Files
linux-nv-oot/drivers/net/ethernet/nvidia/nvethernet/osd.c
nannaiah 8c8eceeeb7 nvethernet: Add IVC fix
Issue: rt_spinlock causes IVC failures.

Fix:
1. Change rt_spinlock to spinlock.
2. Add timeout to ivc_can_read.

Bug 2694285

Change-Id: Ib603c304e750a33262e8509ed3f869030b934958
Signed-off-by: Nagaraj Annaiah <nannaiah@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvidia/+/2497217
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: Srinivas Ramachandran <srinivasra@nvidia.com>
Reviewed-by: Ashutosh Jha <ajha@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
2022-11-01 14:27:08 +05:30

494 lines
14 KiB
C

/*
* Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ether_linux.h"
#include <ivc_core.h>
/**
* @brief Adds delay in micro seconds.
*
* Algorithm: Invokes OSD delay function for adding delay
*
* @param[in] usec: Delay number in micro seconds.
*/
static void osd_udelay(unsigned long usec)
{
udelay(usec);
}
/**
* @brief Adds sleep in micro seconds
*
* Algorithm: Invokes OSD function to add sleep.
*
* @param[in] umin: Minimum sleep required in micro seconds.
* @param[in] umax: Maximum sleep required in micro seconds.
*/
static void osd_usleep_range(unsigned long umin, unsigned long umax)
{
usleep_range(umin, umax);
}
/**
* @brief Adds sleep in milli seconds.
*
* Algorithm: Invokes OSD function to add sleep.
*
* @param[in] msec: Minimum sleep required in milli seconds.
*/
static void osd_msleep(unsigned int msec)
{
msleep(msec);
}
/**
* @brief osd_log - OSD logging function
*
* @param[in] priv: OSD private data
* @param[in] func: function name
* @param[in] line: line number
* @param[in] level: log level
* @param[in] type: error type
* @param[in] err: error string
* @param[in] loga: error additional information
*
*/
static void osd_log(void *priv,
const char *func,
unsigned int line,
unsigned int level,
unsigned int type,
const char *err,
unsigned long long loga)
{
if (priv) {
switch (level) {
case OSI_LOG_INFO:
dev_info(((struct ether_priv_data *)priv)->dev,
"[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
case OSI_LOG_WARN:
dev_warn(((struct ether_priv_data *)priv)->dev,
"[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
case OSI_LOG_ERR:
dev_err(((struct ether_priv_data *)priv)->dev,
"[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
default:
break;
}
} else {
switch (level) {
case OSI_LOG_INFO:
pr_info("[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
case OSI_LOG_WARN:
pr_warn("[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
case OSI_LOG_ERR:
pr_err("[%s][%d][type:0x%x][loga-0x%llx] %s",
func, line, type, loga, err);
break;
default:
break;
}
}
}
/**
* @brief Allocate and DMA map Rx buffer.
*
* Algorithm: Allocate network buffer (skb) and map skb->data to
* DMA mappable address.
*
* @param[in] pdata: OSD private data structure.
* @param[in] rx_swcx: Rx ring software context.
* @param[in] dma_rx_buf_len: DMA Rx buffer length.
*
* @retval 0 on Sucess
* @retval ENOMEM on failure.
*/
static inline int ether_alloc_skb(struct ether_priv_data *pdata,
struct osi_rx_swcx *rx_swcx,
unsigned int dma_rx_buf_len,
unsigned int chan)
{
struct sk_buff *skb = NULL;
dma_addr_t dma_addr;
unsigned long val;
if ((rx_swcx->flags & OSI_RX_SWCX_REUSE) == OSI_RX_SWCX_REUSE) {
/* Skip buffer allocation and DMA mapping since
* PTP software context will have valid buffer and
* DMA addresses so use them as is.
*/
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
return 0;
}
skb = netdev_alloc_skb_ip_align(pdata->ndev, dma_rx_buf_len);
if (unlikely(skb == NULL)) {
dev_err(pdata->dev, "RX skb allocation failed, using reserved buffer\n");
rx_swcx->buf_virt_addr = pdata->osi_dma->resv_buf_virt_addr;
rx_swcx->buf_phy_addr = pdata->osi_dma->resv_buf_phy_addr;
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
val = pdata->osi_core->xstats.re_alloc_rxbuf_failed[chan];
pdata->osi_core->xstats.re_alloc_rxbuf_failed[chan] =
osi_update_stats_counter(val, 1UL);
return 0;
}
dma_addr = dma_map_single(pdata->dev, skb->data, dma_rx_buf_len,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(pdata->dev, dma_addr) != 0)) {
dev_err(pdata->dev, "RX skb dma map failed\n");
dev_kfree_skb_any(skb);
return -ENOMEM;
}
rx_swcx->buf_virt_addr = skb;
rx_swcx->buf_phy_addr = dma_addr;
rx_swcx->flags |= OSI_RX_SWCX_BUF_VALID;
return 0;
}
/**
* @brief Re-fill DMA channel Rx ring.
*
* Algorithm: Re-fill Rx DMA channel ring until dirty rx index is equal
* to current rx index.
* 1) Invokes OSD layer to allocate the buffer and map the buffer to DMA
* mappable address.
* 2) Fill Rx descriptors with required data.
*
* @param[in] pdata: OSD private data structure.
* @param[in] rx_ring: DMA channel Rx ring instance.
* @param[in] chan: DMA Rx channel number.
*/
static void ether_realloc_rx_skb(struct ether_priv_data *pdata,
struct osi_rx_ring *rx_ring,
unsigned int chan)
{
struct osi_dma_priv_data *osi_dma = pdata->osi_dma;
struct osi_rx_swcx *rx_swcx = NULL;
struct osi_rx_desc *rx_desc = NULL;
unsigned int local_refill_idx = rx_ring->refill_idx;
int ret = 0;
while (local_refill_idx != rx_ring->cur_rx_idx &&
local_refill_idx < RX_DESC_CNT) {
rx_swcx = rx_ring->rx_swcx + local_refill_idx;
rx_desc = rx_ring->rx_desc + local_refill_idx;
ret = ether_alloc_skb(pdata, rx_swcx, osi_dma->rx_buf_len,
chan);
if (ret < 0) {
break;
}
INCR_RX_DESC_INDEX(local_refill_idx, 1U);
}
ret = osi_rx_dma_desc_init(osi_dma, rx_ring, chan);
if (ret < 0) {
dev_err(pdata->dev, "Failed to refill Rx ring %u\n", chan);
}
}
/**
* @brief osd_realloc_buf - Allocate RX sk_buffer
*
* Algorithm: call ether_realloc_rx_skb for re-allocation
*
* @param[in] priv: OSD private data structure.
* @param[in] rxring: Pointer to DMA channel Rx ring.
* @param[in] chan: DMA Rx channel number.
*
*/
static void osd_realloc_buf(void *priv, void *rxring, unsigned int chan)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
struct osi_rx_ring *rx_ring = (struct osi_rx_ring *)rxring;
ether_realloc_rx_skb(pdata, rx_ring, chan);
}
/**
* @brief Handover received packet to network stack.
*
* Algorithm:
* 1) Unmap the DMA buffer address.
* 2) Updates socket buffer with len and ether type and handover to
* Linux network stack.
* 3) Refill the Rx ring based on threshold.
*
* @param[in] priv: OSD private data structure.
* @param[in] rxring: Pointer to DMA channel Rx ring.
* @param[in] chan: DMA Rx channel number.
* @param[in] dma_buf_len: Rx DMA buffer length.
* @param[in] rxpkt_cx: Received packet context.
* @param[in] rx_pkt_swcx: Received packet sw context.
*
* @note Rx completion need to make sure that Rx descriptors processed properly.
*/
void osd_receive_packet(void *priv, void *rxring, unsigned int chan,
unsigned int dma_buf_len, void *rxpkt_cx,
void *rx_pkt_swcx)
{
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
struct osi_core_priv_data *osi_core = pdata->osi_core;
struct ether_rx_napi *rx_napi = pdata->rx_napi[chan];
struct osi_rx_ring *rx_ring = (struct osi_rx_ring *)rxring;
struct osi_rx_swcx *rx_swcx = (struct osi_rx_swcx *)rx_pkt_swcx;
struct osi_rx_pkt_cx *rx_pkt_cx = (struct osi_rx_pkt_cx *)rxpkt_cx;
struct sk_buff *skb = (struct sk_buff *)rx_swcx->buf_virt_addr;
dma_addr_t dma_addr = (dma_addr_t)rx_swcx->buf_phy_addr;
struct net_device *ndev = pdata->ndev;
struct osi_pkt_err_stats *pkt_err_stat = &pdata->osi_dma->pkt_err_stats;
struct skb_shared_hwtstamps *shhwtstamp;
unsigned long val;
dma_unmap_single(pdata->dev, dma_addr, dma_buf_len, DMA_FROM_DEVICE);
/* Process only the Valid packets */
if (likely((rx_pkt_cx->flags & OSI_PKT_CX_VALID) ==
OSI_PKT_CX_VALID)) {
skb_put(skb, rx_pkt_cx->pkt_len);
if (likely((rx_pkt_cx->rxcsum & OSI_CHECKSUM_UNNECESSARY) ==
OSI_CHECKSUM_UNNECESSARY)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb->ip_summed = CHECKSUM_NONE;
}
if ((rx_pkt_cx->flags & OSI_PKT_CX_VLAN) == OSI_PKT_CX_VLAN) {
val = pdata->osi_dma->dstats.rx_vlan_pkt_n;
pdata->osi_dma->dstats.rx_vlan_pkt_n =
osi_update_stats_counter(val, 1UL);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
rx_pkt_cx->vlan_tag);
}
/* Handle time stamp */
if ((rx_pkt_cx->flags & OSI_PKT_CX_PTP) == OSI_PKT_CX_PTP) {
shhwtstamp = skb_hwtstamps(skb);
memset(shhwtstamp, 0,
sizeof(struct skb_shared_hwtstamps));
shhwtstamp->hwtstamp = ns_to_ktime(rx_pkt_cx->ns);
}
skb->dev = ndev;
skb->protocol = eth_type_trans(skb, ndev);
ndev->stats.rx_bytes += skb->len;
if (likely(ndev->features & NETIF_F_GRO)) {
napi_gro_receive(&rx_napi->napi, skb);
} else {
netif_receive_skb(skb);
}
} else {
ndev->stats.rx_crc_errors = pkt_err_stat->rx_crc_error;
ndev->stats.rx_frame_errors = pkt_err_stat->rx_frame_error;
ndev->stats.rx_fifo_errors = osi_core->mmc.mmc_rx_fifo_overflow;
ndev->stats.rx_errors++;
dev_kfree_skb_any(skb);
}
ndev->stats.rx_packets++;
rx_swcx->buf_virt_addr = NULL;
rx_swcx->buf_phy_addr = 0;
/* mark packet is processed */
rx_swcx->flags |= OSI_RX_SWCX_PROCESSED;
if (osi_get_refill_rx_desc_cnt(rx_ring) >= 16U)
ether_realloc_rx_skb(pdata, rx_ring, chan);
}
/**
* @brief osd_transmit_complete - Transmit completion routine.
*
* Algorithm:
* 1) Updates stats for linux network stack.
* 2) unmap and free the buffer DMA address and buffer.
* 3) Time stamp will be update to stack if available.
*
* @param[in] priv: OSD private data structure.
* @param[in] buffer: Buffer address to free.
* @param[in] dmaaddr: DMA address to unmap.
* @param[in] len: Length of data.
* @param[in] tx_done_pkt_cx: Pointer to struct which has tx done status info.
* This struct has flags to indicate tx error, whether DMA address
* is mapped from paged/linear buffer.
*
* @note Tx completion need to make sure that Tx descriptors processed properly.
*/
static void osd_transmit_complete(void *priv, void *buffer, unsigned long dmaaddr,
unsigned int len, void *tx_done_pkt_cx)
{
struct osi_txdone_pkt_cx *txdone_pkt_cx = (struct osi_txdone_pkt_cx *)
tx_done_pkt_cx;
struct ether_priv_data *pdata = (struct ether_priv_data *)priv;
struct osi_dma_priv_data *osi_dma = pdata->osi_dma;
struct sk_buff *skb = (struct sk_buff *)buffer;
dma_addr_t dma_addr = (dma_addr_t)dmaaddr;
struct skb_shared_hwtstamps shhwtstamp;
struct net_device *ndev = pdata->ndev;
struct osi_tx_ring *tx_ring;
struct netdev_queue *txq;
unsigned int chan, qinx;
ndev->stats.tx_bytes += len;
if ((txdone_pkt_cx->flags & OSI_TXDONE_CX_TS) == OSI_TXDONE_CX_TS) {
memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp.hwtstamp = ns_to_ktime(txdone_pkt_cx->ns);
/* pass tstamp to stack */
skb_tstamp_tx(skb, &shhwtstamp);
}
if (dma_addr) {
if ((txdone_pkt_cx->flags & OSI_TXDONE_CX_PAGED_BUF) ==
OSI_TXDONE_CX_PAGED_BUF) {
dma_unmap_page(pdata->dev, dmaaddr,
len, DMA_TO_DEVICE);
} else {
dma_unmap_single(pdata->dev, dmaaddr,
len, DMA_TO_DEVICE);
}
}
if (skb) {
/* index in array, netdev_get_tx_queue use index to get
* network queue.
*/
qinx = skb_get_queue_mapping(skb);
chan = osi_dma->dma_chans[qinx];
tx_ring = osi_dma->tx_ring[chan];
txq = netdev_get_tx_queue(ndev, qinx);
if (netif_tx_queue_stopped(txq) &&
(ether_avail_txdesc_cnt(tx_ring) >
ETHER_TX_DESC_THRESHOLD)) {
netif_tx_wake_queue(txq);
netdev_dbg(ndev, "Tx ring[%d] - waking Txq\n", chan);
}
ndev->stats.tx_packets++;
dev_consume_skb_any(skb);
}
}
void ether_assign_osd_ops(struct osi_core_priv_data *osi_core,
struct osi_dma_priv_data *osi_dma)
{
osi_core->osd_ops.ops_log = osd_log;
osi_core->osd_ops.udelay = osd_udelay;
osi_core->osd_ops.usleep_range = osd_usleep_range;
osi_core->osd_ops.msleep = osd_msleep;
osi_dma->osd_ops.transmit_complete = osd_transmit_complete;
osi_dma->osd_ops.receive_packet = osd_receive_packet;
osi_dma->osd_ops.realloc_buf = osd_realloc_buf;
osi_dma->osd_ops.ops_log = osd_log;
osi_dma->osd_ops.udelay = osd_udelay;
}
/**
* @brief osd_send_cmd - OSD ivc send cmd
*
* @param[in] priv: OSD private data
* @param[in] func: data
* @param[in] line: len
* @note
* API Group:
* - Initialization: Yes
* - Run time: Yes
* - De-initialization: Yes
*/
int osd_ivc_send_cmd(void *priv, void *data, unsigned int len)
{
int ret = -1;
unsigned long flags = 0;
static int cnt = 0;
struct osi_core_priv_data *core = (struct osi_core_priv_data *)priv;
ivc_msg_common *ivc_buf = (ivc_msg_common *) data;
struct ether_priv_data *pdata = (struct ether_priv_data *)core->osd;
struct ether_ivc_ctxt *ictxt = &pdata->ictxt;
struct tegra_hv_ivc_cookie *ivck =
(struct tegra_hv_ivc_cookie *) ictxt->ivck;
int dcnt = IVC_CHANNEL_TIMEOUT_CNT;
int is_atomic = 0;
if (len > ETHER_MAX_IVC_BUF) {
dev_err(pdata->dev, "Invalid IVC len\n");
return -1;
}
ivc_buf->status = -1;
spin_lock_irqsave(&ictxt->ivck_lock, flags);
if (in_atomic()) {
preempt_enable();
is_atomic = 1;
}
ivc_buf->count = cnt++;
/* Waiting for the channel to be ready */
while (tegra_hv_ivc_channel_notified(ivck) != 0){
osd_msleep(1);
dcnt--;
if (!dcnt) {
dev_err(pdata->dev, "IVC channel timeout\n");
goto fail;
}
}
/* Write the current message for the ethernet server */
ret = tegra_hv_ivc_write(ivck, ivc_buf, len);
if (ret != len) {
dev_err(pdata->dev, "IVC write len %d ret %d cmd %d failed\n",
len, ret, ivc_buf->cmd);
goto fail;
}
dcnt = IVC_READ_TIMEOUT_CNT;
while ((!tegra_hv_ivc_can_read(ictxt->ivck))) {
wait_for_completion_timeout(&ictxt->msg_complete, IVC_WAIT_TIMEOUT);
dcnt--;
if (!dcnt) {
dev_err(pdata->dev, "IVC read timeout\n");
break;
}
}
ret = tegra_hv_ivc_read(ivck, ivc_buf, len);
if (ret < 0) {
dev_err(pdata->dev, "IVC read failed: %d\n", ret);
}
ret = ivc_buf->status;
fail:
if (is_atomic) {
preempt_disable();
}
spin_unlock_irqrestore(&ictxt->ivck_lock, flags);
return ret;
}