/* * Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "ether_linux.h" /** * ether_adjust_link - Adjust link call back * @dev: Net device data. * * Algorithm: Callback function called by the PHY subsystem * whenever there is a link detected or link changed on the * physical layer. * * Dependencies: MAC and PHY need to be initialized. * * Protection: None. * * Return: None. */ static void ether_adjust_link(struct net_device *dev) { struct ether_priv_data *pdata = netdev_priv(dev); struct phy_device *phydev = pdata->phydev; int new_state = 0, speed_changed = 0; if (phydev == NULL) { return; } if (phydev->link) { if (phydev->duplex != pdata->oldduplex) { new_state = 1; osi_set_mode(pdata->osi_core, phydev->duplex); pdata->oldduplex = phydev->duplex; } if (phydev->speed != pdata->speed) { new_state = 1; speed_changed = 1; osi_set_speed(pdata->osi_core, phydev->speed); pdata->speed = phydev->speed; } if (!pdata->oldlink) { new_state = 1; pdata->oldlink = 1; } } else if (pdata->oldlink) { new_state = 1; pdata->oldlink = 0; pdata->speed = 0; pdata->oldduplex = -1; } else { /* Nothing here */ } if (new_state) { phy_print_status(phydev); } if (speed_changed) { clk_set_rate(pdata->tx_clk, (phydev->speed == SPEED_10) ? 2500 * 1000 : (phydev->speed == SPEED_100) ? 25000 * 1000 : 125000 * 1000); if (phydev->speed != SPEED_10) { if (osi_pad_calibrate(pdata->osi_core) < 0) dev_err(pdata->dev, "failed to do pad caliberation\n"); } } } /** * ether_phy_init - Initialize the PHY * @dev: Net device data. * * Algorithm: * 1) Reset the PHY * 2) Connect to the phy described in the device tree. * * Dependencies: MAC and PHY need to be initialized. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_phy_init(struct net_device *dev) { struct ether_priv_data *pdata = netdev_priv(dev); struct phy_device *phydev = NULL; pdata->oldlink = 0; pdata->speed = SPEED_UNKNOWN; pdata->oldduplex = SPEED_UNKNOWN; /* Reset the PHY */ if (gpio_is_valid(pdata->phy_reset)) { gpio_set_value(pdata->phy_reset, 0); usleep_range(10, 11); gpio_set_value(pdata->phy_reset, 1); } if (pdata->phy_node != NULL) { phydev = of_phy_connect(dev, pdata->phy_node, ðer_adjust_link, 0, pdata->interface); } if (phydev == NULL) { dev_err(pdata->dev, "failed to connect PHY\n"); return -ENODEV; } if ((pdata->phy_node == NULL) && phydev->phy_id == 0U) { phy_disconnect(phydev); return -ENODEV; } pdata->phydev = phydev; return 0; } /** * ether_tx_chan_isr - Tx done ISR Routine. * @irq: IRQ number. * @data: Tx NAPI private data structure. * * Algorithm: * 1) Get channel number private data passed to ISR. * 2) Invoke OSI layer to clear Tx interrupt source. * 3) Disable DMA Tx channel interrupt. * 4) Schedule TX NAPI poll handler to cleanup the buffer. * * Dependencies: MAC and PHY need to be initialized. * * Protection: None. * * Return: IRQ_HANDLED - success, IRQ_NONE - failure. */ static irqreturn_t ether_tx_chan_isr(int irq, void *data) { struct ether_tx_napi *tx_napi = (struct ether_tx_napi *)data; struct ether_priv_data *pdata = tx_napi->pdata; struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan = tx_napi->chan; osi_clear_tx_intr(osi_dma, chan); if (likely(napi_schedule_prep(&tx_napi->napi))) { osi_disable_chan_tx_intr(osi_dma, chan); __napi_schedule(&tx_napi->napi); } return IRQ_HANDLED; } /** * ether_rx_chan_isr - Rx done ISR Routine * @irq: IRQ number * @data: Rx NAPI private data structure. * * Algorithm: * 1) Get Rx channel number from Rx NAPI private data which will be passed * during request_irq() API. * 2) Invoke OSI layer to clear Rx interrupt source. * 3) Disable DMA Rx channel interrupt. * 4) Schedule Rx NAPI poll handler to get data from HW and pass to the * Linux network stack. * * Dependencies: MAC and PHY need to be initialized. * * Protection: None. * * Return: IRQ_HANDLED - success, IRQ_NONE - failure. */ static irqreturn_t ether_rx_chan_isr(int irq, void *data) { struct ether_rx_napi *rx_napi = (struct ether_rx_napi *)data; struct ether_priv_data *pdata = rx_napi->pdata; struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan = rx_napi->chan; osi_clear_rx_intr(osi_dma, chan); if (likely(napi_schedule_prep(&rx_napi->napi))) { osi_disable_chan_rx_intr(osi_dma, chan); __napi_schedule(&rx_napi->napi); } return IRQ_HANDLED; } /** * ether_common_isr - Common ISR Routine * @irq: IRQ number. * @data: Private data from ISR. * * Algorithm: Invoker OSI layer to handle common interrupt. * * Dependencies: MAC and PHY need to be initialized. * * Protection: None. * * Return: IRQ_HANDLED - success, IRQ_NONE - failure. */ static irqreturn_t ether_common_isr(int irq, void *data) { struct ether_priv_data *pdata = (struct ether_priv_data *)data; osi_common_isr(pdata->osi_core); return IRQ_HANDLED; } /** * ether_free_irqs - Free IRQs * @pdata: OS dependent private data structure. * * Algorithm: This routine takes care of freeing * below IRQs * 1) Common IRQ * 2) TX IRQ * 3) RX IRQ * * Dependencies: IRQs should have registered. * * Protection: None. * * Return: NONE. */ static void ether_free_irqs(struct ether_priv_data *pdata) { unsigned int i; unsigned int chan; devm_free_irq(pdata->dev, pdata->common_irq, pdata); for (i = 0; i < pdata->osi_dma->num_dma_chans; i++) { chan = pdata->osi_dma->dma_chans[i]; if (pdata->rx_irq_alloc_mask & (1U << i)) { devm_free_irq(pdata->dev, pdata->rx_irqs[i], pdata->rx_napi[chan]); } if (pdata->tx_irq_alloc_mask & (1U << i)) { devm_free_irq(pdata->dev, pdata->tx_irqs[i], pdata->tx_napi[chan]); } } } /** * ether_request_irqs - register IRQs * @pdata: OS dependent private data structure. * * Algorithm: This routine takes care of requesting * below IRQs * 1) Common IRQ * 2) TX IRQ * 3) RX IRQ * * Dependencies: IRQ numbers need to be known. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_request_irqs(struct ether_priv_data *pdata) { struct osi_dma_priv_data *osi_dma = pdata->osi_dma; static char irq_names[ETHER_IRQ_MAX_IDX][ETHER_IRQ_NAME_SZ] = {0}; int ret = 0, i, j = 0; unsigned int chan; ret = devm_request_irq(pdata->dev, (unsigned int)pdata->common_irq, ether_common_isr, IRQF_SHARED, "ether_common_irq", pdata); if (unlikely(ret < 0)) { dev_err(pdata->dev, "failed to register common interrupt: %d\n", pdata->common_irq); return ret; } for (i = 0; i < osi_dma->num_dma_chans; i++) { chan = osi_dma->dma_chans[i]; snprintf(irq_names[j], ETHER_IRQ_NAME_SZ, "%s.rx%d", netdev_name(pdata->ndev), chan); ret = devm_request_irq(pdata->dev, pdata->rx_irqs[i], ether_rx_chan_isr, IRQF_TRIGGER_NONE, irq_names[j++], pdata->rx_napi[chan]); if (unlikely(ret < 0)) { dev_err(pdata->dev, "failed to register Rx chan interrupt: %d\n", pdata->rx_irqs[i]); goto err_chan_irq; } pdata->rx_irq_alloc_mask |= (1U << i); snprintf(irq_names[j], ETHER_IRQ_NAME_SZ, "%s.tx%d", netdev_name(pdata->ndev), chan); ret = devm_request_irq(pdata->dev, (unsigned int)pdata->tx_irqs[i], ether_tx_chan_isr, IRQF_TRIGGER_NONE, irq_names[j++], pdata->tx_napi[chan]); if (unlikely(ret < 0)) { dev_err(pdata->dev, "failed to register Tx chan interrupt: %d\n", pdata->tx_irqs[i]); goto err_chan_irq; } pdata->tx_irq_alloc_mask |= (1U << i); } return ret; err_chan_irq: ether_free_irqs(pdata); return ret; } /** * ether_napi_disable - Disable NAPI. * @pdata: OSD private data structure. * * Algorithm: Disable Tx and Rx NAPI for the channels which are enabled. * * Dependencies: NAPI resources need to be allocated as part of probe(). * * Protection: None. * * Return: None. */ static void ether_napi_disable(struct ether_priv_data *pdata) { struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan; unsigned int i; for (i = 0; i < osi_dma->num_dma_chans; i++) { chan = osi_dma->dma_chans[i]; napi_disable(&pdata->tx_napi[chan]->napi); napi_disable(&pdata->rx_napi[chan]->napi); } } /** * ether_napi_enable - Enable NAPI. * @pdata: OSD private data structure. * * Algorithm: Enable Tx and Rx NAPI for the channels which are enabled. * * Dependencies: NAPI resources need to be allocated as part of probe(). * * Protection: None. * * Return: None. */ static void ether_napi_enable(struct ether_priv_data *pdata) { struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan; unsigned int i; for (i = 0; i < osi_dma->num_dma_chans; i++) { chan = osi_dma->dma_chans[i]; napi_enable(&pdata->tx_napi[chan]->napi); napi_enable(&pdata->rx_napi[chan]->napi); } } static void ether_free_rx_skbs(struct osi_rx_swcx *rx_swcx, struct device *dev) { struct osi_rx_swcx *prx_swcx = NULL; unsigned int i; for (i = 0; i < RX_DESC_CNT; i++) { prx_swcx = rx_swcx + i; if (prx_swcx->buf_virt_addr != NULL) { /* TODO: Need to get Rx buffer len */ dma_unmap_single(dev, prx_swcx->buf_phy_addr, 1536, DMA_FROM_DEVICE); dev_kfree_skb_any(prx_swcx->buf_virt_addr); prx_swcx->buf_virt_addr = NULL; prx_swcx->buf_phy_addr = 0; } } } /** * free_rx_dma_resources - Frees allocated Rx DMA resources. * @osi: OSI private data structure. * * Algorithm: Release all DMA Rx resources which are allocated as part of * allocated_rx_dma_ring() API. * * Dependencies: None. * * Protection: None. * * Return: None. */ static void free_rx_dma_resources(struct osi_dma_priv_data *osi_dma, struct device *dev) { unsigned long rx_desc_size = sizeof(struct osi_rx_desc) * RX_DESC_CNT; struct osi_rx_ring *rx_ring = NULL; unsigned int i; for (i = 0; i < OSI_EQOS_MAX_NUM_CHANS; i++) { rx_ring = osi_dma->rx_ring[i]; if (rx_ring != NULL) { if (rx_ring->rx_swcx != NULL) { ether_free_rx_skbs(rx_ring->rx_swcx, dev); kfree(rx_ring->rx_swcx); } if (rx_ring->rx_desc != NULL) { dma_free_coherent(dev, rx_desc_size, rx_ring->rx_desc, rx_ring->rx_desc_phy_addr); } kfree(rx_ring); osi_dma->rx_ring[i] = NULL; rx_ring = NULL; } } } /** * allocate_rx_dma_resource - Allocate Rx DMA ring * @osi: OSI private data structure. * @chan: Rx DMA channel number. * * Algorithm: DMA receive ring will be created for valid channel number. * Receive ring updates with descriptors and software context associated * with each receive descriptor. * * Dependencies: Invalid channel need to be updated. * * Protection: None. * * Return: 0 - success, negative value - failure */ static int allocate_rx_dma_resource(struct osi_dma_priv_data *osi_dma, struct device *dev, unsigned int chan) { unsigned long rx_desc_size; unsigned long rx_swcx_size; int ret = 0; rx_desc_size = sizeof(struct osi_rx_desc) * (unsigned long)RX_DESC_CNT; rx_swcx_size = sizeof(struct osi_rx_swcx) * (unsigned long)RX_DESC_CNT; osi_dma->rx_ring[chan] = kzalloc(sizeof(struct osi_rx_ring), GFP_KERNEL); if (osi_dma->rx_ring[chan] == NULL) { dev_err(dev, "failed to allocate Rx ring\n"); return -ENOMEM; } osi_dma->rx_ring[chan]->rx_desc = dma_zalloc_coherent(dev, rx_desc_size, (dma_addr_t *)&osi_dma->rx_ring[chan]->rx_desc_phy_addr, GFP_KERNEL); if (osi_dma->rx_ring[chan]->rx_desc == NULL) { dev_err(dev, "failed to allocate receive descriptor\n"); ret = -ENOMEM; goto err_rx_desc; } osi_dma->rx_ring[chan]->rx_swcx = kzalloc(rx_swcx_size, GFP_KERNEL); if (osi_dma->rx_ring[chan]->rx_swcx == NULL) { dev_err(dev, "failed to allocate Rx ring software context\n"); ret = -ENOMEM; goto err_rx_swcx; } return 0; err_rx_swcx: dma_free_coherent(dev, rx_desc_size, osi_dma->rx_ring[chan]->rx_desc, osi_dma->rx_ring[chan]->rx_desc_phy_addr); osi_dma->rx_ring[chan]->rx_desc = NULL; err_rx_desc: kfree(osi_dma->rx_ring[chan]); osi_dma->rx_ring[chan] = NULL; return ret; } static int ether_allocate_rx_buffers(struct ether_priv_data *pdata, struct osi_rx_ring *rx_ring) { struct osi_rx_swcx *rx_swcx = NULL; unsigned int i = 0; for (i = 0; i < RX_DESC_CNT; i++) { struct sk_buff *skb = NULL; dma_addr_t dma_addr = 0; rx_swcx = rx_ring->rx_swcx + i; /* FIXME: hardcoding Rx DMA buf len here */ skb = __netdev_alloc_skb_ip_align(pdata->ndev, 1536, GFP_KERNEL); if (unlikely(skb == NULL)) { dev_err(pdata->dev, "RX skb allocation failed\n"); return -ENOMEM; } dma_addr = dma_map_single(pdata->dev, skb->data, 1536, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(pdata->dev, dma_addr) != 0)) { dev_err(pdata->dev, "RX skb dma map failed\n"); dev_kfree_skb_any(skb); return -ENOMEM; } rx_swcx->buf_virt_addr = skb; rx_swcx->buf_phy_addr = dma_addr; } return 0; } /** * allocate_rx_dma_resources - Allocate rx DMA resources. * @osi: OSI private data structure. * * Algorithm: DMA receive ring will be created for valid channel number * provided through DT * * Dependencies: Invalid channel need to be updated. * * Protection: None. * * Return: 0 - success, negative value - failure */ static int ether_allocate_rx_dma_resources(struct osi_dma_priv_data *osi_dma, struct ether_priv_data *pdata) { unsigned int chan; unsigned int i; int ret = 0; for (i = 0; i < OSI_EQOS_MAX_NUM_CHANS; i++) { chan = osi_dma->dma_chans[i]; if (chan != OSI_INVALID_CHAN_NUM) { ret = allocate_rx_dma_resource(osi_dma, pdata->dev, chan); if (ret != 0) { goto exit; } ret = ether_allocate_rx_buffers(pdata, osi_dma->rx_ring[chan]); if (ret < 0) { goto exit; } } } return 0; exit: free_rx_dma_resources(osi_dma, pdata->dev); return ret; } /** * free_tx_dma_resources - Frees allocated DMA resources. * @osi: OSI private data structure. * * Algorithm: Release all DMA Tx resources which are allocated as part of * allocated_tx_dma_ring() API. * * Dependencies: None. * * Protection: None. * * Return: None. */ static void free_tx_dma_resources(struct osi_dma_priv_data *osi_dma, struct device *dev) { unsigned long tx_desc_size = sizeof(struct osi_tx_desc) * TX_DESC_CNT; struct osi_tx_ring *tx_ring = NULL; unsigned int i; for (i = 0; i < OSI_EQOS_MAX_NUM_CHANS; i++) { tx_ring = osi_dma->tx_ring[i]; if (tx_ring != NULL) { if (tx_ring->tx_swcx != NULL) { kfree(tx_ring->tx_swcx); } if (tx_ring->tx_desc != NULL) { dma_free_coherent(dev, tx_desc_size, tx_ring->tx_desc, tx_ring->tx_desc_phy_addr); } kfree(tx_ring); tx_ring = NULL; osi_dma->tx_ring[i] = NULL; } } } /** * allocate_tx_dma_resource - Allocate Tx DMA ring * @osi: OSI private data structure. * @chan: Channel number. * * Algorithm: DMA transmit ring will be created for valid channel number. * Transmit ring updates with descriptors and software context associated * with each transmit descriptor. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure */ static int allocate_tx_dma_resource(struct osi_dma_priv_data *osi_dma, struct device *dev, unsigned int chan) { unsigned long tx_desc_size; unsigned long tx_swcx_size; int ret = 0; tx_desc_size = sizeof(struct osi_tx_desc) * (unsigned long)TX_DESC_CNT; tx_swcx_size = sizeof(struct osi_tx_swcx) * (unsigned long)TX_DESC_CNT; osi_dma->tx_ring[chan] = kzalloc(sizeof(struct osi_tx_ring), GFP_KERNEL); if (osi_dma->tx_ring[chan] == NULL) { dev_err(dev, "failed to allocate Tx ring\n"); return -ENOMEM; } osi_dma->tx_ring[chan]->tx_desc = dma_zalloc_coherent(dev, tx_desc_size, (dma_addr_t *)&osi_dma->tx_ring[chan]->tx_desc_phy_addr, GFP_KERNEL); if (osi_dma->tx_ring[chan]->tx_desc == NULL) { dev_err(dev, "failed to allocate transmit descriptor\n"); ret = -ENOMEM; goto err_tx_desc; } osi_dma->tx_ring[chan]->tx_swcx = kzalloc(tx_swcx_size, GFP_KERNEL); if (osi_dma->tx_ring[chan]->tx_swcx == NULL) { dev_err(dev, "failed to allocate Tx ring software context\n"); ret = -ENOMEM; goto err_tx_swcx; } return 0; err_tx_swcx: dma_free_coherent(dev, tx_desc_size, osi_dma->tx_ring[chan]->tx_desc, osi_dma->tx_ring[chan]->tx_desc_phy_addr); osi_dma->tx_ring[chan]->tx_desc = NULL; err_tx_desc: kfree(osi_dma->tx_ring[chan]); osi_dma->tx_ring[chan] = NULL; return ret; } /** * ether_allocate_tx_dma_resources - Allocate Tx DMA resources. * @osi: OSI private data structure. * * Algorithm: DMA transmit ring will be created for valid channel number * provided through DT * * Dependencies: Invalid channel need to be updated. * * Protection: None. * * Return: 0 - success, negative value - failure */ static int ether_allocate_tx_dma_resources(struct osi_dma_priv_data *osi_dma, struct device *dev) { unsigned int chan; unsigned int i; int ret = 0; for (i = 0; i < OSI_EQOS_MAX_NUM_CHANS; i++) { chan = osi_dma->dma_chans[i]; if (chan != OSI_INVALID_CHAN_NUM) { ret = allocate_tx_dma_resource(osi_dma, dev, chan); if (ret != 0) { goto exit; } } } return 0; exit: free_tx_dma_resources(osi_dma, dev); return ret; } /** * ether_init_invalid_chan_ring - * Updates invalid channels list and DMA rings. * @osi: OSI private data structure. * * Algorithm: * 1) Initialize all DMA Tx/Rx pointers to NULL so that for valid * dma_addr_t *channels Tx/Rx rings will be created. * * For ex: If the number of channels are 2 (nvidia,num_dma_chans = <2>) * and channel numbers are 2 and 3 (nvidia,dma_chans = <2 3>), * then only for channel 2 and 3 DMA rings will be allocated in * allocate_tx/rx_dma_resources() function. * * Representation of Tx ring will be like - * osi->tx_ring[0] = NULL, * osi->tx_ring[1] = NULL, * osi->tx_ring[2] = allocated pointer for DMA Tx 2 ring. * osi->tx_ring[3] = allocated pointer for DMA Tx 3 ring. * osi_>tx_ring[4] = NULL, * . * . * osi_>tx_ring[9] = NULL. * * This is useful in start_xmit() to get directly Tx ring based on the * channel number return from select_queue() API. * * 2) Second for loop makes remaing channel numbers as invalid numbers * so that only valid channel will go and allocate/free the DMA resources. * * Dependencies: OSD needs to be update number of channels and channel * numbers in OSI private data structure. * * Protection: None. * * Return: None. */ static void ether_init_invalid_chan_ring(struct osi_dma_priv_data *osi_dma) { unsigned int i; for (i = 0; i < OSI_EQOS_MAX_NUM_CHANS; i++) { osi_dma->tx_ring[i] = NULL; osi_dma->rx_ring[i] = NULL; } for (i = osi_dma->num_dma_chans; i < OSI_EQOS_MAX_NUM_CHANS; i++) { osi_dma->dma_chans[i] = OSI_INVALID_CHAN_NUM; } } /** * free_dma_resources - Freeing allocated DMA resources. * @osi: OSI private data structure. * * Algorithm: Frees all DMA resources which are allocates with * allocate_dma_resources() API. * * Dependencies: None. * Protection: None. * Return: None. * */ void free_dma_resources(struct osi_dma_priv_data *osi_dma, struct device *dev) { free_tx_dma_resources(osi_dma, dev); free_rx_dma_resources(osi_dma, dev); } /** * allocate_dma_resources - Allocate DMA resources for Tx and Rx. * @osi: OSI private data structure. * * Algorithm: * 1) updates invalid channels with numbers. * 2) Allocate Tx DMA resources. * 3) Allocate Rx DMA resources. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, -1 - failure. */ static int ether_allocate_dma_resources(struct ether_priv_data *pdata) { struct osi_dma_priv_data *osi_dma = pdata->osi_dma; int ret = 0; ether_init_invalid_chan_ring(osi_dma); ret = ether_allocate_tx_dma_resources(osi_dma, pdata->dev); if (ret != 0) { return ret; } ret = ether_allocate_rx_dma_resources(osi_dma, pdata); if (ret != 0) { free_tx_dma_resources(osi_dma, pdata->dev); return ret; } return ret; } /** * ether_open - Call back to handle bring up of Ethernet interface * @dev: Net device data structure. * * Algorithm: This routine takes care of below * 1) PHY initialization * 2) request tx/rx/common irqs * 3) HW initialization * 4) Starting the PHY * * Dependencies: Ethernet driver probe need to be completed successfully * with ethernet network device created. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_open(struct net_device *dev) { struct ether_priv_data *pdata = netdev_priv(dev); int ret = 0; /* PHY reset and initialization */ ret = ether_phy_init(dev); if (ret < 0) { dev_err(&dev->dev, "%s: Cannot attach to PHY (error: %d)\n", __func__, ret); return ret; } /* request tx/rx/common irq */ ret = ether_request_irqs(pdata); if (ret < 0) { dev_err(&dev->dev, "%s: failed to get tx rx irqs with reason %d\n", __func__, ret); goto err_r_irq; } ret = ether_allocate_dma_resources(pdata); if (ret < 0) { dev_err(pdata->dev, "failed to allocate DMA resources\n"); goto err_alloc; } /* initialize MAC/MTL/DMA Common registers */ ret = osi_hw_core_init(pdata->osi_core, pdata->hw_feat.tx_fifo_size, pdata->hw_feat.rx_fifo_size); if (ret < 0) { dev_err(pdata->dev, "%s: failed to initialize MAC HW core with reason %d\n", __func__, ret); goto err_hw_init; } /* DMA init */ ret = osi_hw_dma_init(pdata->osi_dma); if (ret < 0) { dev_err(pdata->dev, "%s: failed to initialize MAC HW DMA with reason %d\n", __func__, ret); goto err_hw_init; } /* Start the MAC */ osi_start_mac(pdata->osi_core); ether_napi_enable(pdata); /* start PHY */ phy_start(pdata->phydev); /* start network queues */ netif_tx_start_all_queues(pdata->ndev); return ret; err_hw_init: free_dma_resources(pdata->osi_dma, pdata->dev); err_alloc: ether_free_irqs(pdata); err_r_irq: if (pdata->phydev) phy_disconnect(pdata->phydev); return ret; } /** * ether_close - Call back to handle bring down of Ethernet interface * @dev: Net device data structure. * * Algorithm: This routine takes care of below * 1) Stopping PHY * 2) Freeing tx/rx/common irqs * * Dependencies: MAC Interface need to be registered. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_close(struct net_device *dev) { int ret = 0; struct ether_priv_data *pdata = netdev_priv(dev); /* Stop and disconnect the PHY */ if (pdata->phydev != NULL) { phy_stop(pdata->phydev); phy_disconnect(pdata->phydev); if (gpio_is_valid(pdata->phy_reset)) gpio_set_value(pdata->phy_reset, 0); pdata->phydev = NULL; } /* turn off sources of data into dev */ netif_tx_disable(pdata->ndev); /* Free tx rx and common irqs */ ether_free_irqs(pdata); /* DMA De init */ osi_hw_dma_deinit(pdata->osi_dma); /* free DMA resources after DMA stop */ free_dma_resources(pdata->osi_dma, pdata->dev); /* Stop the MAC */ osi_stop_mac(pdata->osi_core); ether_napi_disable(pdata); return ret; } /** * ether_tx_swcx_alloc - Tx ring software context allocation. * @dev: device instance associated with driver. * @tx_ring: Tx ring instance associated with channel number. * @skb: socket buffer. * * Algorithm: * 1) Map skb data buffer to DMA mappable address. * 2) Updated dma address, len and buffer address. This info will be used * OSI layer for data transmission and buffer cleanup. * * Dependencies: None. * * Protection: None. * * Return: number of descriptors - success, -1 - failure. */ static int ether_tx_swcx_alloc(struct device *dev, struct osi_tx_ring *tx_ring, struct sk_buff *skb) { struct osi_tx_pkt_cx *tx_pkt_cx = &tx_ring->tx_pkt_cx; unsigned int cur_tx_idx = tx_ring->cur_tx_idx; struct osi_tx_swcx *tx_swcx = NULL; unsigned int len = 0; int cnt = 0; memset(tx_pkt_cx, 0, sizeof(*tx_pkt_cx)); if (unlikely(skb_vlan_tag_present(skb))) { tx_pkt_cx->vtag_id = skb_vlan_tag_get(skb); tx_pkt_cx->vtag_id |= (skb->priority << VLAN_PRIO_SHIFT); tx_pkt_cx->flags = OSI_PKT_CX_VLAN; tx_swcx = tx_ring->tx_swcx + cur_tx_idx; if (tx_swcx->len) { return 0; } tx_swcx->len = -1; cnt++; INCR_TX_DESC_INDEX(cur_tx_idx, 1U); } len = skb_headlen(skb); tx_swcx = tx_ring->tx_swcx + cur_tx_idx; if (tx_swcx->len) { return 0; } tx_swcx->buf_phy_addr = dma_map_single(dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, tx_swcx->buf_phy_addr))) { dev_err(dev, "failed to map Tx buffer\n"); return -ENOMEM; } tx_swcx->len = len; tx_swcx->buf_virt_addr = skb; cnt++; tx_pkt_cx->desc_cnt = cnt; return cnt; } /** * ether_start_xmit - Network layer hook for data transmission. * @skb: SKB data structure. * @ndev: Net device structure. * * Algorithm: * 1) Allocate software context (DMA address for the buffer) for the data. * 2) Invoke OSI for data transmission. * * Dependencies: MAC and PHY need to be initialized. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ether_priv_data *pdata = netdev_priv(ndev); struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan = skb_get_queue_mapping(skb); struct osi_tx_ring *tx_ring = osi_dma->tx_ring[chan]; int count = 0; count = ether_tx_swcx_alloc(pdata->dev, tx_ring, skb); if (count <= 0) { if (count == 0) { netif_stop_queue(ndev); netdev_err(ndev, "Tx ring is full\n"); return NETDEV_TX_BUSY; } dev_kfree_skb_any(skb); return NETDEV_TX_OK; } osi_hw_transmit(osi_dma, chan); return NETDEV_TX_OK; } /** * ether_ioctl - network stack IOCTL hook to driver * @ndev: network device structure * @rq: Interface request structure used for socket * @cmd: IOCTL command code * * Algorithm: * 1) Invokes MII API for phy read/write based on IOCTL command * * Dependencies: Ethernet interface need to be up. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { int ret = -EOPNOTSUPP; if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: if (!dev->phydev) return -EINVAL; /* generic PHY MII ioctl interface */ ret = phy_mii_ioctl(dev->phydev, rq, cmd); break; default: break; } return ret; } static const struct net_device_ops ether_netdev_ops = { .ndo_open = ether_open, .ndo_stop = ether_close, .ndo_start_xmit = ether_start_xmit, .ndo_do_ioctl = ether_ioctl, }; /** * ether_napi_poll_rx - NAPI poll handler for receive. * @napi: NAPI instance for Rx NAPI. * @budget: NAPI budget. * * Algorithm: Invokes OSI layer to read data from HW and pass onto the * Linux network stack. * * Dependencies: Probe and INIT needs to be completed successfully. * * Protection: None. * * Return: number of packets received. */ static int ether_napi_poll_rx(struct napi_struct *napi, int budget) { struct ether_rx_napi *rx_napi = container_of(napi, struct ether_rx_napi, napi); struct ether_priv_data *pdata = rx_napi->pdata; struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan = rx_napi->chan; int received = 0; received = osi_process_rx_completions(osi_dma, chan, budget); if (received < budget) { napi_complete(napi); osi_enable_chan_rx_intr(osi_dma, chan); } return received; } /** * ether_napi_poll_tx - NAPI poll handler for transmission. * @napi: NAPI instance for tx NAPI. * @budget: NAPI budget. * * Algorithm: Invokes OSI layer to read data from HW and pass onto the * Linux network stack. * * Dependencies: Probe and INIT needs to be completed successfully. * * Protection: None. * * Return: Number of Tx buffer cleaned. */ static int ether_napi_poll_tx(struct napi_struct *napi, int budget) { struct ether_tx_napi *tx_napi = container_of(napi, struct ether_tx_napi, napi); struct ether_priv_data *pdata = tx_napi->pdata; struct osi_dma_priv_data *osi_dma = pdata->osi_dma; unsigned int chan = tx_napi->chan; int processed; processed = osi_process_tx_completions(osi_dma, chan); if (processed == 0) { napi_complete(napi); osi_enable_chan_tx_intr(osi_dma, chan); return 0; } return budget; } /** * ether_alloc_napi - Allocate NAPI resources. * @pdata: OSD private data structure. * * Algorithm: Allocate NAPI instances for the channels which are enabled. * * Dependencies: Number of channels and channel numbers needs to be * updated in OSI private data structure. * * Protection: None. * * Return: None. */ static int ether_alloc_napi(struct ether_priv_data *pdata) { struct osi_dma_priv_data *osi_dma = pdata->osi_dma; struct net_device *ndev = pdata->ndev; struct device *dev = pdata->dev; unsigned int chan; unsigned int i; for (i = 0; i < osi_dma->num_dma_chans; i++) { chan = osi_dma->dma_chans[i]; pdata->tx_napi[chan] = devm_kzalloc(dev, sizeof(struct ether_tx_napi), GFP_KERNEL); if (pdata->tx_napi[chan] == NULL) { dev_err(dev, "failed to allocate Tx NAPI resource\n"); return -ENOMEM; } pdata->tx_napi[chan]->pdata = pdata; pdata->tx_napi[chan]->chan = chan; netif_tx_napi_add(ndev, &pdata->tx_napi[chan]->napi, ether_napi_poll_tx, 64); pdata->rx_napi[chan] = devm_kzalloc(dev, sizeof(struct ether_rx_napi), GFP_KERNEL); if (pdata->rx_napi[chan] == NULL) { dev_err(dev, "failed to allocate RX NAPI resource\n"); return -ENOMEM; } pdata->rx_napi[chan]->pdata = pdata; pdata->rx_napi[chan]->chan = chan; netif_napi_add(ndev, &pdata->rx_napi[chan]->napi, ether_napi_poll_rx, 64); } return 0; } /** * ether_mdio_write - MII call back for MDIO register write. * @bus: MDIO bus instances. * @phyaddr: PHY address (ID). * @phyreg: PHY register to write. * @phydata: Data to be written in register. * * Algorimthm: Invoke OSI layer for PHY register write. * phy_write() API from Linux PHY subsystem will call this. * * Dependencies: MAC has to be out of reset. * * Protection: None. * * Return: 0 - success, -1 - failure. */ static int ether_mdio_write(struct mii_bus *bus, int phyaddr, int phyreg, u16 phydata) { struct net_device *ndev = bus->priv; struct ether_priv_data *pdata = netdev_priv(ndev); return osi_write_phy_reg(pdata->osi_core, (unsigned int)phyaddr, (unsigned int)phyreg, phydata); } /** * ether_mdio_read - MII call back for MDIO register read. * @bus: MDIO bus instances. * @phyaddr: PHY address (ID). * @phyreg: PHY register to read. * * Algorimthm: Invoke OSI layer for PHY register read. * phy_read() API from Linux subsystem will call this. * * Dependencies: MAC has to be out of reset. * * Protection: None. * * Return: data from PHY register - success, -1 - failure. */ static int ether_mdio_read(struct mii_bus *bus, int phyaddr, int phyreg) { struct net_device *ndev = bus->priv; struct ether_priv_data *pdata = netdev_priv(ndev); return osi_read_phy_reg(pdata->osi_core, (unsigned int)phyaddr, (unsigned int)phyreg); } /** * ether_mdio_register - MDIO bus register * @pdata: OSD private data. * * Algorithm: Registers MDIO bus if there is mdio sub DT node * as part of MAC DT node. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_mdio_register(struct ether_priv_data *pdata) { struct device *dev = pdata->dev; struct mii_bus *new_bus = NULL; int ret = 0; if (pdata->mdio_node == NULL) { pdata->mii = NULL; return 0; } new_bus = devm_mdiobus_alloc(dev); if (new_bus == NULL) { ret = -ENOMEM; dev_err(dev, "failed to allocate MDIO bus\n"); goto exit; } new_bus->name = "nvethernet_mdio_bus"; new_bus->read = ether_mdio_read; new_bus->write = ether_mdio_write; snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev)); new_bus->priv = pdata->ndev; new_bus->parent = dev; ret = of_mdiobus_register(new_bus, pdata->mdio_node); if (ret) { dev_err(dev, "failed to register MDIO bus (%s)\n", new_bus->name); goto exit; } pdata->mii = new_bus; exit: return ret; } /** * ether_get_irqs - Read IRQ numbers from DT. * @pdev: Platform device associated with driver. * @pdata: OSD private data. * @num_chans: Number of channels. * * Algorithm: Reads the IRQ numbers from DT based on number of channels. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_get_irqs(struct platform_device *pdev, struct ether_priv_data *pdata, unsigned int num_chans) { unsigned int i, j; /* get common IRQ*/ pdata->common_irq = platform_get_irq(pdev, 0); if (pdata->common_irq < 0) { dev_err(&pdev->dev, "failed to get common IRQ number\n"); return pdata->common_irq; } /* get TX IRQ numbers */ /* TODO: Need to get VM based IRQ numbers based on MAC version */ for (i = 0, j = 1; i < num_chans; i++) { pdata->tx_irqs[i] = platform_get_irq(pdev, j++); if (pdata->tx_irqs[i] < 0) { dev_err(&pdev->dev, "failed to get TX IRQ number\n"); return pdata->tx_irqs[i]; } } for (i = 0; i < num_chans; i++) { pdata->rx_irqs[i] = platform_get_irq(pdev, j++); if (pdata->rx_irqs[i] < 0) { dev_err(&pdev->dev, "failed to get RX IRQ number\n"); return pdata->rx_irqs[i]; } } return 0; } /** * ether_get_mac_address_dtb - Get MAC address from DT * @node_name: Device tree node name. * @property_name: DT property name inside DT node. * @mac_addr: MAC address. * * Algorithm: Populates MAC address by reading DT node. * * Dependencies: Bootloader needs to updates chosen DT node with MAC * address. * * Protection: None. * * Return: 0 - success, -1 - failure. */ static int ether_get_mac_address_dtb(const char *node_name, const char *property_name, unsigned char *mac_addr) { struct device_node *np = of_find_node_by_path(node_name); const char *mac_str = NULL; int values[6] = {0}; unsigned char mac_temp[6] = {0}; int i, ret = 0; if (np == NULL) return -EADDRNOTAVAIL; /* If the property is present but contains an invalid value, * then something is wrong. Log the error in that case. */ if (of_property_read_string(np, property_name, &mac_str)) { ret = -EADDRNOTAVAIL; goto err_out; } /* The DTB property is a string of the form xx:xx:xx:xx:xx:xx * Convert to an array of bytes. */ if (sscanf(mac_str, "%x:%x:%x:%x:%x:%x", &values[0], &values[1], &values[2], &values[3], &values[4], &values[5]) != 6) { ret = -EINVAL; goto err_out; } for (i = 0; i < 6; ++i) mac_temp[i] = (unsigned char)values[i]; if (!is_valid_ether_addr(mac_temp)) { ret = -EINVAL; goto err_out; } memcpy(mac_addr, mac_temp, 6); of_node_put(np); return ret; err_out: pr_err("%s: bad mac address at %s/%s: %s.\n", __func__, node_name, property_name, (mac_str != NULL) ? mac_str : "NULL"); of_node_put(np); return ret; } /** * ether_get_mac_address - Get MAC address from DT * @pdata: OSD private data. * * Algorithm: Populates MAC address by reading DT node. * * Dependencies: Bootloader needs to updates chosen DT node with MAC * address. * * Protection: None. * * Return: 0 - success, -1 - failure. */ static int ether_get_mac_address(struct ether_priv_data *pdata) { struct osi_core_priv_data *osi_core = pdata->osi_core; struct net_device *ndev = pdata->ndev; unsigned char mac_addr[6] = {0}; int ret = 0, i; /* read MAC address */ ret = ether_get_mac_address_dtb("/chosen", "nvidia,ether-mac", mac_addr); if (ret < 0) return ret; /* Set up MAC address */ for (i = 0; i < 6; i++) { ndev->dev_addr[i] = mac_addr[i]; osi_core->mac_addr[i] = mac_addr[i]; } dev_info(pdata->dev, "Ethernet MAC address: %pM\n", ndev->dev_addr); return ret; } /** * ether_disable_clks - Disable all MAC related clks. * @pdata: OSD private data. * * Algorithm: Release the reference counter for the clks by using * clock subsystem provided API's. * * Dependencies: None. * * Protection: None. * * Return: None. */ static void ether_disable_clks(struct ether_priv_data *pdata) { if (!IS_ERR_OR_NULL(pdata->axi_cbb_clk)) clk_disable_unprepare(pdata->axi_cbb_clk); if (!IS_ERR_OR_NULL(pdata->axi_clk)) clk_disable_unprepare(pdata->axi_clk); if (!IS_ERR_OR_NULL(pdata->rx_clk)) clk_disable_unprepare(pdata->rx_clk); if (!IS_ERR_OR_NULL(pdata->ptp_ref_clk)) clk_disable_unprepare(pdata->ptp_ref_clk); if (!IS_ERR_OR_NULL(pdata->tx_clk)) clk_disable_unprepare(pdata->tx_clk); if (!IS_ERR_OR_NULL(pdata->pllrefe_clk)) clk_disable_unprepare(pdata->pllrefe_clk); } /** * ether_enable_clks - Enable all MAC related clks. * @pdata: OSD private data. * * Algorithm: Enables the clks by using clock subsystem provided API's. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_enable_clks(struct ether_priv_data *pdata) { int ret; if (!IS_ERR_OR_NULL(pdata->pllrefe_clk)) { ret = clk_prepare_enable(pdata->pllrefe_clk); if (ret < 0) return ret; } if (!IS_ERR_OR_NULL(pdata->axi_cbb_clk)) { ret = clk_prepare_enable(pdata->axi_cbb_clk); if (ret) goto err_axi_cbb; } if (!IS_ERR_OR_NULL(pdata->axi_clk)) { ret = clk_prepare_enable(pdata->axi_clk); if (ret < 0) goto err_axi; } if (!IS_ERR_OR_NULL(pdata->rx_clk)) { ret = clk_prepare_enable(pdata->rx_clk); if (ret < 0) goto err_rx; } if (!IS_ERR_OR_NULL(pdata->ptp_ref_clk)) { ret = clk_prepare_enable(pdata->ptp_ref_clk); if (ret < 0) goto err_ptp_ref; } if (!IS_ERR_OR_NULL(pdata->tx_clk)) { ret = clk_prepare_enable(pdata->tx_clk); if (ret < 0) goto err_tx; } return 0; err_tx: if (!IS_ERR_OR_NULL(pdata->ptp_ref_clk)) clk_disable_unprepare(pdata->ptp_ref_clk); err_ptp_ref: if (!IS_ERR_OR_NULL(pdata->rx_clk)) clk_disable_unprepare(pdata->rx_clk); err_rx: if (!IS_ERR_OR_NULL(pdata->axi_clk)) clk_disable_unprepare(pdata->axi_clk); err_axi: if (!IS_ERR_OR_NULL(pdata->axi_cbb_clk)) clk_disable_unprepare(pdata->axi_cbb_clk); err_axi_cbb: if (!IS_ERR_OR_NULL(pdata->pllrefe_clk)) clk_disable_unprepare(pdata->pllrefe_clk); return ret; } /** * ether_get_clks - Get MAC related clocks. * @pdata: OSD private data. * * Algorithm: Get the clocks from DT and stores in OSD private data. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_get_clks(struct ether_priv_data *pdata) { struct device *dev = pdata->dev; pdata->pllrefe_clk = devm_clk_get(dev, "pllrefe_vcoout"); if (IS_ERR(pdata->pllrefe_clk)) dev_info(dev, "failed to get pllrefe_vcoout clk\n"); pdata->axi_cbb_clk = devm_clk_get(dev, "axi_cbb"); if (IS_ERR(pdata->axi_cbb_clk)) { dev_err(dev, "failed to get axi_cbb clk\n"); return PTR_ERR(pdata->axi_cbb_clk); } pdata->axi_clk = devm_clk_get(dev, "eqos_axi"); if (IS_ERR(pdata->axi_clk)) { dev_err(dev, "failed to get eqos_axi clk\n"); return PTR_ERR(pdata->axi_clk); } pdata->rx_clk = devm_clk_get(dev, "eqos_rx"); if (IS_ERR(pdata->rx_clk)) { dev_err(dev, "failed to get eqos_rx clk\n"); return PTR_ERR(pdata->rx_clk); } pdata->ptp_ref_clk = devm_clk_get(dev, "eqos_ptp_ref"); if (IS_ERR(pdata->ptp_ref_clk)) { dev_err(dev, "failed to get eqos_ptp_ref clk\n"); return PTR_ERR(pdata->ptp_ref_clk); } pdata->tx_clk = devm_clk_get(dev, "eqos_tx"); if (IS_ERR(pdata->tx_clk)) { dev_err(dev, "failed to get eqos_tx clk\n"); return PTR_ERR(pdata->tx_clk); } return 0; } /** * ether_configure_car - Get Reset and MAC related clocks. * @pdev: Platform device. * @pdata: OSD private data. * * Algorithm: Get the resets and MAC related clocks from DT and stores in * OSD private data. It also sets MDC clock rate by invoking OSI layer * with osi_set_mdc_clk_rate(). * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_configure_car(struct platform_device *pdev, struct ether_priv_data *pdata) { struct osi_core_priv_data *osi_core = pdata->osi_core; struct device *dev = pdata->dev; struct device_node *np = dev->of_node; unsigned long csr_clk_rate = 0; int ret = 0; /* get MAC reset */ pdata->mac_rst = devm_reset_control_get(&pdev->dev, "mac_rst"); if (IS_ERR_OR_NULL(pdata->mac_rst)) { dev_err(&pdev->dev, "failed to get MAC reset\n"); return PTR_ERR(pdata->mac_rst); } /* get PHY reset */ pdata->phy_reset = of_get_named_gpio(np, "nvidia,phy-reset-gpio", 0); if (pdata->phy_reset < 0) dev_info(dev, "failed to get phy reset gpio\n"); if (gpio_is_valid(pdata->phy_reset)) { ret = devm_gpio_request_one(dev, (unsigned int)pdata->phy_reset, GPIOF_OUT_INIT_HIGH, "phy_reset"); if (ret < 0) { dev_err(dev, "failed to request PHY reset gpio\n"); goto exit; } gpio_set_value(pdata->phy_reset, 0); usleep_range(10, 11); gpio_set_value(pdata->phy_reset, 1); } ret = ether_get_clks(pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to get clks\n"); return ret; } ret = ether_enable_clks(pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to enable clks\n"); return ret; } if (pdata->mac_rst) { ret = reset_control_reset(pdata->mac_rst); if (ret < 0) { dev_err(&pdev->dev, "failed to reset MAC HW\n"); goto err_rst; } } ret = osi_poll_for_swr(osi_core); if (ret < 0) { dev_err(&pdev->dev, "failed to poll MAC Software reset\n"); goto err_swr; } csr_clk_rate = clk_get_rate(pdata->axi_cbb_clk); osi_set_mdc_clk_rate(pdata->osi_core, csr_clk_rate); return ret; err_swr: if (pdata->mac_rst) reset_control_deassert(pdata->mac_rst); err_rst: ether_disable_clks(pdata); exit: return ret; } /** * ether_init_plat_resources - Get platform resources * @pdev: Platform device associated with platform driver. * @pdata: OSD private data. * * Algorithm: Populates base address, clks, reset and MAC address. * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_init_plat_resources(struct platform_device *pdev, struct ether_priv_data *pdata) { struct osi_core_priv_data *osi_core = pdata->osi_core; struct resource *res; int ret = 0; /* get base address and remap */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); osi_core->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(osi_core->base)) { dev_err(&pdev->dev, "failed to ioremap MAC base address\n"); return PTR_ERR(osi_core->base); } ret = ether_configure_car(pdev, pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to get clks/reset"); goto rst_clk_fail; } /*FIXME Need to program different MAC address for other FDs into * different MAC address registers. Need to add DA based filtering * support. Get MAC address from DT */ ret = ether_get_mac_address(pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to get MAC address"); goto mac_addr_fail; } return 0; mac_addr_fail: ether_disable_clks(pdata); rst_clk_fail: return ret; } /** * ether_parse_phy_dt - Parse PHY DT. * @pdata: OS dependent private data structure. * @node: DT node entry of MAC * * Algorithm: Reads PHY DT. Updates required data. * * Dependencies: None * * Protection: None * * Return: 0 - success, negative value - failure */ static int ether_parse_phy_dt(struct ether_priv_data *pdata, struct device_node *node) { pdata->interface = of_get_phy_mode(node); pdata->phy_node = of_parse_phandle(node, "phy-handle", 0); if (pdata->phy_node == NULL) pr_debug("%s(): phy handle not found\n", __func__); /* If nvidia,eqos-mdio is passed from DT, always register the MDIO */ for_each_child_of_node(node, pdata->mdio_node) { if (of_device_is_compatible(pdata->mdio_node, "nvidia,eqos-mdio")) break; } /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ if ((pdata->phy_node == NULL) && of_phy_is_fixed_link(node)) { if ((of_phy_register_fixed_link(node) < 0)) return -ENODEV; pdata->phy_node = of_node_get(node); } return 0; } /** * ether_parse_dt - Parse MAC and PHY DT. * @pdata: OS dependent private data structure. * * Algorithm: Reads MAC and PHY DT. Updates required data. * * Dependencies: None * * Protection: None * * Return: 0 - success, negative value - failure */ static int ether_parse_dt(struct ether_priv_data *pdata) { struct osi_core_priv_data *osi_core = pdata->osi_core; struct osi_dma_priv_data *osi_dma = pdata->osi_dma; struct device *dev = pdata->dev; struct device_node *np = dev->of_node; int ret = 0; ret = of_property_read_u32_array(np, "nvidia,mtl-queues", osi_core->mtl_queues, osi_core->num_mtl_queues); if (ret < 0) { dev_err(dev, "failed to read MTL Queue numbers\n"); if (osi_core->num_mtl_queues == 1) { osi_core->mtl_queues[0] = 0; dev_info(dev, "setting default MTL queue: 0\n"); } else { goto exit; } } ret = of_property_read_u32_array(np, "nvidia,dma-chans", osi_dma->dma_chans, osi_dma->num_dma_chans); if (ret < 0) { dev_err(dev, "failed to read DMA channel numbers\n"); if (osi_dma->num_dma_chans == 1) { osi_dma->dma_chans[0] = 0; dev_info(dev, "setting default DMA channel: 0\n"); } else { goto exit; } } ret = of_property_read_u32_array(np, "nvidia,rxq_enable_ctrl", osi_core->rxq_ctrl, osi_core->num_mtl_queues); if (ret < 0) { dev_err(dev, "failed to read rxq enable ctrl\n"); return ret; } ret = ether_parse_phy_dt(pdata, np); if (ret < 0) { dev_err(dev, "failed to parse PHY DT\n"); goto exit; } exit: return ret; } /** * ether_get_num_dma_chan_mtl_q - Populate number of MTL and DMA channels. * @pdev: Platform device * @num_chans: Number of channels * @mac: MAC type based on compatible property * @num_mtl_queues: Number of MTL queues. * * Algorithm: * 1) Updates MAC HW type based on DT compatible property. * 2) Read number of channels from DT. * 3) Updates number of channels based on min and max number of channels * * Dependencies: None * * Protection: None * * Return: None. */ static void ether_get_num_dma_chan_mtl_q(struct platform_device *pdev, unsigned int *num_dma_chans, unsigned int *mac, unsigned int *num_mtl_queues) { struct device_node *np = pdev->dev.of_node; unsigned int max_chans; int ret = 0; ret = of_device_is_compatible(np, "nvidia,nveqos"); if (ret != 0) { *mac = OSI_MAC_HW_EQOS; max_chans = OSI_EQOS_MAX_NUM_CHANS; } /* parse the number of DMA channels */ ret = of_property_read_u32(np, "nvidia,num-dma-chans", num_dma_chans); if (ret != 0) { dev_err(&pdev->dev, "failed to get number of DMA channels (%d)\n", ret); dev_info(&pdev->dev, "Setting number of channels to one\n"); *num_dma_chans = 1; } else if (*num_dma_chans < 1U || *num_dma_chans > max_chans) { dev_warn(&pdev->dev, "Invalid num_dma_chans(=%d), setting to 1\n", *num_dma_chans); *num_dma_chans = 1; } else { /* No action required */ } /* parse the number of mtl queues */ ret = of_property_read_u32(np, "nvidia,num-mtl-queues", num_mtl_queues); if (ret != 0) { dev_err(&pdev->dev, "failed to get number of MTL queueus (%d)\n", ret); dev_info(&pdev->dev, "Setting number of queues to one\n"); *num_mtl_queues = 1; } else if (*num_mtl_queues < 1U || *num_mtl_queues > max_chans) { dev_warn(&pdev->dev, "Invalid num_mtl_queues(=%d), setting to 1\n", *num_mtl_queues); *num_mtl_queues = 1; } else { /* No action required */ } } /** * ether_probe - Ethernet platform driver probe. * @pdev: platform device associated with platform driver. * * Algorithm: * 1) Get the number of channels from DT. * 2) Allocate the network device for those many channels. * 3) Parse MAC and PHY DT. * 4) Get all required clks/reset/IRQ's * 5) Register MDIO bus and network device. * * Dependencies: Device tree need to be updated with proper DT properties. * * Protection: None. * * Return: 0 - success, negative value - failure. * */ static int ether_probe(struct platform_device *pdev) { struct ether_priv_data *pdata; unsigned int num_dma_chans, mac, num_mtl_queues; struct osi_core_priv_data *osi_core; struct osi_dma_priv_data *osi_dma; struct net_device *ndev; int ret = 0; ether_get_num_dma_chan_mtl_q(pdev, &num_dma_chans, &mac, &num_mtl_queues); osi_core = devm_kzalloc(&pdev->dev, sizeof(*osi_core), GFP_KERNEL); if (osi_core == NULL) { return -ENOMEM; } osi_dma = devm_kzalloc(&pdev->dev, sizeof(*osi_dma), GFP_KERNEL); if (osi_dma == NULL) { return -ENOMEM; } /* allocate and set up the ethernet device */ ndev = alloc_etherdev_mq((int)sizeof(struct ether_priv_data), num_dma_chans); if (ndev == NULL) { dev_err(&pdev->dev, "failed to allocate net device\n"); return -ENOMEM; } SET_NETDEV_DEV(ndev, &pdev->dev); pdata = netdev_priv(ndev); pdata->dev = &pdev->dev; pdata->ndev = ndev; platform_set_drvdata(pdev, ndev); pdata->osi_core = osi_core; pdata->osi_dma = osi_dma; osi_core->osd = pdata; osi_dma->osd = pdata; osi_core->num_mtl_queues = num_mtl_queues; osi_dma->num_dma_chans = num_dma_chans; osi_core->mac = mac; osi_dma->mac = mac; /* Initialize core and DMA ops based on MAC type */ osi_init_core_ops(osi_core); osi_init_dma_ops(osi_dma); /* get base address, clks, reset ID's and MAC address*/ ret = ether_init_plat_resources(pdev, pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to allocate platform resources\n"); goto err_init_res; } /* Assign core base to dma/common base, since we are using single VM */ osi_dma->base = osi_core->base; ret = ether_parse_dt(pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to parse DT\n"); goto err_parse_dt; } osi_get_hw_features(osi_core->base, &pdata->hw_feat); ret = osi_get_mac_version(osi_core->base, &osi_core->mac_ver); if (ret < 0) { dev_err(&pdev->dev, "failed to get MAC version (%u)\n", osi_core->mac_ver); goto err_parse_dt; } ret = ether_get_irqs(pdev, pdata, num_dma_chans); if (ret < 0) { dev_err(&pdev->dev, "failed to get IRQ's\n"); goto err_parse_dt; } ret = ether_mdio_register(pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to register MDIO bus\n"); goto err_parse_dt; } ndev->netdev_ops = ðer_netdev_ops; ether_set_ethtool_ops(ndev); ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; if (pdata->hw_feat.sa_vlan_ins) { ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; } ndev->features |= ndev->hw_features; ret = ether_alloc_napi(pdata); if (ret < 0) { dev_err(&pdev->dev, "failed to allocate NAPI\n"); goto err_napi; } ret = register_netdev(ndev); if (ret < 0) { dev_err(&pdev->dev, "failed to register netdev\n"); goto err_netdev; } dev_info(&pdev->dev, "%s (HW ver: %02x) created with %u DMA channels\n", netdev_name(ndev), osi_core->mac_ver, num_dma_chans); return 0; err_netdev: err_napi: mdiobus_unregister(pdata->mii); err_parse_dt: ether_disable_clks(pdata); err_init_res: free_netdev(ndev); return ret; } /** * ether_remove - Ethernet platform driver remove. * @pdev: Platform device associated with platform driver. * * Alogorithm: Release all the resources * * Dependencies: None. * * Protection: None. * * Return: 0 - success, negative value - failure. */ static int ether_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct ether_priv_data *pdata = netdev_priv(ndev); unregister_netdev(ndev); if (pdata->mii != NULL) { mdiobus_unregister(pdata->mii); } ether_disable_clks(pdata); free_netdev(ndev); return 0; } static const struct of_device_id ether_of_match[] = { { .compatible = "nvidia,nveqos" }, {}, }; MODULE_DEVICE_TABLE(of, ether_of_match); static struct platform_driver ether_driver = { .probe = ether_probe, .remove = ether_remove, .driver = { .name = "nvethernet", .of_match_table = ether_of_match, }, }; module_platform_driver(ether_driver); MODULE_LICENSE("GPL v2");