/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. */ #include #include #include #define TEGRA_IVC_ALIGN 64 /* * IVC channel reset protocol. * * Each end uses its tx_channel.state to indicate its synchronization state. */ enum tegra_ivc_state { /* * This value is zero for backwards compatibility with services that * assume channels to be initially zeroed. Such channels are in an * initially valid state, but cannot be asynchronously reset, and must * maintain a valid state at all times. * * The transmitting end can enter the established state from the sync or * ack state when it observes the receiving endpoint in the ack or * established state, indicating that has cleared the counters in our * rx_channel. */ TEGRA_IVC_STATE_ESTABLISHED = 0, /* * If an endpoint is observed in the sync state, the remote endpoint is * allowed to clear the counters it owns asynchronously with respect to * the current endpoint. Therefore, the current endpoint is no longer * allowed to communicate. */ TEGRA_IVC_STATE_SYNC, /* * When the transmitting end observes the receiving end in the sync * state, it can clear the w_count and r_count and transition to the ack * state. If the remote endpoint observes us in the ack state, it can * return to the established state once it has cleared its counters. */ TEGRA_IVC_STATE_ACK }; /* * This structure is divided into two-cache aligned parts, the first is only * written through the tx.channel pointer, while the second is only written * through the rx.channel pointer. This delineates ownership of the cache * lines, which is critical to performance and necessary in non-cache coherent * implementations. */ struct tegra_ivc_header { union { struct { /* fields owned by the transmitting end */ u32 count; u32 state; }; u8 pad[TEGRA_IVC_ALIGN]; } tx; union { /* fields owned by the receiving end */ u32 count; u8 pad[TEGRA_IVC_ALIGN]; } rx; }; int tegra_ivc_channel_notified(struct tegra_ivc *ivc) { return tegra_ivc_notified(ivc); } EXPORT_SYMBOL(tegra_ivc_channel_notified); void tegra_ivc_channel_reset(struct tegra_ivc *ivc) { tegra_ivc_reset(ivc); } EXPORT_SYMBOL(tegra_ivc_channel_reset); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) #define tegra_ivc_header_read_field(hdr, field) \ iosys_map_rd_field(hdr, 0, struct tegra_ivc_header, field) #define tegra_ivc_header_write_field(hdr, field, value) \ iosys_map_wr_field(hdr, 0, struct tegra_ivc_header, field, value) #endif static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys) { if (!ivc->peer) return; dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN, DMA_FROM_DEVICE); } #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) bool tegra_ivc_empty(struct tegra_ivc *ivc, struct iosys_map *map) #else bool tegra_ivc_empty(struct tegra_ivc *ivc, struct tegra_ivc_header *header) #endif { /* * This function performs multiple checks on the same values with * security implications, so create snapshots with READ_ONCE() to * ensure that these checks use the same values. */ #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) u32 tx = tegra_ivc_header_read_field(map, tx.count); u32 rx = tegra_ivc_header_read_field(map, rx.count); #else u32 tx = READ_ONCE(header->tx.count); u32 rx = READ_ONCE(header->rx.count); #endif /* * Perform an over-full check to prevent denial of service attacks * where a server could be easily fooled into believing that there's * an extremely large number of frames ready, since receivers are not * expected to check for full or over-full conditions. * * Although the channel isn't empty, this is an invalid case caused by * a potentially malicious peer, so returning empty is safer, because * it gives the impression that the channel has gone silent. */ if (tx - rx > ivc->num_frames) return true; return tx == rx; } EXPORT_SYMBOL(tegra_ivc_empty); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) static inline bool tegra_ivc_full(struct tegra_ivc *ivc, struct iosys_map *map) #else static inline bool tegra_ivc_full(struct tegra_ivc *ivc, struct tegra_ivc_header *header) #endif { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) u32 tx = tegra_ivc_header_read_field(map, tx.count); u32 rx = tegra_ivc_header_read_field(map, rx.count); #else u32 tx = READ_ONCE(header->tx.count); u32 rx = READ_ONCE(header->rx.count); #endif /* * Invalid cases where the counters indicate that the queue is over * capacity also appear full. */ return tx - rx >= ivc->num_frames; } static inline int tegra_ivc_check_read(struct tegra_ivc *ivc) { unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) unsigned int state; /* * tx.channel->state is set locally, so it is not synchronized with * state from the remote peer. The remote peer cannot reset its * transmit counters until we've acknowledged its synchronization * request, so no additional synchronization is required because an * asynchronous transition of rx.channel->state to * TEGRA_IVC_STATE_ACK is not allowed. */ state = tegra_ivc_header_read_field(&ivc->tx.map, tx.state); if (state != TEGRA_IVC_STATE_ESTABLISHED) #else if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) #endif return -ECONNRESET; /* * Avoid unnecessary invalidations when performing repeated accesses * to an IVC channel by checking the old queue pointers first. * * Synchronization is only necessary when these pointers indicate * empty or full. */ #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) if (!tegra_ivc_empty(ivc, &ivc->rx.map)) #else if (!tegra_ivc_empty(ivc, ivc->rx.channel)) #endif return 0; tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) if (!tegra_ivc_empty(ivc, &ivc->rx.map)) #else if (tegra_ivc_empty(ivc, ivc->rx.channel)) #endif return -ENOSPC; return 0; } static inline int tegra_ivc_check_write(struct tegra_ivc *ivc) { unsigned int offset = offsetof(struct tegra_ivc_header, rx.count); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) unsigned int state; state = tegra_ivc_header_read_field(&ivc->tx.map, tx.state); if (state != TEGRA_IVC_STATE_ESTABLISHED) #else if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) #endif return -ECONNRESET; #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) if (!tegra_ivc_full(ivc, &ivc->tx.map)) #else if (!tegra_ivc_full(ivc, ivc->tx.channel)) #endif return 0; tegra_ivc_invalidate(ivc, ivc->tx.phys + offset); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) if (!tegra_ivc_full(ivc, &ivc->tx.map)) #else if (tegra_ivc_full(ivc, ivc->tx.channel)) #endif return -ENOSPC; return 0; } int tegra_ivc_can_read(struct tegra_ivc *ivc) { return tegra_ivc_check_read(ivc) == 0; } EXPORT_SYMBOL(tegra_ivc_can_read); int tegra_ivc_can_write(struct tegra_ivc *ivc) { return tegra_ivc_check_write(ivc) == 0; } EXPORT_SYMBOL(tegra_ivc_can_write); int tegra_ivc_read(struct tegra_ivc *ivc, void __user *usr_buf, void *buf, size_t max_read) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) struct iosys_map map; int err; #else void *frame; #endif BUG_ON(buf && usr_buf); /* get next frame to be read from IVC channel */ #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) err = tegra_ivc_read_get_next_frame(ivc, &map); if (err) return err; #else frame = tegra_ivc_read_get_next_frame(ivc); if (IS_ERR(frame)) { return PTR_ERR(frame); } #endif /* update the buffer with read data*/ if (buf) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) iosys_map_memcpy_from(buf, &map, 0, max_read); #else memcpy(buf, frame, max_read); #endif } else if (usr_buf) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) // FIXME handle io address space if (WARN_ON(map.is_iomem) || copy_to_user(usr_buf, map.vaddr, max_read)) #else if (copy_to_user(usr_buf, frame, max_read)) #endif return -EFAULT; } else BUG(); /* Advance to next read frame*/ if (tegra_ivc_read_advance(ivc) == 0) return max_read; else return 0; } EXPORT_SYMBOL(tegra_ivc_read); int tegra_ivc_read_peek(struct tegra_ivc *ivc, void __user *usr_buf, void *buf, size_t offset, size_t size) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) struct iosys_map map; int err; #else void *frame; #endif BUG_ON(buf && usr_buf); /* get next frame to be read from IVC channel */ #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) err = tegra_ivc_read_get_next_frame(ivc, &map); if (err) return err; #else frame = tegra_ivc_read_get_next_frame(ivc); if (IS_ERR(frame)) { return PTR_ERR(frame); } #endif /* update the buffer with read data*/ if (buf) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) iosys_map_memcpy_from(buf, &map, offset, size); #else memcpy(buf, frame + offset, size); #endif } else if (usr_buf) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) // FIXME handle io address space if (WARN_ON(map.is_iomem) || copy_to_user(usr_buf, map.vaddr + offset, size)) #else if (copy_to_user(usr_buf, frame + offset, size)) #endif return -EFAULT; } else BUG(); return size; } EXPORT_SYMBOL(tegra_ivc_read_peek); int tegra_ivc_write(struct tegra_ivc *ivc, const void __user *usr_buf, const void *buf, size_t size) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) struct iosys_map map; int err; #else void *frame; #endif BUG_ON(buf && usr_buf); /* get next frame to be written from IVC channel */ #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) err = tegra_ivc_write_get_next_frame(ivc, &map); if (err) return err; #else frame = tegra_ivc_write_get_next_frame(ivc); if (IS_ERR(frame)) { return PTR_ERR(frame); } #endif /* update the write frame with data buffer*/ if (buf) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) iosys_map_memcpy_to(&map, 0, buf, size); #else memcpy(frame, buf, size); #endif } else if (usr_buf) { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) // FIXME handle io address space if (WARN_ON(map.is_iomem) || copy_from_user(map.vaddr, usr_buf, size)) #else if (copy_from_user(frame, usr_buf, size)) #endif return -EFAULT; } else BUG(); /* Advance to next write frame*/ if (tegra_ivc_write_advance(ivc) == 0) return size; else return 0; } EXPORT_SYMBOL(tegra_ivc_write); int tegra_ivc_channel_sync(struct tegra_ivc *ivc) { if ((ivc == NULL) || (ivc->num_frames == 0)) { return -EINVAL; } else { #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) u32 count; count = tegra_ivc_header_read_field(&ivc->tx.map, tx.count); ivc->tx.position = count % ivc->num_frames; count = tegra_ivc_header_read_field(&ivc->rx.map, rx.count); ivc->rx.position = count % ivc->num_frames; #else ivc->tx.position = ivc->tx.channel->tx.count % ivc->num_frames; ivc->rx.position = ivc->rx.channel->rx.count % ivc->num_frames; #endif } return 0; } EXPORT_SYMBOL(tegra_ivc_channel_sync); #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) static inline u32 tegra_ivc_available(struct tegra_ivc *ivc, struct iosys_map *map) { u32 tx = tegra_ivc_header_read_field(map, tx.count); u32 rx = tegra_ivc_header_read_field(map, rx.count); #else static inline u32 tegra_ivc_available(struct tegra_ivc *ivc, struct tegra_ivc_header *header) { u32 tx = READ_ONCE(header->tx.count); u32 rx = READ_ONCE(header->rx.count); #endif /* * This function isn't expected to be used in scenarios where an * over-full situation can lead to denial of service attacks. See the * comment in tegra_ivc_empty() for an explanation about special * over-full considerations. */ return tx - rx; } #if defined(NV_TEGRA_IVC_STRUCT_HAS_IOSYS_MAP) uint32_t tegra_ivc_frames_available(struct tegra_ivc *ivc, struct iosys_map *map) { return (ivc->num_frames - tegra_ivc_available(ivc, map)); } #else uint32_t tegra_ivc_frames_available(struct tegra_ivc *ivc, struct tegra_ivc_header *header) { return (ivc->num_frames - tegra_ivc_available(ivc, header)); } #endif EXPORT_SYMBOL(tegra_ivc_frames_available); /* Inserting this driver as module to export * extended IVC driver APIs */ static int __init ivc_driver_init(void) { pr_info("Inserting ivc_ext.ko module"); return 0; } module_init(ivc_driver_init); static void __exit ivc_driver_exit(void) { pr_info("Removing ivc_ext.ko module"); } module_exit(ivc_driver_exit); MODULE_AUTHOR("Manish Bhardwaj "); MODULE_DESCRIPTION("Extended IVC Driver"); MODULE_LICENSE("GPL v2");