Files
linux-nv-oot/drivers/gpu/drm/tegra/nvdec.c
Johnny Liu 3264c9dfca drm/tegra: Skip non-clock update in suspend mode
When the device is in suspend mode, There is no point to update
actmon count weight and send ICC request for the device.

If ICC request is sent for the device in suspend mode, in osidle state,
the default EMC frequency will be affected due to the accumulated ICC
bandwidth QoS constraint, and affect the overall osidle power.

Bug 4168788

Signed-off-by: Johnny Liu <johnliu@nvidia.com>
Change-Id: I8700b131b5f914d93feed9f8a9d792c2fdaa9b53
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nv-oot/+/2931905
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2023-07-07 07:01:02 -07:00

894 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2023, NVIDIA CORPORATION & AFFILIATES. All Rights Reserved.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devfreq.h>
#include <linux/devfreq/tegra_wmark.h>
#include <linux/dma-mapping.h>
#include <linux/host1x-next.h>
#include <linux/interconnect.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/version.h>
#include <soc/tegra/mc.h>
#include "drm.h"
#include "falcon.h"
#include "riscv.h"
#include "util.h"
#define NVDEC_FW_MTHD_ADDR_ACTMON_ACTIVE_MASK 0xCAU
#define NVDEC_FW_MTHD_ADDR_ACTMON_ACTIVE_BORPS 0xCBU
#define NVDEC_FW_MTHD_ADDR_ACTMON_ACTIVE_WEIGHT 0xC9U
#define NVDEC_FALCON_UCLASS_METHOD_OFFSET 0x40
#define NVDEC_FALCON_UCLASS_METHOD_DATA 0x44
#define NVDEC_FALCON_DEBUGINFO 0x1094
#define NVDEC_TFBIF_TRANSCFG 0x2c44
#define NVDEC_TFBIF_ACTMON_ACTIVE_MASK 0x2c4c
#define NVDEC_TFBIF_ACTMON_ACTIVE_BORPS 0x2c50
#define NVDEC_TFBIF_ACTMON_ACTIVE_WEIGHT 0x2c54
#define NVDEC_AXI_RW_BANDWIDTH 512
#define NVDEC_TFBIF_ACTMON_ACTIVE_MASK_STARVED BIT(0)
#define NVDEC_TFBIF_ACTMON_ACTIVE_MASK_STALLED BIT(1)
#define NVDEC_TFBIF_ACTMON_ACTIVE_MASK_DELAYED BIT(2)
#define NVDEC_TFBIF_ACTMON_ACTIVE_BORPS_ACTIVE BIT(7)
struct nvdec_config {
const char *firmware;
unsigned int version;
bool supports_sid;
bool supports_timestamping;
bool has_riscv;
bool has_extra_clocks;
};
struct nvdec {
struct falcon falcon;
void __iomem *regs;
struct tegra_drm_client client;
struct host1x_channel *channel;
struct device *dev;
struct clk_bulk_data clks[3];
unsigned int num_clks;
struct reset_control *reset;
struct devfreq *devfreq;
struct devfreq_dev_profile *devfreq_profile;
struct icc_path *icc_write;
/* Platform configuration */
const struct nvdec_config *config;
/* RISC-V specific data */
struct tegra_drm_riscv riscv;
phys_addr_t carveout_base;
};
static inline struct nvdec *to_nvdec(struct tegra_drm_client *client)
{
return container_of(client, struct nvdec, client);
}
static inline void nvdec_writel(struct nvdec *nvdec, u32 value,
unsigned int offset)
{
writel(value, nvdec->regs + offset);
}
static int nvdec_set_rate(struct nvdec *nvdec, unsigned long rate)
{
const struct nvdec_config *config = nvdec->config;
struct host1x_client *client = &nvdec->client.base;
unsigned long dev_rate;
u32 weight, emc_kbps;
int err;
err = clk_set_rate(nvdec->clks[0].clk, rate);
if (err < 0)
return err;
if (pm_runtime_suspended(nvdec->dev))
return 0;
dev_rate = clk_get_rate(nvdec->clks[0].clk);
if (nvdec->icc_write) {
emc_kbps = dev_rate * NVDEC_AXI_RW_BANDWIDTH / 1024;
err = icc_set_bw(nvdec->icc_write, kbps_to_icc(emc_kbps), 0);
if (err)
dev_warn(nvdec->dev, "failed to set icc bw: %d\n", err);
}
host1x_actmon_update_client_rate(client, dev_rate, &weight);
if (!weight)
return 0;
if (!config->has_riscv) {
nvdec_writel(nvdec, weight, NVDEC_TFBIF_ACTMON_ACTIVE_WEIGHT);
} else {
nvdec_writel(nvdec,
NVDEC_FW_MTHD_ADDR_ACTMON_ACTIVE_WEIGHT,
NVDEC_FALCON_UCLASS_METHOD_OFFSET);
nvdec_writel(nvdec, weight, NVDEC_FALCON_UCLASS_METHOD_DATA);
}
return 0;
}
static int nvdec_boot_falcon(struct nvdec *nvdec)
{
int err;
if (nvdec->config->supports_sid)
tegra_drm_program_iommu_regs(nvdec->dev, nvdec->regs, NVDEC_TFBIF_TRANSCFG);
err = falcon_boot(&nvdec->falcon);
if (err < 0)
return err;
err = falcon_wait_idle(&nvdec->falcon);
if (err < 0) {
dev_err(nvdec->dev, "falcon boot timed out\n");
return err;
}
return 0;
}
static int nvdec_wait_debuginfo(struct nvdec *nvdec, const char *phase)
{
int err;
u32 val;
err = readl_poll_timeout(nvdec->regs + NVDEC_FALCON_DEBUGINFO, val, val == 0x0, 10, 100000);
if (err) {
dev_err(nvdec->dev, "failed to boot %s, debuginfo=0x%x\n", phase, val);
return err;
}
return 0;
}
static int nvdec_boot_riscv(struct nvdec *nvdec)
{
int err;
err = reset_control_acquire(nvdec->reset);
if (err)
return err;
nvdec_writel(nvdec, 0xabcd1234, NVDEC_FALCON_DEBUGINFO);
err = tegra_drm_riscv_boot_bootrom(&nvdec->riscv, nvdec->carveout_base, 1,
&nvdec->riscv.bl_desc);
if (err) {
dev_err(nvdec->dev, "failed to execute bootloader\n");
goto release_reset;
}
err = nvdec_wait_debuginfo(nvdec, "bootloader");
if (err)
goto release_reset;
err = reset_control_reset(nvdec->reset);
if (err)
goto release_reset;
nvdec_writel(nvdec, 0xabcd1234, NVDEC_FALCON_DEBUGINFO);
err = tegra_drm_riscv_boot_bootrom(&nvdec->riscv, nvdec->carveout_base, 1,
&nvdec->riscv.os_desc);
if (err) {
dev_err(nvdec->dev, "failed to execute firmware\n");
goto release_reset;
}
err = nvdec_wait_debuginfo(nvdec, "firmware");
if (err)
goto release_reset;
release_reset:
reset_control_release(nvdec->reset);
return err;
}
static void nvdec_devfreq_update_wmark_threshold(struct devfreq *devfreq,
struct devfreq_tegra_wmark_config *cfg)
{
struct nvdec *nvdec = dev_get_drvdata(devfreq->dev.parent);
struct host1x_client *client = &nvdec->client.base;
host1x_actmon_update_active_wmark(client,
cfg->avg_upper_wmark,
cfg->avg_lower_wmark,
cfg->consec_upper_wmark,
cfg->consec_lower_wmark,
cfg->upper_wmark_enabled,
cfg->lower_wmark_enabled);
}
static int nvdec_devfreq_target(struct device *dev, unsigned long *freq, u32 flags)
{
struct nvdec *nvdec = dev_get_drvdata(dev);
int err;
err = nvdec_set_rate(nvdec, *freq);
if (err < 0) {
dev_err(dev, "failed to set clock rate\n");
return err;
}
*freq = clk_get_rate(nvdec->clks[0].clk);
return 0;
}
static int nvdec_devfreq_get_dev_status(struct device *dev, struct devfreq_dev_status *stat)
{
struct nvdec *nvdec = dev_get_drvdata(dev);
struct host1x_client *client = &nvdec->client.base;
unsigned long usage;
/* Update load information */
host1x_actmon_read_active_norm(client, &usage);
stat->total_time = 1;
stat->busy_time = usage;
/* Update device frequency */
stat->current_frequency = clk_get_rate(nvdec->clks[0].clk);
return 0;
}
static int nvdec_devfreq_get_cur_freq(struct device *dev, unsigned long *freq)
{
struct nvdec *nvdec = dev_get_drvdata(dev);
*freq = clk_get_rate(nvdec->clks[0].clk);
return 0;
}
static int nvdec_devfreq_init(struct nvdec *nvdec)
{
struct clk *clk = nvdec->clks[0].clk;
unsigned long max_rate = clk_round_rate(clk, ULONG_MAX);
unsigned long min_rate = clk_round_rate(clk, 0);
unsigned long margin = clk_round_rate(clk, min_rate + 1) - min_rate;
unsigned long rate = min_rate;
struct devfreq_tegra_wmark_data *data;
struct devfreq_dev_profile *devfreq_profile;
struct devfreq *devfreq;
while (rate <= max_rate) {
dev_pm_opp_add(nvdec->dev, rate, 0);
rate += margin;
}
data = devm_kzalloc(nvdec->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->event = DEVFREQ_TEGRA_AVG_WMARK_BELOW;
data->update_wmark_threshold = nvdec_devfreq_update_wmark_threshold;
devfreq_profile = devm_kzalloc(nvdec->dev, sizeof(*devfreq_profile), GFP_KERNEL);
if (!devfreq_profile)
return -ENOMEM;
devfreq_profile->target = nvdec_devfreq_target;
devfreq_profile->get_dev_status = nvdec_devfreq_get_dev_status;
devfreq_profile->get_cur_freq = nvdec_devfreq_get_cur_freq;
devfreq_profile->initial_freq = max_rate;
devfreq_profile->polling_ms = 100;
devfreq = devm_devfreq_add_device(nvdec->dev,
devfreq_profile,
DEVFREQ_GOV_USERSPACE,
data);
if (IS_ERR(devfreq))
return PTR_ERR(devfreq);
devfreq->suspend_freq = min_rate;
devfreq->resume_freq = max_rate;
nvdec->devfreq = devfreq;
return 0;
}
static void nvdec_devfreq_deinit(struct nvdec *nvdec)
{
if (!nvdec->devfreq)
return;
devm_devfreq_remove_device(nvdec->dev, nvdec->devfreq);
nvdec->devfreq = NULL;
}
static int nvdec_init(struct host1x_client *client)
{
struct tegra_drm_client *drm = host1x_to_drm_client(client);
struct drm_device *dev = dev_get_drvdata(client->host);
struct tegra_drm *tegra = dev->dev_private;
struct nvdec *nvdec = to_nvdec(drm);
int err;
err = host1x_client_iommu_attach(client);
if (err < 0 && err != -ENODEV) {
dev_err(nvdec->dev, "failed to attach to domain: %d\n", err);
return err;
}
nvdec->channel = host1x_channel_request(client);
if (!nvdec->channel) {
err = -ENOMEM;
goto detach;
}
client->syncpts[0] = host1x_syncpt_request(client, 0);
if (!client->syncpts[0]) {
err = -ENOMEM;
goto free_channel;
}
err = tegra_drm_register_client(tegra, drm);
if (err < 0)
goto free_syncpt;
/*
* Inherit the DMA parameters (such as maximum segment size) from the
* parent host1x device.
*/
client->dev->dma_parms = client->host->dma_parms;
return 0;
free_syncpt:
host1x_syncpt_put(client->syncpts[0]);
free_channel:
host1x_channel_put(nvdec->channel);
detach:
host1x_client_iommu_detach(client);
return err;
}
static int nvdec_exit(struct host1x_client *client)
{
struct tegra_drm_client *drm = host1x_to_drm_client(client);
struct drm_device *dev = dev_get_drvdata(client->host);
struct tegra_drm *tegra = dev->dev_private;
struct nvdec *nvdec = to_nvdec(drm);
int err;
/* avoid a dangling pointer just in case this disappears */
client->dev->dma_parms = NULL;
err = tegra_drm_unregister_client(tegra, drm);
if (err < 0)
return err;
pm_runtime_dont_use_autosuspend(client->dev);
pm_runtime_force_suspend(client->dev);
host1x_syncpt_put(client->syncpts[0]);
host1x_channel_put(nvdec->channel);
host1x_client_iommu_detach(client);
nvdec->channel = NULL;
if (client->group) {
dma_unmap_single(nvdec->dev, nvdec->falcon.firmware.phys,
nvdec->falcon.firmware.size, DMA_TO_DEVICE);
tegra_drm_free(tegra, nvdec->falcon.firmware.size,
nvdec->falcon.firmware.virt,
nvdec->falcon.firmware.iova);
} else {
dma_free_coherent(nvdec->dev, nvdec->falcon.firmware.size,
nvdec->falcon.firmware.virt,
nvdec->falcon.firmware.iova);
}
return 0;
}
static unsigned long nvdec_get_rate(struct host1x_client *client)
{
struct platform_device *pdev = to_platform_device(client->dev);
struct nvdec *nvdec = platform_get_drvdata(pdev);
return clk_get_rate(nvdec->clks[0].clk);
}
static void nvdec_actmon_event(struct host1x_client *client,
enum host1x_actmon_wmark_event event)
{
struct platform_device *pdev = to_platform_device(client->dev);
struct nvdec *nvdec = platform_get_drvdata(pdev);
struct devfreq *df = nvdec->devfreq;
struct devfreq_tegra_wmark_data *data;
if (!df)
return;
data = df->data;
switch (event) {
case HOST1X_ACTMON_AVG_WMARK_BELOW:
data->event = DEVFREQ_TEGRA_AVG_WMARK_BELOW;
break;
case HOST1X_ACTMON_AVG_WMARK_ABOVE:
data->event = DEVFREQ_TEGRA_AVG_WMARK_ABOVE;
break;
case HOST1X_ACTMON_CONSEC_WMARK_BELOW:
data->event = DEVFREQ_TEGRA_CONSEC_WMARK_BELOW;
break;
case HOST1X_ACTMON_CONSEC_WMARK_ABOVE:
data->event = DEVFREQ_TEGRA_CONSEC_WMARK_ABOVE;
break;
default:
return;
}
mutex_lock(&df->lock);
update_devfreq(df);
mutex_unlock(&df->lock);
}
static const struct host1x_client_ops nvdec_client_ops = {
.init = nvdec_init,
.exit = nvdec_exit,
.get_rate = nvdec_get_rate,
.actmon_event = nvdec_actmon_event,
};
static int nvdec_load_falcon_firmware(struct nvdec *nvdec)
{
struct host1x_client *client = &nvdec->client.base;
struct tegra_drm *tegra = nvdec->client.drm;
dma_addr_t iova;
size_t size;
void *virt;
int err;
if (nvdec->falcon.firmware.virt)
return 0;
err = falcon_read_firmware(&nvdec->falcon, nvdec->config->firmware);
if (err < 0)
return err;
size = nvdec->falcon.firmware.size;
if (!client->group) {
virt = dma_alloc_coherent(nvdec->dev, size, &iova, GFP_KERNEL);
err = dma_mapping_error(nvdec->dev, iova);
if (err < 0)
return err;
} else {
virt = tegra_drm_alloc(tegra, size, &iova);
}
nvdec->falcon.firmware.virt = virt;
nvdec->falcon.firmware.iova = iova;
err = falcon_load_firmware(&nvdec->falcon);
if (err < 0)
goto cleanup;
/*
* In this case we have received an IOVA from the shared domain, so we
* need to make sure to get the physical address so that the DMA API
* knows what memory pages to flush the cache for.
*/
if (client->group) {
dma_addr_t phys;
phys = dma_map_single(nvdec->dev, virt, size, DMA_TO_DEVICE);
err = dma_mapping_error(nvdec->dev, phys);
if (err < 0)
goto cleanup;
nvdec->falcon.firmware.phys = phys;
}
return 0;
cleanup:
if (!client->group)
dma_free_coherent(nvdec->dev, size, virt, iova);
else
tegra_drm_free(tegra, size, virt, iova);
return err;
}
static __maybe_unused int nvdec_runtime_resume(struct device *dev)
{
struct nvdec *nvdec = dev_get_drvdata(dev);
int err;
err = clk_bulk_prepare_enable(nvdec->num_clks, nvdec->clks);
if (err < 0)
return err;
usleep_range(10, 20);
if (nvdec->config->has_riscv) {
err = nvdec_boot_riscv(nvdec);
if (err < 0)
goto disable;
nvdec_writel(nvdec,
NVDEC_FW_MTHD_ADDR_ACTMON_ACTIVE_MASK,
NVDEC_FALCON_UCLASS_METHOD_OFFSET);
nvdec_writel(nvdec,
NVDEC_TFBIF_ACTMON_ACTIVE_MASK_DELAYED |
NVDEC_TFBIF_ACTMON_ACTIVE_MASK_STALLED |
NVDEC_TFBIF_ACTMON_ACTIVE_MASK_STARVED,
NVDEC_FALCON_UCLASS_METHOD_DATA);
nvdec_writel(nvdec,
NVDEC_FW_MTHD_ADDR_ACTMON_ACTIVE_BORPS,
NVDEC_FALCON_UCLASS_METHOD_OFFSET);
nvdec_writel(nvdec,
NVDEC_TFBIF_ACTMON_ACTIVE_BORPS_ACTIVE,
NVDEC_FALCON_UCLASS_METHOD_DATA);
} else {
err = nvdec_load_falcon_firmware(nvdec);
if (err < 0)
goto disable;
err = nvdec_boot_falcon(nvdec);
if (err < 0)
goto disable;
nvdec_writel(nvdec,
NVDEC_TFBIF_ACTMON_ACTIVE_MASK_DELAYED |
NVDEC_TFBIF_ACTMON_ACTIVE_MASK_STALLED |
NVDEC_TFBIF_ACTMON_ACTIVE_MASK_STARVED,
NVDEC_TFBIF_ACTMON_ACTIVE_MASK);
nvdec_writel(nvdec,
NVDEC_TFBIF_ACTMON_ACTIVE_BORPS_ACTIVE,
NVDEC_TFBIF_ACTMON_ACTIVE_BORPS);
}
host1x_actmon_enable(&nvdec->client.base);
devfreq_resume_device(nvdec->devfreq);
return 0;
disable:
clk_bulk_disable_unprepare(nvdec->num_clks, nvdec->clks);
return err;
}
static __maybe_unused int nvdec_runtime_suspend(struct device *dev)
{
struct nvdec *nvdec = dev_get_drvdata(dev);
int err;
devfreq_suspend_device(nvdec->devfreq);
host1x_actmon_disable(&nvdec->client.base);
host1x_channel_stop(nvdec->channel);
clk_bulk_disable_unprepare(nvdec->num_clks, nvdec->clks);
if (nvdec->icc_write) {
err = icc_set_bw(nvdec->icc_write, 0, 0);
if (err)
dev_warn(nvdec->dev, "failed to set icc bw: %d\n", err);
}
return 0;
}
static int nvdec_open_channel(struct tegra_drm_client *client,
struct tegra_drm_context *context)
{
struct nvdec *nvdec = to_nvdec(client);
context->channel = host1x_channel_get(nvdec->channel);
if (!context->channel)
return -ENOMEM;
return 0;
}
static void nvdec_close_channel(struct tegra_drm_context *context)
{
host1x_channel_put(context->channel);
}
static int nvdec_can_use_memory_ctx(struct tegra_drm_client *client, bool *supported)
{
*supported = true;
return 0;
}
static int nvdec_has_job_timestamping(struct tegra_drm_client *client, bool *supported)
{
struct nvdec *nvdec = to_nvdec(client);
*supported = nvdec->config->supports_timestamping;
return 0;
}
static const struct tegra_drm_client_ops nvdec_ops = {
.open_channel = nvdec_open_channel,
.close_channel = nvdec_close_channel,
.submit = tegra_drm_submit,
.get_streamid_offset = tegra_drm_get_streamid_offset_thi,
.can_use_memory_ctx = nvdec_can_use_memory_ctx,
.has_job_timestamping = nvdec_has_job_timestamping,
};
#define NVIDIA_TEGRA_210_NVDEC_FIRMWARE "nvidia/tegra210/nvdec.bin"
static const struct nvdec_config nvdec_t210_config = {
.firmware = NVIDIA_TEGRA_210_NVDEC_FIRMWARE,
.version = 0x21,
.supports_sid = false,
};
#define NVIDIA_TEGRA_186_NVDEC_FIRMWARE "nvidia/tegra186/nvdec.bin"
static const struct nvdec_config nvdec_t186_config = {
.firmware = NVIDIA_TEGRA_186_NVDEC_FIRMWARE,
.version = 0x18,
.supports_sid = true,
};
#define NVIDIA_TEGRA_194_NVDEC_FIRMWARE "nvidia/tegra194/nvdec.bin"
static const struct nvdec_config nvdec_t194_config = {
.firmware = NVIDIA_TEGRA_194_NVDEC_FIRMWARE,
.version = 0x19,
.supports_sid = true,
.supports_timestamping = true,
};
static const struct nvdec_config nvdec_t234_config = {
.version = 0x23,
.supports_sid = true,
.supports_timestamping = true,
.has_riscv = true,
.has_extra_clocks = true,
};
static const struct of_device_id tegra_nvdec_of_match[] = {
{ .compatible = "nvidia,tegra210-nvdec", .data = &nvdec_t210_config },
{ .compatible = "nvidia,tegra186-nvdec", .data = &nvdec_t186_config },
{ .compatible = "nvidia,tegra194-nvdec", .data = &nvdec_t194_config },
{ .compatible = "nvidia,tegra234-nvdec", .data = &nvdec_t234_config },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_nvdec_of_match);
static int nvdec_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct host1x_syncpt **syncpts;
struct nvdec *nvdec;
u32 host_class;
int err;
/* inherit DMA mask from host1x parent */
err = dma_coerce_mask_and_coherent(dev, *dev->parent->dma_mask);
if (err < 0) {
dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
return err;
}
nvdec = devm_kzalloc(dev, sizeof(*nvdec), GFP_KERNEL);
if (!nvdec)
return -ENOMEM;
nvdec->config = of_device_get_match_data(dev);
syncpts = devm_kzalloc(dev, sizeof(*syncpts), GFP_KERNEL);
if (!syncpts)
return -ENOMEM;
nvdec->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(nvdec->regs))
return PTR_ERR(nvdec->regs);
nvdec->clks[0].id = "nvdec";
nvdec->num_clks = 1;
if (nvdec->config->has_extra_clocks) {
nvdec->num_clks = 3;
nvdec->clks[1].id = "fuse";
nvdec->clks[2].id = "tsec_pka";
}
err = devm_clk_bulk_get(dev, nvdec->num_clks, nvdec->clks);
if (err) {
dev_err(&pdev->dev, "failed to get clock(s)\n");
return err;
}
err = of_property_read_u32(dev->of_node, "nvidia,host1x-class", &host_class);
if (err < 0)
host_class = HOST1X_CLASS_NVDEC;
if (nvdec->config->has_riscv) {
struct tegra_mc *mc;
mc = devm_tegra_memory_controller_get(dev);
if (IS_ERR(mc)) {
dev_err_probe(dev, PTR_ERR(mc),
"failed to get memory controller handle\n");
return PTR_ERR(mc);
}
{
void __iomem *mc_addr = ioremap(0x02c10c0c, 0x8);
nvdec->carveout_base |= (phys_addr_t)readl(mc_addr + 0);
nvdec->carveout_base |= (phys_addr_t)readl(mc_addr + 4) << 32;
}
nvdec->reset = devm_reset_control_get_exclusive_released(dev, "nvdec");
if (IS_ERR(nvdec->reset)) {
dev_err_probe(dev, PTR_ERR(nvdec->reset), "failed to get reset\n");
return PTR_ERR(nvdec->reset);
}
nvdec->riscv.dev = dev;
nvdec->riscv.regs = nvdec->regs;
nvdec->riscv.bl_desc.manifest_offset = 0x100;
nvdec->riscv.bl_desc.data_offset = 0x900;
nvdec->riscv.bl_desc.code_offset = 0x5500;
nvdec->riscv.os_desc.manifest_offset = 0xc000;
nvdec->riscv.os_desc.data_offset = 0xc800;
nvdec->riscv.os_desc.code_offset = 0xe800;
} else {
nvdec->falcon.dev = dev;
nvdec->falcon.regs = nvdec->regs;
err = falcon_init(&nvdec->falcon);
if (err < 0)
return err;
}
nvdec->icc_write = devm_of_icc_get(dev, "write");
#if LINUX_VERSION_CODE < KERNEL_VERSION(6, 2, 0)
if (IS_ERR(nvdec->icc_write)) {
dev_err(&pdev->dev, "failed to get icc write handle\n");
return PTR_ERR(nvdec->icc_write);
}
#else
if (IS_ERR(nvdec->icc_write))
nvdec->icc_write = NULL;
#endif
platform_set_drvdata(pdev, nvdec);
INIT_LIST_HEAD(&nvdec->client.base.list);
nvdec->client.base.ops = &nvdec_client_ops;
nvdec->client.base.dev = dev;
nvdec->client.base.class = host_class;
nvdec->client.base.syncpts = syncpts;
nvdec->client.base.num_syncpts = 1;
nvdec->dev = dev;
INIT_LIST_HEAD(&nvdec->client.list);
nvdec->client.version = nvdec->config->version;
nvdec->client.ops = &nvdec_ops;
err = host1x_client_register(&nvdec->client.base);
if (err < 0) {
dev_err(dev, "failed to register host1x client: %d\n", err);
goto exit_falcon;
}
err = host1x_actmon_register(&nvdec->client.base);
if (err < 0)
dev_info(&pdev->dev, "failed to register host1x actmon: %d\n", err);
/* Set default clock rate for nvdec */
err = clk_set_rate(nvdec->clks[0].clk, ULONG_MAX);
if (err < 0) {
dev_err(&pdev->dev, "failed to set clock rate: %d\n", err);
goto exit_falcon;
}
err = nvdec_devfreq_init(nvdec);
if (err < 0) {
dev_err(&pdev->dev, "failed to init devfreq: %d\n", err);
goto exit_falcon;
}
pm_runtime_enable(dev);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 500);
return 0;
exit_falcon:
falcon_exit(&nvdec->falcon);
icc_put(nvdec->icc_write);
return err;
}
static int nvdec_remove(struct platform_device *pdev)
{
struct nvdec *nvdec = platform_get_drvdata(pdev);
int err;
pm_runtime_disable(&pdev->dev);
nvdec_devfreq_deinit(nvdec);
err = host1x_actmon_unregister(&nvdec->client.base);
if (err < 0)
dev_info(&pdev->dev, "failed to unregister host1x actmon: %d\n",
err);
err = host1x_client_unregister(&nvdec->client.base);
if (err < 0) {
dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
err);
return err;
}
falcon_exit(&nvdec->falcon);
icc_put(nvdec->icc_write);
return 0;
}
static const struct dev_pm_ops nvdec_pm_ops = {
SET_RUNTIME_PM_OPS(nvdec_runtime_suspend, nvdec_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
struct platform_driver tegra_nvdec_driver = {
.driver = {
.name = "tegra-nvdec",
.of_match_table = tegra_nvdec_of_match,
.pm = &nvdec_pm_ops
},
.probe = nvdec_probe,
.remove = nvdec_remove,
};
#if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
MODULE_FIRMWARE(NVIDIA_TEGRA_210_NVDEC_FIRMWARE);
#endif
#if IS_ENABLED(CONFIG_ARCH_TEGRA_186_SOC)
MODULE_FIRMWARE(NVIDIA_TEGRA_186_NVDEC_FIRMWARE);
#endif
#if IS_ENABLED(CONFIG_ARCH_TEGRA_194_SOC)
MODULE_FIRMWARE(NVIDIA_TEGRA_194_NVDEC_FIRMWARE);
#endif