_ABORT_TEST_EN) { edma->edma_ch &= ~0xFF; /* only channel 0, 2 is ASYNC, where chan 0 async gets aborted */ edma->edma_ch |= 0xF5; } if (edma->cookie && edma->prev_edma_ch != edma->edma_ch) { edma->st_as_ch = -1; dev_info(edma->fdev, "edma_ch changed from 0x%x != 0x%x, deinit\n", edma->prev_edma_ch, edma->edma_ch); tegra_pcie_edma_deinit(edma->cookie); edma->cookie = NULL; } info.np = edma->of_node; if (REMOTE_EDMA_TEST_EN) { num_descriptors = 1024; info.rx[0].desc_phy_base = edma->bar0_phy + SZ_512K; info.rx[0].desc_iova = 0xf0000000 + SZ_512K; info.rx[1].desc_phy_base = edma->bar0_phy + SZ_512K + SZ_256K; info.rx[1].desc_iova = 0xf0000000 + SZ_512K + SZ_256K; info.edma_remote = &edma->edma_remote; chan_count = DMA_RD_CHNL_NUM; chan_info = &info.rx[0]; xfer_type = EDMA_XFER_READ; db_off = DMA_WRITE_DOORBELL_OFF; l_r = 1; } else { chan_count = DMA_WR_CHNL_NUM; num_descriptors = 4096; chan_info = &info.tx[0]; xfer_type = EDMA_XFER_WRITE; db_off = DMA_READ_DOORBELL_OFF; l_r = 0; } for (i = 0; i < chan_count; i++) { struct tegra_pcie_edma_chans_info *ch = chan_info + i; ch->ch_type = IS_EDMA_CH_ASYNC(i) ? EDMA_CHAN_XFER_ASYNC : EDMA_CHAN_XFER_SYNC; if (IS_EDMA_CH_ENABLED(i)) { if (edma->st_as_ch == -1) edma->st_as_ch = i; edma->ls_as_ch = i; ch->num_descriptors = num_descriptors; num_chans++; } else ch->num_descriptors = 0; } max_size = (BAR0_DMA_BUF_SIZE - BAR0_DMA_BUF_OFFSET) / 2; if (((edma->dma_size * nents) > max_size) || (nents > NUM_EDMA_DESC)) { dev_err(edma->fdev, "%s: max dma size including all nents(%d), max_nents(%d), dma_size(%d) should be <= 0x%x\n", __func__, nents, NUM_EDMA_DESC, edma->dma_size, max_size); return 0; } nents_per_ch = nents / num_chans; if (nents_per_ch == 0) { dev_err(edma->fdev, "%s: nents(%d) < enabled chanes(%d)\n", __func__, nents, num_chans); return 0; } for (j = 0; j < nents; j++) { ll_desc->src = src_dma_addr + (j * edma->dma_size); ll_desc->dst = dst_dma_addr + (j * edma->dma_size); dev_dbg(edma->fdev, "src %llx, dst %llx at %d\n", ll_desc->src, ll_desc->dst, j); ll_desc->sz = edma->dma_size; ll_desc++; } ll_desc = edma->ll_desc; edma->tsz = (u64)edma->stress_count * (nents_per_ch) * (u64)edma->dma_size * 8UL; if (!edma->cookie && (edma->prev_edma_ch != edma->edma_ch)) { dev_info(edma->fdev, "%s: re-init edma lib prev_ch(%x) != current chans(%x)\n", __func__, edma->prev_edma_ch, edma->edma_ch); edma->cookie = tegra_pcie_edma_initialize(&info); edma->prev_edma_ch = edma->edma_ch; } edma->nents_per_ch = nents_per_ch; /* generate random bytes to transfer */ get_random_bytes(edma->src_virt, edma->dma_size * nents_per_ch); dev_info(edma->fdev, "%s: EDMA LIB %s started for %d chans, size %d Bytes, iterations: %d of descriptors %d\n", __func__, xfer_str[xfer_type], num_chans, edma->dma_size, edma->stress_count, nents_per_ch); /* LL DMA with size epfnv->dma_size per desc */ for (i = 0; i < chan_count; i++) { int ch = i; struct tegra_pcie_edma_chans_info *ch_info = chan_info + i; if (ch_info->num_descriptors == 0) continue; edma->edma_start_time[i] = ktime_get(); tx_info.desc = &ll_desc[nent_id++ * nents_per_ch]; for (k = 0; k < edma->stress_count; k++) { tx_info.channel_num = ch; tx_info.type = xfer_type; tx_info.nents = nents_per_ch; if (ch_info->ch_type == EDMA_CHAN_XFER_ASYNC) { if (k == edma->stress_count - 1) tx_info.complete = edma_final_complete; else tx_info.complete = edma_complete; } edma->priv_iter[ch] = k | (xfer_type << EDMA_PRIV_XF_OFF) | (l_r << EDMA_PRIV_LR_OFF) | (ch << EDMA_PRIV_CH_OFF); tx_info.priv = &edma->priv_iter[ch]; ret = tegra_pcie_edma_submit_xfer(edma->cookie, &tx_info); if (ret == EDMA_XFER_FAIL_NOMEM) { /** Retry after 20 msec */ dev_dbg(edma->fdev, "%s: EDMA_XFER_FAIL_NOMEM stress count %d on channel %d iter %d\n", __func__, edma->stress_count, i, k); ret = wait_event_timeout(edma->wr_wq[i], !(edma->wr_busy & (1 << i)), msecs_to_jiffies(500)); /* Do a more sleep to avoid repeated wait and wake calls */ msleep(100); if (ret == 0) { dev_err(edma->fdev, "%s: %d timedout\n", __func__, i); ret = -ETIMEDOUT; goto fail; } k--; continue; } else if ((ret != EDMA_XFER_SUCCESS) && (ret != EDMA_XFER_FAIL_NOMEM)) { dev_err(edma->fdev, "%s: LL %d, SZ: %u B CH: %d failed. %d at iter %d ret: %d\n", __func__, xfer_type, edma->dma_size, ch, ret, k, ret); if (EDMA_ABORT_TEST_EN) { msleep(5000); break; } goto fail; } dev_dbg(edma->fdev, "%s: LL EDMA LIB %d, SZ: %u B CH: %d iter %d\n", __func__, xfer_type, edma->dma_size, ch, i); } if (EDMA_ABORT_TEST_EN && i == 0) { msleep(edma->stress_count); dma_common_wr(edma->dma_base, DMA_WRITE_DOORBELL_OFF_WR_STOP, db_off); } diff = ktime_to_ns(ktime_get()) - ktime_to_ns(edma->edma_start_time[i]); if (ch_info->ch_type == EDMA_CHAN_XFER_SYNC) dev_info(edma->fdev, "%s: EDMA LIB %s-%s-SYNC done for %d iter on channel %d. Total Size %llu bytes, time %llu nsec. Perf is %llu Mbps\n", __func__, xfer_str[xfer_type], l_r_str[l_r], edma->stress_count, i, edma->tsz, diff, EDMA_PERF); } dev_info(edma->fdev, "%s: EDMA LIB submit done\n", __func__); return 0; fail: if (ret != EDMA_XFER_DEINIT) { tegra_pcie_edma_deinit(edma->cookie); edma->cookie = NULL; } return -1; } #endif /* TEGRA_PCIE_EDMA_TEST_COMMON_H */