Files
linux-nv-oot/drivers/net/ethernet/nvidia/nvethernet/osd.c
Mahesh Patil 00e9f705d4 nvethernet: Ignore lane bringup restart task
- Adding WAR to ignore lane bringup restart task
 as it is causing lane bring up failures in SLT EQOS/MGBE
- Populate RSS hash table with enabled num_of_dma channels

Bug 4709627

Change-Id: I195db0371f69dfcedc1c67023c1279af426dd7e6
Signed-off-by: Mahesh Patil <maheshp@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nv-oot/+/3162313
Reviewed-by: Nagaraj Annaiah <nannaiah@nvidia.com>
Reviewed-by: Ashutosh Jha <ajha@nvidia.com>
2024-06-26 22:56:52 -07:00

1022 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2019-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved */
#include "ether_linux.h"
/**
* @brief ether_get_free_tx_ts_node - get free node for pending SKB
*
* Algorithm:
* - Find index of statically allocayted free memory for pending SKB
*
* @param[in] pdata: OSD private data structure.
*
* @retval index number
*/
static inline unsigned int ether_get_free_tx_ts_node(struct ether_priv_data *pdata)
{
unsigned int i;
for (i = 0; i < ETHER_MAX_PENDING_SKB_CNT; i++) {
if (pdata->tx_ts_skb[i].in_use == OSI_NONE) {
break;
}
}
return i;
}
static inline void add_skb_node(struct ether_priv_data *pdata, struct sk_buff *skb,
unsigned int pktid, unsigned int vdmaid) {
struct list_head *head_node, *temp_head_node;
struct ether_tx_ts_skb_list *pnode = NULL;
unsigned int idx;
unsigned long flags;
unsigned long now_jiffies = jiffies;
if (list_empty(&pdata->tx_ts_skb_head)) {
goto empty;
}
raw_spin_lock_irqsave(&pdata->txts_lock, flags);
list_for_each_safe(head_node, temp_head_node,
&pdata->tx_ts_skb_head) {
pnode = list_entry(head_node,
struct ether_tx_ts_skb_list,
list_head);
if ((jiffies_to_msecs(now_jiffies) - jiffies_to_msecs(pnode->pkt_jiffies))
>= ETHER_SECTOMSEC) {
dev_dbg(pdata->dev, "%s() skb %p deleting for pktid = %x time=%lu\n",
__func__, pnode->skb, pnode->pktid, pnode->pkt_jiffies);
if (pnode->skb != NULL) {
dev_consume_skb_any(pnode->skb);
}
list_del(head_node);
pnode->in_use = OSI_DISABLE;
}
}
raw_spin_unlock_irqrestore(&pdata->txts_lock, flags);
empty:
raw_spin_lock_irqsave(&pdata->txts_lock, flags);
idx = ether_get_free_tx_ts_node(pdata);
if (idx == ETHER_MAX_PENDING_SKB_CNT) {
dev_err(pdata->dev,
"No free node to store pending SKB\n");
dev_consume_skb_any(skb);
raw_spin_unlock_irqrestore(&pdata->txts_lock, flags);
return;
}
pdata->tx_ts_skb[idx].in_use = OSI_ENABLE;
pnode = &pdata->tx_ts_skb[idx];
pnode->skb = skb;
pnode->pktid = pktid;
pnode->vdmaid = vdmaid;
pnode->pkt_jiffies = now_jiffies;
dev_dbg(pdata->dev, "%s() SKB %p added for pktid = %x time=%lu\n",
__func__, skb, pktid, pnode->pkt_jiffies);
list_add_tail(&pnode->list_head,
&pdata->tx_ts_skb_head);
raw_spin_unlock_irqrestore(&pdata->txts_lock, flags);
}
/**
* @brief Adds delay in micro seconds.
*
* Algorithm: Invokes OSD delay function for adding delay
*
* @param[in] usec: Delay number in micro seconds.
*/
static void osd_udelay(unsigned long long usec)
{
udelay(usec);
}
/**
* @brief Adds sleep in micro seconds
*
* Algorithm: Invokes OSD function to add sleep.
*
* @param[in] umin: Minimum sleep required in micro seconds.
* @param[in] umax: Maximum sleep required in micro seconds.
*/
static void osd_usleep_range(unsigned long long umin, unsigned long long umax)
{
usleep_range(umin, umax);
}
/**
* @brief osd_log - OSD logging function
*
* @param[in] priv: OSD private data
* @param[in] func: function name
* @param[in] line: line number
* @param[in] level: log level
* @param[in] type: error type
* @param[in] err: error string
* @param[in] loga: error additional information
*
*/
static void osd_log(void *priv,
const char *func,
unsigned int line,
unsigned int level,
unsigned int type,
const char *err,
unsigned long long loga)
{
if (priv) {
switch (level) {
case OSI_LOG_INFO:
dev_info(((struct ether_priv_data *)priv)->dev,
"[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
#ifndef OSI_STRIPPED_LIB
case OSI_LOG_WARN:
dev_warn(((struct ether_priv_data *)priv)->dev,
"[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
#endif /* !OSI_STRIPPED_LIB */
case OSI_LOG_ERR:
dev_err(((struct ether_priv_data *)priv)->dev,
"[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
default:
break;
}
} else {
switch (level) {
case OSI_LOG_INFO:
pr_info("[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
#ifndef OSI_STRIPPED_LIB
case OSI_LOG_WARN:
pr_warn("[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
#endif /* !OSI_STRIPPED_LIB */
case OSI_LOG_ERR:
pr_err("[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
default:
break;
}
}
}
/**
* @brief Allocate and DMA map Rx buffer.
*
* Algorithm: Allocate network buffer (skb) and map skb->data to
* DMA mappable address.
*
* @param[in] pdata: OSD private data structure.
* @param[in] rx_swcx: Rx ring software context.
* @param[in] dma_rx_buf_len: DMA Rx buffer length.
*
* @retval 0 on Sucess
* @retval ENOMEM on failure.
*/
static inline int ether_alloc_skb(struct ether_priv_data *pdata,
struct osi_rx_swcx *rx_swcx,
unsigned int dma_rx_buf_len,
unsigned int chan)
{
#ifndef ETHER_PAGE_POOL
struct sk_buff *skb = NULL;
dma_addr_t dma_addr;
#endif
unsigned long val;
if (((rx_swcx->flags & OSI_RX_SWCX_REUSE) == OSI_RX_SWCX_REUSE) &&
(rx_swcx->buf_virt_addr != pdata->resv_buf_virt_addr)) {
/* Skip buffer allocation and DMA mapping since
* PTP software context will have valid buffer and
* DMA addresses so use them as is.
*/
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
return 0;
}
#ifndef ETHER_PAGE_POOL
skb = netdev_alloc_skb_ip_align(pdata->ndev, dma_rx_buf_len);
if (unlikely(skb == NULL)) {
dev_err(pdata->dev, "RX skb allocation failed, using reserved buffer\n");
rx_swcx->buf_virt_addr = pdata->resv_buf_virt_addr;
rx_swcx->buf_phy_addr = pdata->resv_buf_phy_addr;
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
val = pdata->xstats.re_alloc_rxbuf_failed[chan];
pdata->xstats.re_alloc_rxbuf_failed[chan] = update_stats_counter(val, 1UL);
return 0;
}
dma_addr = dma_map_single(pdata->dev, skb->data, dma_rx_buf_len,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(pdata->dev, dma_addr) != 0)) {
dev_err(pdata->dev, "RX skb dma map failed\n");
dev_kfree_skb_any(skb);
return -ENOMEM;
}
#else
rx_swcx->buf_virt_addr = page_pool_dev_alloc_pages(pdata->page_pool[chan]);
if (!rx_swcx->buf_virt_addr) {
dev_err(pdata->dev,
"page pool allocation failed using resv_buf\n");
rx_swcx->buf_virt_addr = pdata->resv_buf_virt_addr;
rx_swcx->buf_phy_addr = pdata->resv_buf_phy_addr;
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
val = pdata->xstats.re_alloc_rxbuf_failed[chan];
pdata->xstats.re_alloc_rxbuf_failed[chan] = update_stats_counter(val, 1UL);
return 0;
}
rx_swcx->buf_phy_addr = page_pool_get_dma_addr(rx_swcx->buf_virt_addr);
#endif
#ifndef ETHER_PAGE_POOL
rx_swcx->buf_virt_addr = skb;
rx_swcx->buf_phy_addr = dma_addr;
#endif
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
return 0;
}
/**
* @brief Re-fill DMA channel Rx ring.
*
* Algorithm: Re-fill Rx DMA channel ring until dirty rx index is equal
* to current rx index.
* 1) Invokes OSD layer to allocate the buffer and map the buffer to DMA
* mappable address.
* 2) Fill Rx descriptors with required data.
*
* @param[in] pdata: OSD private data structure.
* @param[in] rx_ring: DMA channel Rx ring instance.
* @param[in] chan: DMA Rx channel number.
*/
static void ether_realloc_rx_skb(struct ether_priv_data *pdata,
struct osi_rx_ring *rx_ring,
unsigned int chan)
{
struct osi_dma_priv_data *osi_dma = pdata->osi_dma;
struct osi_rx_swcx *rx_swcx = NULL;
struct osi_rx_desc *rx_desc = NULL;
unsigned int local_refill_idx = rx_ring->refill_idx;
int ret = 0;
while (local_refill_idx != rx_ring->cur_rx_idx &&
local_refill_idx < osi_dma->rx_ring_sz) {
rx_swcx = rx_ring->rx_swcx + local_refill_idx;
rx_desc = rx_ring->rx_desc + local_refill_idx;
ret = ether_alloc_skb(pdata, rx_swcx, osi_dma->rx_buf_len,
chan);
if (ret < 0) {
break;
}
INCR_RX_DESC_INDEX(local_refill_idx, osi_dma->rx_ring_sz);
}
ret = osi_rx_dma_desc_init(osi_dma, rx_ring, chan);
if (ret < 0) {
dev_err(pdata->dev, "Failed to refill Rx ring %u\n", chan);
}
}
/**
* @brief osd_realloc_buf - Allocate RX sk_buffer
*
* Algorithm: call ether_realloc_rx_skb for re-allocation
*
* @param[in] priv: OSD private data structure.
* @param[in] rx_ring: Pointer to DMA channel Rx ring.
* @param[in] chan: DMA Rx channel number.
*
*/
static void osd_realloc_buf(void *priv, struct osi_rx_ring *rx_ring,
unsigned int chan)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
ether_realloc_rx_skb(pdata, rx_ring, chan);
}
#ifdef ETHER_NVGRO
/**
* @brief ether_gro_merge_complete - Merging the packets with GRO layer
*
* @param[in] nvgro_q: NVGRO packet sequence queue.
* @param[in] napi: Driver NAPI instance.
*/
static inline void ether_gro_merge_complete(struct sk_buff_head *nvgro_q,
struct napi_struct *napi)
{
struct list_head h;
struct sk_buff *f_skb, *p, *pp;
f_skb = __skb_peek(nvgro_q);
INIT_LIST_HEAD(&h);
skb_queue_walk_safe(nvgro_q, p, pp) {
__skb_unlink(p, nvgro_q);
NAPI_GRO_CB(p)->data_offset = 0;
NAPI_GRO_CB(p)->frag0 = NULL;
NAPI_GRO_CB(p)->frag0_len = 0;
NAPI_GRO_CB(p)->same_flow = 1;
NAPI_GRO_CB(p)->flush_id = 0;
NAPI_GRO_CB(p)->count = 0;
NAPI_GRO_CB(p)->flush = skb_is_gso(p);
NAPI_GRO_CB(p)->free = 0;
NAPI_GRO_CB(p)->encap_mark = 0;
NAPI_GRO_CB(p)->recursion_counter = 0;
NAPI_GRO_CB(p)->is_fou = 0;
NAPI_GRO_CB(p)->is_atomic = 1;
NAPI_GRO_CB(p)->gro_remcsum_start = 0;
NAPI_GRO_CB(p)->csum_cnt = p->csum_level + 1;
NAPI_GRO_CB(p)->csum_valid = 0;
inet_gro_receive(&h, p);
if (p == f_skb) {
list_add(&p->list, &h);
NAPI_GRO_CB(p)->age = jiffies;
NAPI_GRO_CB(p)->last = p;
skb_shinfo(p)->gso_size = skb_gro_len(p);
}
NAPI_GRO_CB(f_skb)->count++;
}
skb_list_del_init(f_skb);
napi_gro_complete(napi, f_skb);
}
/**
* @brief ether_update_fq_with_fs - Populates final queue with TTL = 1 packet
*
* @param[in] pdata: Ethernet driver private data
* @param[in] skb: Socket buffer.
*/
static inline void ether_update_fq_with_fs(struct ether_priv_data *pdata,
struct sk_buff *skb)
{
if (!skb_queue_empty(&pdata->fq)) {
pdata->nvgro_dropped += pdata->fq.qlen;
__skb_queue_purge(&pdata->fq);
}
/* queue skb to fq which has TTL = 1 */
__skb_queue_tail(&pdata->fq, skb);
pdata->expected_ip_id = NAPI_GRO_CB(skb)->flush_id + 1;
}
/**
* @brief ether_get_skb_from_ip_id - Get SKB from MQ based on IPID.
*
* @param[in] mq: NVGRO packet out of order queue.
* @param[in] ip_id: IPv4 packet ID.
*
* @retval skb on Success
* @retval NULL on failure.
*/
static inline struct sk_buff *ether_get_skb_from_ip_id(struct sk_buff_head *mq,
u16 ip_id)
{
struct sk_buff *p, *pp;
skb_queue_walk_safe(mq, p, pp) {
if ((NAPI_GRO_CB(p)->flush_id) == ip_id) {
__skb_unlink(p, mq);
return p;
}
}
return NULL;
}
/**
* @brief ether_gro - Perform NVGRO packet merging.
*
* @param[in] fq: NVGRO packets sequence queue.
* @param[in] mq: NVGRO packet out of order queue.
* @param[in] napi: Driver NAPI instance.
*/
static inline void ether_gro(struct sk_buff_head *fq, struct sk_buff_head *mq,
struct napi_struct *napi)
{
struct sk_buff *f_skb, *p;
u32 s_ip_id;
if (skb_queue_empty(fq))
return;
f_skb = skb_peek_tail(fq);
s_ip_id = NAPI_GRO_CB(f_skb)->flush_id;
do {
s_ip_id++;
p = ether_get_skb_from_ip_id(mq, s_ip_id);
if (!p)
return;
__skb_queue_tail(fq, p);
if (NAPI_GRO_CB(p)->free == 2)
break;
} while (1);
ether_gro_merge_complete(fq, napi);
}
/**
* @brief ether_purge_q - Purge master queue based on packet age.
*
* @param[in] pdata: Ethernet private data.
*/
static inline void ether_purge_q(struct ether_priv_data *pdata)
{
struct sk_buff *p, *pp;
skb_queue_walk_safe(&pdata->mq, p, pp) {
if ((jiffies - NAPI_GRO_CB(p)->age) >
msecs_to_jiffies(pdata->pkt_age_msec)) {
__skb_unlink(p, &pdata->mq);
dev_consume_skb_any(p);
pdata->nvgro_dropped++;
} else {
return;
}
}
}
/**
* @brief ether_nvgro_purge_timer - NVGRO purge timer handler.
*
* @param[in] t: Pointer to the timer.
*/
void ether_nvgro_purge_timer(struct timer_list *t)
{
struct ether_priv_data *pdata = from_timer(pdata, t, nvgro_timer);
struct sk_buff *f_skb;
if (atomic_read(&pdata->rx_state) == OSI_ENABLE)
return;
atomic_set(&pdata->timer_state, OSI_ENABLE);
ether_purge_q(pdata);
f_skb = skb_peek(&pdata->fq);
if (!f_skb)
goto exit;
if ((jiffies - NAPI_GRO_CB(f_skb)->age) >
msecs_to_jiffies(pdata->pkt_age_msec)) {
pdata->nvgro_dropped += pdata->fq.qlen;
__skb_queue_purge(&pdata->fq);
}
exit:
atomic_set(&pdata->timer_state, OSI_DISABLE);
mod_timer(&pdata->nvgro_timer,
jiffies + msecs_to_jiffies(pdata->nvgro_timer_intrvl));
}
/**
* @brief ether_do_nvgro - Perform NVGRO processing.
*
* @param[in] pdata: Ethernet private data.
* @param[in] napi: Ethernet driver NAPI instance.
* @param[in] skb: socket buffer
*
* @retval true on Success
* @retval false on failure.
*/
static bool ether_do_nvgro(struct ether_priv_data *pdata,
struct napi_struct *napi,
struct sk_buff *skb)
{
struct udphdr *uh = (struct udphdr *)(skb->data + sizeof(struct iphdr));
struct iphdr *iph = (struct iphdr *)skb->data;
struct sk_buff_head *mq = &pdata->mq;
struct ethhdr *ethh = eth_hdr(skb);
struct sock *sk = NULL;
if (ethh->h_proto != htons(ETH_P_IP))
return false;
if (iph->protocol != IPPROTO_UDP)
return false;
/* TODO: Hash based based queues selection */
/* Socket look up with IPv4/UDP source/destination */
sk = __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, uh->source,
iph->daddr, uh->dest, inet_iif(skb),
inet_sdif(skb), &udp_table, NULL);
if (!sk)
return false;
/* Socket found but GRO not enabled on the socket - We don't care */
if (!udp_sk(sk)->gro_enabled)
return false;
/* Store IPID, TTL and age of skb inside per skb control block */
NAPI_GRO_CB(skb)->flush_id = ntohs(iph->id);
NAPI_GRO_CB(skb)->free = (iph->ttl & (BIT(6) | BIT(7))) >> 6;
NAPI_GRO_CB(skb)->age = jiffies;
while (atomic_read(&pdata->timer_state) == OSI_ENABLE) {
/* busyloop */
};
atomic_set(&pdata->rx_state, OSI_ENABLE);
if (NAPI_GRO_CB(skb)->free == 1) {
/* Update final queue with first segment */
ether_update_fq_with_fs(pdata, skb);
goto exit;
} else {
if (pdata->expected_ip_id == NAPI_GRO_CB(skb)->flush_id) {
__skb_queue_tail(&pdata->fq, skb);
pdata->expected_ip_id = NAPI_GRO_CB(skb)->flush_id + 1;
if (NAPI_GRO_CB(skb)->free == 2)
ether_gro_merge_complete(&pdata->fq, napi);
goto exit;
}
}
/* Add skb to the queue */
__skb_queue_tail(mq, skb);
/* Queue the packets until last segment received */
if (NAPI_GRO_CB(skb)->free != 2)
goto exit;
ether_gro(&pdata->fq, &pdata->mq, napi);
exit:
atomic_set(&pdata->rx_state, OSI_DISABLE);
return true;
}
#endif
/**
* @brief Handover received packet to network stack.
*
* Algorithm:
* 1) Unmap the DMA buffer address.
* 2) Updates socket buffer with len and ether type and handover to
* Linux network stack.
* 3) Refill the Rx ring based on threshold.
*
* @param[in] priv: OSD private data structure.
* @param[in] rx_ring: Pointer to DMA channel Rx ring.
* @param[in] chan: DMA Rx channel number.
* @param[in] dma_buf_len: Rx DMA buffer length.
* @param[in] rx_pkt_cx: Received packet context.
* @param[in] rx_swcx: Received packet sw context.
*
* @note Rx completion need to make sure that Rx descriptors processed properly.
*/
static void osd_receive_packet(void *priv, struct osi_rx_ring *rx_ring,
unsigned int chan, unsigned int dma_buf_len,
const struct osi_rx_pkt_cx *rx_pkt_cx,
struct osi_rx_swcx *rx_swcx)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
struct osi_core_priv_data *osi_core = pdata->osi_core;
struct ether_rx_napi *rx_napi = pdata->rx_napi[chan];
#ifdef ETHER_PAGE_POOL
struct page *page = (struct page *)rx_swcx->buf_virt_addr;
struct sk_buff *skb = NULL;
#else
struct sk_buff *skb = (struct sk_buff *)rx_swcx->buf_virt_addr;
#endif
dma_addr_t dma_addr = (dma_addr_t)rx_swcx->buf_phy_addr;
struct net_device *ndev = pdata->ndev;
#ifndef OSI_STRIPPED_LIB
struct osi_pkt_err_stats *pkt_err_stat = &pdata->osi_dma->pkt_err_stats;
unsigned long val;
#endif /* !OSI_STRIPPED_LIB */
struct skb_shared_hwtstamps *shhwtstamp;
#ifndef ETHER_PAGE_POOL
dma_unmap_single(pdata->dev, dma_addr, dma_buf_len, DMA_FROM_DEVICE);
#endif
/* Check for reserve buffer */
if (osi_unlikely(rx_swcx->buf_virt_addr ==
pdata->resv_buf_virt_addr)) {
rx_swcx->buf_virt_addr = OSI_NULL;
rx_swcx->buf_phy_addr = 0;
rx_swcx->flags |= OSI_RX_SWCX_PROCESSED;
ether_realloc_rx_skb(pdata, rx_ring, chan);
return;
}
/* Process only the Valid packets */
if (likely((rx_pkt_cx->flags & OSI_PKT_CX_VALID) ==
OSI_PKT_CX_VALID)) {
#ifdef ETHER_PAGE_POOL
skb = netdev_alloc_skb_ip_align(pdata->ndev,
rx_pkt_cx->pkt_len);
if (unlikely(!skb)) {
pdata->ndev->stats.rx_dropped++;
dev_err(pdata->dev,
"%s(): Error in allocating the skb\n",
__func__);
page_pool_recycle_direct(pdata->page_pool[chan], page);
return;
}
dma_sync_single_for_cpu(pdata->dev, dma_addr,
rx_pkt_cx->pkt_len, DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, page_address(page),
rx_pkt_cx->pkt_len);
skb_put(skb, rx_pkt_cx->pkt_len);
page_pool_recycle_direct(pdata->page_pool[chan], page);
#else
skb_put(skb, rx_pkt_cx->pkt_len);
#endif
if (likely((rx_pkt_cx->rxcsum & OSI_CHECKSUM_UNNECESSARY) ==
OSI_CHECKSUM_UNNECESSARY)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb->ip_summed = CHECKSUM_NONE;
}
#ifndef OSI_STRIPPED_LIB
if ((rx_pkt_cx->flags & OSI_PKT_CX_RSS) == OSI_PKT_CX_RSS) {
skb_set_hash(skb, rx_pkt_cx->rx_hash,
rx_pkt_cx->rx_hash_type);
}
if ((rx_pkt_cx->flags & OSI_PKT_CX_VLAN) == OSI_PKT_CX_VLAN) {
val = pdata->osi_dma->dstats.rx_vlan_pkt_n;
pdata->osi_dma->dstats.rx_vlan_pkt_n = update_stats_counter(val, 1UL);
}
#endif /* !OSI_STRIPPED_LIB */
/* Handle time stamp */
if ((rx_pkt_cx->flags & OSI_PKT_CX_PTP) == OSI_PKT_CX_PTP) {
shhwtstamp = skb_hwtstamps(skb);
memset(shhwtstamp, 0,
sizeof(struct skb_shared_hwtstamps));
shhwtstamp->hwtstamp = ns_to_ktime(rx_pkt_cx->ns);
}
skb_record_rx_queue(skb, chan);
skb->dev = ndev;
skb->protocol = eth_type_trans(skb, ndev);
ndev->stats.rx_bytes += skb->len;
#ifdef ETHER_NVGRO
if ((ndev->features & NETIF_F_GRO) &&
ether_do_nvgro(pdata, &rx_napi->napi, skb))
goto done;
#endif
if (likely(ndev->features & NETIF_F_GRO)) {
napi_gro_receive(&rx_napi->napi, skb);
} else {
netif_receive_skb(skb);
}
} else {
#ifndef OSI_STRIPPED_LIB
ndev->stats.rx_crc_errors = pkt_err_stat->rx_crc_error;
ndev->stats.rx_frame_errors = pkt_err_stat->rx_frame_error;
#endif /* !OSI_STRIPPED_LIB */
ndev->stats.rx_fifo_errors = osi_core->mmc.mmc_rx_fifo_overflow;
ndev->stats.rx_errors++;
#ifdef ETHER_PAGE_POOL
page_pool_recycle_direct(pdata->page_pool[chan], page);
#endif
dev_kfree_skb_any(skb);
}
#ifdef ETHER_NVGRO
done:
#endif
ndev->stats.rx_packets++;
rx_swcx->buf_virt_addr = NULL;
rx_swcx->buf_phy_addr = 0;
/* mark packet is processed */
rx_swcx->flags |= OSI_RX_SWCX_PROCESSED;
if (osi_get_refill_rx_desc_cnt(pdata->osi_dma, chan) >= 16U)
ether_realloc_rx_skb(pdata, rx_ring, chan);
}
/**
* @brief osd_transmit_complete - Transmit completion routine.
*
* Algorithm:
* 1) Updates stats for linux network stack.
* 2) unmap and free the buffer DMA address and buffer.
* 3) Time stamp will be update to stack if available.
*
* @param[in] priv: OSD private data structure.
* @param[in] swcx: Pointer to swcx
* @param[in] txdone_pkt_cx: Pointer to struct which has tx done status info.
* This struct has flags to indicate tx error, whether DMA address
* is mapped from paged/linear buffer.
*
* @note Tx completion need to make sure that Tx descriptors processed properly.
*/
static void osd_transmit_complete(void *priv, const struct osi_tx_swcx *swcx,
const struct osi_txdone_pkt_cx
*txdone_pkt_cx)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
struct osi_dma_priv_data *osi_dma = pdata->osi_dma;
struct sk_buff *skb = (struct sk_buff *)swcx->buf_virt_addr;
unsigned long dmaaddr = swcx->buf_phy_addr;
struct skb_shared_hwtstamps shhwtstamp;
struct net_device *ndev = pdata->ndev;
struct osi_tx_ring *tx_ring;
struct netdev_queue *txq;
unsigned int chan, qinx;
unsigned int len = swcx->len;
ndev->stats.tx_bytes += len;
if ((txdone_pkt_cx->flags & OSI_TXDONE_CX_TS) == OSI_TXDONE_CX_TS) {
memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp.hwtstamp = ns_to_ktime(txdone_pkt_cx->ns);
/* pass tstamp to stack */
skb_tstamp_tx(skb, &shhwtstamp);
}
if (dmaaddr != 0UL) {
if ((txdone_pkt_cx->flags & OSI_TXDONE_CX_PAGED_BUF) ==
OSI_TXDONE_CX_PAGED_BUF) {
dma_unmap_page(pdata->dev, dmaaddr,
len, DMA_TO_DEVICE);
} else {
dma_unmap_single(pdata->dev, dmaaddr,
len, DMA_TO_DEVICE);
}
}
if (skb) {
/* index in array, netdev_get_tx_queue use index to get
* network queue.
*/
qinx = skb_get_queue_mapping(skb);
chan = osi_dma->dma_chans[qinx];
tx_ring = osi_dma->tx_ring[chan];
txq = netdev_get_tx_queue(ndev, qinx);
if (netif_tx_queue_stopped(txq) &&
(ether_avail_txdesc_cnt(osi_dma, tx_ring) >
ETHER_TX_DESC_THRESHOLD)) {
netif_tx_wake_queue(txq);
netdev_dbg(ndev, "Tx ring[%d] - waking Txq\n", chan);
}
ndev->stats.tx_packets++;
if ((txdone_pkt_cx->flags & OSI_TXDONE_CX_TS_DELAYED) ==
OSI_TXDONE_CX_TS_DELAYED) {
add_skb_node(pdata, skb, txdone_pkt_cx->pktid, txdone_pkt_cx->vdmaid);
/* Consume the timestamp immediately if already available */
if (ether_get_tx_ts(pdata) < 0)
schedule_delayed_work(&pdata->tx_ts_work,
msecs_to_jiffies(ETHER_TS_MS_TIMER));
} else {
dev_consume_skb_any(skb);
}
}
}
#ifdef OSI_DEBUG
/**
* @brief Dumps the data to trace buffer
*
* @param[in] osi_dma: OSI DMA private data.
* @param[in] type: Type of data to be dump.
* @param[in] fmt: Data format.
*/
static void osd_printf(struct osi_dma_priv_data *osi_dma,
unsigned int type,
const char *fmt, ...)
{
char buf[512];
va_list args;
va_start(args, fmt);
vsprintf(buf, fmt, args);
switch (type) {
case OSI_DEBUG_TYPE_DESC:
#if 0
/**
* TODO: trace_printk resulted in kernel warning GVS failure.
* Add support for writing to a file
*/
trace_printk("%s", buf);
#endif
pr_err("%s", buf);
break;
case OSI_DEBUG_TYPE_REG:
case OSI_DEBUG_TYPE_STRUCTS:
pr_err("%s", buf);
break;
default:
pr_err("Unsupported debug type\n");
break;
}
va_end(args);
}
/**
* @brief Dumps the data
*
* @param[in] osi_core: OSI core private data.
* @param[in] type: Type of data to be dump.
* @param[in] fmt: Data format.
*/
static void osd_core_printf(struct osi_core_priv_data *osi_core,
unsigned int type,
const char *fmt, ...)
{
char buf[512];
va_list args;
va_start(args, fmt);
vsprintf(buf, fmt, args);
switch (type) {
case OSI_DEBUG_TYPE_REG:
case OSI_DEBUG_TYPE_STRUCTS:
pr_err("%s", buf);
break;
default:
pr_err("Unsupported debug type\n");
break;
}
va_end(args);
}
#endif
void ether_restart_lane_bringup_task(struct tasklet_struct *t)
{
struct ether_priv_data *pdata = from_tasklet(pdata, t, lane_restart_task);
if (pdata->osi_core->mac == OSI_MAC_HW_MGBE_T26X) {
netdev_info(pdata->ndev, "Ignoring restart_lane_bringup_task!!!\n");
return;
}
if (pdata->tx_start_stop == OSI_DISABLE) {
netif_tx_lock(pdata->ndev);
netif_carrier_off(pdata->ndev);
netif_tx_stop_all_queues(pdata->ndev);
netif_tx_unlock(pdata->ndev);
schedule_delayed_work(&pdata->set_speed_work, msecs_to_jiffies(500));
if (netif_msg_drv(pdata)) {
netdev_info(pdata->ndev, "Disable network Tx Queue\n");
}
} else if (pdata->tx_start_stop == OSI_ENABLE) {
netif_tx_lock(pdata->ndev);
netif_tx_start_all_queues(pdata->ndev);
netif_tx_unlock(pdata->ndev);
if (netif_msg_drv(pdata)) {
netdev_info(pdata->ndev, "Enable network Tx Queue\n");
}
}
}
static void osd_restart_lane_bringup(void *priv, unsigned int en_disable)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
pdata->tx_start_stop = en_disable;
tasklet_hi_schedule(&pdata->lane_restart_task);
}
void ether_assign_osd_ops(struct osi_core_priv_data *osi_core,
struct osi_dma_priv_data *osi_dma)
{
osi_core->osd_ops.ops_log = osd_log;
osi_core->osd_ops.udelay = osd_udelay;
osi_core->osd_ops.usleep_range = osd_usleep_range;
osi_core->osd_ops.padctrl_mii_rx_pins = ether_padctrl_mii_rx_pins;
#ifdef OSI_DEBUG
osi_core->osd_ops.printf = osd_core_printf;
#endif
osi_core->osd_ops.restart_lane_bringup = osd_restart_lane_bringup;
osi_dma->osd_ops.transmit_complete = osd_transmit_complete;
osi_dma->osd_ops.receive_packet = osd_receive_packet;
osi_dma->osd_ops.realloc_buf = osd_realloc_buf;
osi_dma->osd_ops.ops_log = osd_log;
osi_dma->osd_ops.udelay = osd_udelay;
#ifdef OSI_DEBUG
osi_dma->osd_ops.printf = osd_printf;
#endif
}
/**
* @brief osd_send_cmd - OSD ivc send cmd
*
* @param[in] priv: OSD private data
* @param[in] ivc_buf: ivc_msg_common structure
* @param[in] len: length of data
* @note
* API Group:
* - Initialization: Yes
* - Run time: Yes
* - De-initialization: Yes
*/
int osd_ivc_send_cmd(void *priv, ivc_msg_common_t *ivc_buf, unsigned int len)
{
int ret = -1;
static int cnt = 0;
struct osi_core_priv_data *core = (struct osi_core_priv_data *)priv;
struct ether_priv_data *pdata = (struct ether_priv_data *)core->osd;
struct ether_ivc_ctxt *ictxt = &pdata->ictxt;
struct tegra_hv_ivc_cookie *ivck =
(struct tegra_hv_ivc_cookie *) ictxt->ivck;
int status = -1;
unsigned long flags = 0;
if (len > ETHER_MAX_IVC_BUF) {
dev_err(pdata->dev, "Invalid IVC len\n");
return -1;
}
ivc_buf->status = -1;
ivc_buf->count = cnt++;
raw_spin_lock_irqsave(&ictxt->ivck_lock, flags);
/* Waiting for the channel to be ready */
ret = readx_poll_timeout_atomic(tegra_hv_ivc_channel_notified, ivck,
status, status == 0, 10, IVC_WAIT_TIMEOUT_CNT);
if (ret == -ETIMEDOUT) {
dev_err(pdata->dev, "IVC channel timeout\n");
goto fail;
}
/* Write the current message for the ethernet server */
ret = tegra_hv_ivc_write(ivck, ivc_buf, len);
if (ret != len) {
dev_err(pdata->dev, "IVC write with len %d ret %d cmd %d ioctlcmd %d failed\n",
len, ret, ivc_buf->cmd, ivc_buf->data.ioctl_data.cmd);
goto fail;
}
ret = readx_poll_timeout_atomic(tegra_hv_ivc_can_read, ictxt->ivck,
status, status, 10, IVC_WAIT_TIMEOUT_CNT);
if (ret == -ETIMEDOUT) {
dev_err(pdata->dev, "IVC read timeout status %d\n", status);
goto fail;
}
ret = tegra_hv_ivc_read(ivck, ivc_buf, len);
if (ret < 0) {
dev_err(pdata->dev, "IVC read failed: %d cmd %d ioctlcmd %d\n",
ret, ivc_buf->cmd, ivc_buf->data.ioctl_data.cmd);
}
ret = ivc_buf->status;
fail:
raw_spin_unlock_irqrestore(&ictxt->ivck_lock, flags);
return ret;
}
int ether_padctrl_mii_rx_pins(void *priv, unsigned int enable)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
int ret = 0;
if (enable == OSI_ENABLE) {
ret = pinctrl_select_state(pdata->pin,
pdata->mii_rx_enable_state);
if (ret < 0) {
dev_err(pdata->dev, "pinctrl enable state failed %d\n",
ret);
}
} else if (enable == OSI_DISABLE) {
ret = pinctrl_select_state(pdata->pin,
pdata->mii_rx_disable_state);
if (ret < 0) {
dev_err(pdata->dev, "pinctrl disable state failed %d\n",
ret);
}
}
return ret;
}