Files
linux-nv-oot/drivers/crypto/tegra/tegra-se-sm4.c
Akhil R a29b51cd58 crypto: tegra: Add Tegra SE driver for T264
Add Tegra Security Engine driver which supports AES-ECB/CBC/CTR/XTS
SHA1/SHA2/SHA3 AES-GCM, AES CCM, SM4, SM3 algorithms.

Signed-off-by: Akhil R <akhilrajeev@nvidia.com>
Change-Id: I86be2fcc485c31988496395183cb44a386907668
2025-07-24 10:19:09 +00:00

1702 lines
44 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Crypto driver for NVIDIA Security Engine for block cipher operations.
*
* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
*/
#include <nvidia/conftest.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/host1x-next.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/engine.h>
#include <crypto/gcm.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include "tegra-se.h"
struct tegra_sm4_ctx {
#ifndef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
struct crypto_engine_ctx enginectx;
#endif
struct tegra_se *se;
u32 alg;
u32 keylen;
u32 ivsize;
u32 key1_id;
u32 key2_id;
};
struct tegra_sm4_reqctx {
struct tegra_se_datbuf datbuf;
struct tegra_se *se;
bool encrypt;
u32 cfg;
u32 crypto_cfg;
u32 key1_id;
u32 key2_id;
};
struct tegra_sm4_gcm_ctx {
#ifndef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
struct crypto_engine_ctx enginectx;
#endif
struct tegra_se *se;
unsigned int authsize;
u32 alg;
u32 mac_alg;
u32 final_alg;
u32 verify_alg;
u32 keylen;
u32 key_id;
};
struct tegra_sm4_gcm_reqctx {
struct tegra_se_datbuf inbuf;
struct tegra_se_datbuf outbuf;
struct scatterlist *src_sg;
struct scatterlist *dst_sg;
unsigned int assoclen;
unsigned int cryptlen;
unsigned int authsize;
bool encrypt;
u32 config;
u32 crypto_config;
u32 key_id;
u32 iv[4];
u8 authdata[16];
};
struct tegra_sm4_cmac_ctx {
#ifndef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
struct crypto_engine_ctx enginectx;
#endif
struct tegra_se *se;
u32 alg;
u32 final_alg;
u32 key_id;
struct crypto_shash *fallback_tfm;
};
struct tegra_sm4_cmac_reqctx {
struct scatterlist *src_sg;
struct tegra_se_datbuf datbuf;
struct tegra_se_datbuf digest;
struct tegra_se_datbuf residue;
unsigned int total_len;
unsigned int blk_size;
unsigned int task;
u32 config;
u32 crypto_config;
u32 key_id;
u32 result[CMAC_RESULT_REG_COUNT];
u32 *iv;
};
/* increment counter (128-bit int) */
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
{
do {
--bits;
nums += counter[bits];
counter[bits] = nums & 0xff;
nums >>= 8;
} while (bits && nums);
}
static void tegra_cbc_iv_copyback(struct skcipher_request *req, struct tegra_sm4_ctx *ctx)
{
struct tegra_sm4_reqctx *rctx = skcipher_request_ctx(req);
unsigned int off;
off = req->cryptlen - ctx->ivsize;
if (rctx->encrypt)
memcpy(req->iv, rctx->datbuf.buf + off, ctx->ivsize);
else
sg_pcopy_to_buffer(req->src, sg_nents(req->src),
req->iv, ctx->ivsize, off);
}
static void tegra_sm4_update_iv(struct skcipher_request *req, struct tegra_sm4_ctx *ctx)
{
int sz;
if (ctx->alg == SE_ALG_SM4_CBC) {
tegra_cbc_iv_copyback(req, ctx);
} else if (ctx->alg == SE_ALG_SM4_CTR) {
sz = req->cryptlen / ctx->ivsize;
if (req->cryptlen % ctx->ivsize)
sz++;
ctr_iv_inc(req->iv, ctx->ivsize, sz);
}
}
static int tegra_sm4_prep_cmd(struct tegra_se *se, u32 *cpuvaddr, u32 *iv,
int len, dma_addr_t addr, int cfg, int cryp_cfg)
{
int i = 0, j;
if (iv) {
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = iv[j];
}
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = (len / AES_BLOCK_SIZE) - 1;
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = cfg;
cpuvaddr[i++] = cryp_cfg;
/* Source address setting */
cpuvaddr[i++] = lower_32_bits(addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(len);
/* Destination address setting */
cpuvaddr[i++] = lower_32_bits(addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) |
SE_ADDR_HI_SZ(len);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
SE_AES_OP_START;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", cfg, cryp_cfg);
return i;
}
static int tegra_sm4_do_one_req(struct crypto_engine *engine, void *areq)
{
unsigned int len, src_nents, dst_nents, size;
u32 *cpuvaddr, *iv, config, crypto_config;
struct tegra_sm4_reqctx *rctx;
struct skcipher_request *req;
struct tegra_sm4_ctx *ctx;
struct tegra_se *se;
int ret;
req = container_of(areq, struct skcipher_request, base);
rctx = skcipher_request_ctx(req);
ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
se = ctx->se;
iv = (u32 *)req->iv;
/* Keys in ctx might be stored in KDS. Copy it to request ctx */
rctx->key1_id = tegra_key_get_idx(ctx->se, ctx->key1_id);
if (!rctx->key1_id) {
ret = -ENOMEM;
goto out;
}
rctx->key2_id = 0;
/* If there are 2 keys stored (for XTS), retrieve them both */
if (ctx->key2_id) {
rctx->key2_id = tegra_key_get_idx(ctx->se, ctx->key2_id);
if (!rctx->key2_id) {
ret = -ENOMEM;
goto key1_free;
}
}
rctx->datbuf.size = req->cryptlen;
rctx->datbuf.buf = dma_alloc_coherent(ctx->se->dev, rctx->datbuf.size,
&rctx->datbuf.addr, GFP_KERNEL);
if (!rctx->datbuf.buf) {
ret = -ENOMEM;
goto key2_free;
}
cpuvaddr = se->cmdbuf->addr;
len = req->cryptlen;
/* Pad input to AES block size */
if (len % AES_BLOCK_SIZE)
len += AES_BLOCK_SIZE - (len % AES_BLOCK_SIZE);
src_nents = sg_nents(req->src);
sg_copy_to_buffer(req->src, src_nents, rctx->datbuf.buf, req->cryptlen);
config = se->regcfg->cfg(ctx->alg, rctx->encrypt);
crypto_config = se->regcfg->crypto_cfg(ctx->alg, rctx->encrypt);
crypto_config |= SE_AES_KEY_INDEX(rctx->key1_id);
if (rctx->key2_id)
crypto_config |= SE_AES_KEY2_INDEX(rctx->key2_id);
/* Prepare the command and submit */
size = tegra_sm4_prep_cmd(se, cpuvaddr, iv, len, rctx->datbuf.addr,
config, crypto_config);
ret = tegra_se_host1x_submit(se, size);
/* Copy the result */
dst_nents = sg_nents(req->dst);
tegra_sm4_update_iv(req, ctx);
sg_copy_from_buffer(req->dst, dst_nents, rctx->datbuf.buf, req->cryptlen);
dma_free_coherent(ctx->se->dev, rctx->datbuf.size,
rctx->datbuf.buf, rctx->datbuf.addr);
key2_free:
/* Free the keyslots if it is cloned for this request */
if (rctx->key2_id != ctx->key2_id)
tegra_key_invalidate(ctx->se, rctx->key2_id, ctx->alg);
key1_free:
if (rctx->key1_id != ctx->key1_id)
tegra_key_invalidate(ctx->se, rctx->key1_id, ctx->alg);
out:
crypto_finalize_skcipher_request(se->engine, req, ret);
return ret;
}
static int tegra_sm4_cra_init(struct crypto_skcipher *tfm)
{
struct tegra_sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct tegra_se_alg *se_alg;
const char *algname;
int ret;
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher.base);
#else
se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher);
#endif
crypto_skcipher_set_reqsize(tfm, sizeof(struct tegra_sm4_reqctx));
ctx->se = se_alg->se_dev;
ctx->key1_id = 0;
ctx->key2_id = 0;
ctx->ivsize = crypto_skcipher_ivsize(tfm);
algname = crypto_tfm_alg_name(&tfm->base);
ret = se_algname_to_algid(algname);
if (ret < 0) {
dev_err(ctx->se->dev, "Invalid algorithm\n");
return ret;
}
ctx->alg = ret;
#ifndef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
ctx->enginectx.op.do_one_request = tegra_sm4_do_one_req;
#endif
return 0;
}
static void tegra_sm4_cra_exit(struct crypto_skcipher *tfm)
{
struct tegra_sm4_ctx *ctx = crypto_tfm_ctx(&tfm->base);
if (ctx->key1_id)
tegra_key_invalidate(ctx->se, ctx->key1_id, ctx->alg);
if (ctx->key2_id)
tegra_key_invalidate(ctx->se, ctx->key2_id, ctx->alg);
}
static int tegra_sm4_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
struct tegra_sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
if (aes_check_keylen(keylen)) {
dev_err(ctx->se->dev, "key length validation failed\n");
return -EINVAL;
}
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key1_id);
}
static int tegra_sm4_xts_setkey(struct crypto_skcipher *tfm,
const u8 *key, u32 keylen)
{
struct tegra_sm4_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
u32 len;
len = keylen / 2;
if (aes_check_keylen(len)) {
dev_err(ctx->se->dev, "key length validation failed\n");
return -EINVAL;
}
ret = tegra_key_submit(ctx->se, key, len,
ctx->alg, &ctx->key1_id);
if (ret)
return ret;
ret = tegra_key_submit(ctx->se, key + len, len,
ctx->alg, &ctx->key2_id);
if (ret)
return ret;
return 0;
}
static int tegra_sm4_kac2_manifest(u32 user, u32 alg, u32 keylen)
{
int manifest;
manifest = SE_KAC2_USER(user) | SE_KAC2_ORIGIN_SW;
manifest |= SE_KAC2_DECRYPT_EN | SE_KAC2_ENCRYPT_EN;
manifest |= SE_KAC2_TYPE_SYM | SE_KAC2_SUBTYPE_SM4;
switch (alg) {
case SE_ALG_SM4_CBC:
case SE_ALG_SM4_ECB:
case SE_ALG_SM4_CTR:
case SE_ALG_SM4_OFB:
manifest |= SE_KAC2_ENC;
break;
case SE_ALG_SM4_XTS:
manifest |= SE_KAC2_XTS;
break;
case SE_ALG_SM4_GCM:
manifest |= SE_KAC2_GCM;
break;
case SE_ALG_SM4_CMAC:
manifest |= SE_KAC2_CMAC;
break;
default:
return -EINVAL;
}
switch (keylen) {
case AES_KEYSIZE_128:
manifest |= SE_KAC2_SIZE_128;
break;
case AES_KEYSIZE_192:
manifest |= SE_KAC2_SIZE_192;
break;
case AES_KEYSIZE_256:
manifest |= SE_KAC2_SIZE_256;
break;
default:
return -EINVAL;
}
return manifest;
}
static inline int tegra264_sm4_crypto_cfg(u32 alg, bool encrypt)
{
u32 cfg = SE_AES_CRYPTO_CFG_SCC_DIS;
switch (alg) {
case SE_ALG_SM4_ECB:
break;
case SE_ALG_SM4_CTR:
cfg |= SE_AES_IV_SEL_REG |
SE_AES_CRYPTO_CFG_CTR_CNTN(1);
break;
case SE_ALG_SM4_CBC:
case SE_ALG_SM4_OFB:
case SE_ALG_SM4_XTS:
cfg |= SE_AES_IV_SEL_REG;
break;
default:
return -EINVAL;
case SE_ALG_SM4_CMAC:
case SE_ALG_SM4_GMAC:
break;
case SE_ALG_SM4_GCM:
case SE_ALG_SM4_GCM_FINAL:
case SE_ALG_SM4_GCM_VERIFY:
cfg |= SE_AES_IV_SEL_REG;
break;
}
return cfg;
}
static int tegra264_sm4_cfg(u32 alg, bool encrypt)
{
switch (alg) {
case SE_ALG_SM4_CBC:
if (encrypt)
return SE_CFG_SM4_CBC_ENCRYPT;
else
return SE_CFG_SM4_CBC_DECRYPT;
case SE_ALG_SM4_ECB:
if (encrypt)
return SE_CFG_SM4_ECB_ENCRYPT;
else
return SE_CFG_SM4_ECB_DECRYPT;
case SE_ALG_SM4_CTR:
if (encrypt)
return SE_CFG_SM4_CTR_ENCRYPT;
else
return SE_CFG_SM4_CTR_DECRYPT;
case SE_ALG_SM4_OFB:
if (encrypt)
return SE_CFG_SM4_OFB_ENCRYPT;
else
return SE_CFG_SM4_OFB_DECRYPT;
case SE_ALG_SM4_XTS:
if (encrypt)
return SE_CFG_SM4_XTS_ENCRYPT;
else
return SE_CFG_SM4_XTS_DECRYPT;
case SE_ALG_SM4_GMAC:
if (encrypt)
return SE_CFG_SM4_GMAC_ENCRYPT;
else
return SE_CFG_SM4_GMAC_DECRYPT;
case SE_ALG_SM4_GCM:
if (encrypt)
return SE_CFG_SM4_GCM_ENCRYPT;
else
return SE_CFG_SM4_GCM_DECRYPT;
case SE_ALG_SM4_GCM_FINAL:
if (encrypt)
return SE_CFG_SM4_GCM_FINAL_ENCRYPT;
else
return SE_CFG_SM4_GCM_FINAL_DECRYPT;
case SE_ALG_SM4_GCM_VERIFY:
return SE_CFG_SM4_GCM_VERIFY;
case SE_ALG_SM4_CMAC:
return SE_CFG_SM4_CMAC | SE_AES_DST_KEYTABLE;
case SE_ALG_SM4_CMAC_FINAL:
return SE_CFG_SM4_CMAC;
}
return -EINVAL;
}
static int tegra_sm4_encrypt(struct skcipher_request *req)
{
struct tegra_sm4_ctx *ctx;
struct tegra_sm4_reqctx *rctx;
ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
rctx = skcipher_request_ctx(req);
rctx->encrypt = true;
return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req);
}
static int tegra_sm4_decrypt(struct skcipher_request *req)
{
struct tegra_sm4_ctx *ctx;
struct tegra_sm4_reqctx *rctx;
ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
rctx = skcipher_request_ctx(req);
rctx->encrypt = false;
return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req);
}
static struct tegra_se_alg tegra_sm4_algs[] = {
{
.alg.skcipher = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_cra_init,
.exit = tegra_sm4_cra_exit,
.setkey = tegra_sm4_xts_setkey,
.encrypt = tegra_sm4_encrypt,
.decrypt = tegra_sm4_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "xts(sm4)",
.cra_driver_name = "xts-sm4-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_do_one_req,
#endif
}
}, {
.alg.skcipher = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_cra_init,
.exit = tegra_sm4_cra_exit,
.setkey = tegra_sm4_setkey,
.encrypt = tegra_sm4_encrypt,
.decrypt = tegra_sm4_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(sm4)",
.cra_driver_name = "cbc-sm4-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_do_one_req,
#endif
}
}, {
.alg.skcipher = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_cra_init,
.exit = tegra_sm4_cra_exit,
.setkey = tegra_sm4_setkey,
.encrypt = tegra_sm4_encrypt,
.decrypt = tegra_sm4_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ecb(sm4)",
.cra_driver_name = "ecb-sm4-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_do_one_req,
#endif
}
}, {
.alg.skcipher = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_cra_init,
.exit = tegra_sm4_cra_exit,
.setkey = tegra_sm4_setkey,
.encrypt = tegra_sm4_encrypt,
.decrypt = tegra_sm4_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ctr(sm4)",
.cra_driver_name = "ctr-sm4-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_do_one_req,
#endif
}
}, {
.alg.skcipher = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_cra_init,
.exit = tegra_sm4_cra_exit,
.setkey = tegra_sm4_setkey,
.encrypt = tegra_sm4_encrypt,
.decrypt = tegra_sm4_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ofb(sm4)",
.cra_driver_name = "ofb-sm4-tegra",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_do_one_req,
#endif
}
},
};
static int tegra_sm4_gmac_prep_cmd(struct tegra_se *se, u32 *cpuvaddr,
struct tegra_sm4_gcm_reqctx *rctx)
{
unsigned int i = 0, j;
unsigned int data_count, res_bits;
data_count = (rctx->assoclen/AES_BLOCK_SIZE);
res_bits = (rctx->assoclen % AES_BLOCK_SIZE) * 8;
/*
* Hardware processes data_count + 1 blocks.
* Reduce 1 block if there is no residue
*/
if (!res_bits)
data_count--;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 4);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
SE_ADDR_HI_SZ(rctx->assoclen);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
SE_AES_OP_INIT | SE_AES_OP_LASTBUF |
SE_AES_OP_START;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
return i;
}
static int tegra_sm4_gcm_crypt_prep_cmd(struct tegra_se *se, u32 *cpuvaddr,
struct tegra_sm4_gcm_reqctx *rctx)
{
unsigned int i = 0, j;
unsigned int data_count, res_bits;
u32 op;
data_count = (rctx->cryptlen/AES_BLOCK_SIZE);
res_bits = (rctx->cryptlen % AES_BLOCK_SIZE) * 8;
op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
SE_AES_OP_LASTBUF | SE_AES_OP_START;
/*
* If there is no assoc data,
* this will be the init command
*/
if (!rctx->assoclen)
op |= SE_AES_OP_INIT;
/*
* Hardware processes data_count + 1 blocks.
* Reduce 1 block if there is no residue
*/
if (!res_bits)
data_count--;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
/* Source Address */
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
SE_ADDR_HI_SZ(rctx->cryptlen);
/* Destination Address */
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(rctx->cryptlen);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = op;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
return i;
}
static int tegra_sm4_gcm_prep_final_cmd(struct tegra_se *se, u32 *cpuvaddr,
struct tegra_sm4_gcm_reqctx *rctx)
{
int i = 0, j;
u32 op;
op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
SE_AES_OP_LASTBUF | SE_AES_OP_START;
/*
* Set init for zero sized vector
*/
if (!rctx->assoclen && !rctx->cryptlen)
op |= SE_AES_OP_INIT;
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->aad_len, 2);
cpuvaddr[i++] = rctx->assoclen * 8;
cpuvaddr[i++] = 0;
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->cryp_msg_len, 2);
cpuvaddr[i++] = rctx->cryptlen * 8;
cpuvaddr[i++] = 0;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = rctx->iv[j];
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(rctx->authsize);
/* Destination Address */
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
SE_ADDR_HI_SZ(rctx->authsize);
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = op;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
return i;
}
static int tegra_sm4_gcm_do_gmac(struct tegra_sm4_gcm_ctx *ctx, struct tegra_sm4_gcm_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
unsigned int nents, size;
nents = sg_nents(rctx->src_sg);
scatterwalk_map_and_copy(rctx->inbuf.buf,
rctx->src_sg, 0, rctx->assoclen, 0);
rctx->config = se->regcfg->cfg(ctx->mac_alg, rctx->encrypt);
rctx->crypto_config = se->regcfg->crypto_cfg(ctx->mac_alg, rctx->encrypt) |
SE_AES_KEY_INDEX(rctx->key_id);
size = tegra_sm4_gmac_prep_cmd(se, cpuvaddr, rctx);
return tegra_se_host1x_submit(se, size);
}
static int tegra_sm4_gcm_do_crypt(struct tegra_sm4_gcm_ctx *ctx, struct tegra_sm4_gcm_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
int size, ret;
scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg,
rctx->assoclen, rctx->cryptlen, 0);
rctx->config = se->regcfg->cfg(ctx->alg, rctx->encrypt);
rctx->crypto_config = se->regcfg->crypto_cfg(ctx->alg, rctx->encrypt) |
SE_AES_KEY_INDEX(rctx->key_id);
/* Prepare command and submit */
size = tegra_sm4_gcm_crypt_prep_cmd(se, cpuvaddr, rctx);
ret = tegra_se_host1x_submit(se, size);
if (ret)
return ret;
/* Copy the result */
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
rctx->assoclen, rctx->cryptlen, 1);
return 0;
}
static int tegra_sm4_gcm_do_final(struct tegra_sm4_gcm_ctx *ctx, struct tegra_sm4_gcm_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
u32 *cpuvaddr = se->cmdbuf->addr;
int size, ret, off;
rctx->config = se->regcfg->cfg(ctx->final_alg, rctx->encrypt);
rctx->crypto_config = se->regcfg->crypto_cfg(ctx->final_alg, rctx->encrypt) |
SE_AES_KEY_INDEX(rctx->key_id);
/* Prepare command and submit */
size = tegra_sm4_gcm_prep_final_cmd(se, cpuvaddr, rctx);
ret = tegra_se_host1x_submit(se, size);
if (ret)
return ret;
if (rctx->encrypt) {
/* Copy the result */
off = rctx->assoclen + rctx->cryptlen;
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
off, rctx->authsize, 1);
}
return 0;
}
static int tegra_sm4_gcm_hw_verify(struct tegra_sm4_gcm_ctx *ctx, struct tegra_sm4_gcm_reqctx *rctx, u8 *mac)
{
struct tegra_se *se = ctx->se;
u32 result, *cpuvaddr = se->cmdbuf->addr;
int size, ret;
memcpy(rctx->inbuf.buf, mac, rctx->authsize);
rctx->inbuf.size = rctx->authsize;
rctx->config = se->regcfg->cfg(ctx->verify_alg, rctx->encrypt);
rctx->crypto_config = se->regcfg->crypto_cfg(ctx->verify_alg, rctx->encrypt) |
SE_AES_KEY_INDEX(rctx->key_id);
/* Prepare command and submit */
size = tegra_sm4_gcm_prep_final_cmd(se, cpuvaddr, rctx);
ret = tegra_se_host1x_submit(se, size);
if (ret)
return ret;
memcpy(&result, rctx->outbuf.buf, 4);
if (result != SE_GCM_VERIFY_OK)
return -EBADMSG;
return 0;
}
static int tegra_sm4_gcm_do_verify(struct tegra_sm4_gcm_ctx *ctx, struct tegra_sm4_gcm_reqctx *rctx)
{
struct tegra_se *se = ctx->se;
int off, ret;
u8 mac[16];
off = rctx->assoclen + rctx->cryptlen;
scatterwalk_map_and_copy(mac, rctx->src_sg, off, rctx->authsize, 0);
if (se->hw->support_aad_verify)
ret = tegra_sm4_gcm_hw_verify(ctx, rctx, mac);
else
ret = crypto_memneq(rctx->outbuf.buf, mac, rctx->authsize);
if (ret)
return -EBADMSG;
return 0;
}
static int tegra_sm4_gcm_do_one_req(struct crypto_engine *engine, void *areq)
{
struct aead_request *req = container_of(areq, struct aead_request, base);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct tegra_sm4_gcm_ctx *ctx = crypto_aead_ctx(tfm);
struct tegra_sm4_gcm_reqctx *rctx = aead_request_ctx(req);
struct tegra_se *se = ctx->se;
int ret, keyid;
rctx->src_sg = req->src;
rctx->dst_sg = req->dst;
rctx->assoclen = req->assoclen;
rctx->authsize = crypto_aead_authsize(tfm);
if (rctx->encrypt)
rctx->cryptlen = req->cryptlen;
else
rctx->cryptlen = req->cryptlen - ctx->authsize;
/* Keys in ctx might be stored in KDS. Copy it to local keyslot */
keyid = tegra_key_get_idx(ctx->se, ctx->key_id);
if (!keyid)
goto out;
rctx->key_id = keyid;
rctx->inbuf.size = rctx->assoclen + rctx->authsize + rctx->cryptlen;
rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, rctx->inbuf.size,
&rctx->inbuf.addr, GFP_KERNEL);
if (!rctx->inbuf.buf)
goto key_free;
rctx->outbuf.size = rctx->assoclen + rctx->authsize + rctx->cryptlen;
rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, rctx->outbuf.size,
&rctx->outbuf.addr, GFP_KERNEL);
if (!rctx->outbuf.buf)
goto inbuf_free;
memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
rctx->iv[3] = (1 << 24);
/* If there is associated data perform GMAC operation */
if (rctx->assoclen) {
ret = tegra_sm4_gcm_do_gmac(ctx, rctx);
if (ret)
goto outbuf_free;
}
/* GCM Encryption/Decryption operation */
if (rctx->cryptlen) {
ret = tegra_sm4_gcm_do_crypt(ctx, rctx);
if (ret)
goto outbuf_free;
}
/* GCM_FINAL operation */
/* Need not do FINAL operation if hw supports MAC verification */
if (rctx->encrypt || !se->hw->support_aad_verify) {
ret = tegra_sm4_gcm_do_final(ctx, rctx);
if (ret)
goto outbuf_free;
}
if (!rctx->encrypt)
ret = tegra_sm4_gcm_do_verify(ctx, rctx);
outbuf_free:
dma_free_coherent(ctx->se->dev, rctx->outbuf.size,
rctx->outbuf.buf, rctx->outbuf.addr);
inbuf_free:
dma_free_coherent(ctx->se->dev, rctx->inbuf.size,
rctx->inbuf.buf, rctx->inbuf.addr);
key_free:
/* Free the keyslot if it is cloned for this request */
if (rctx->key_id != ctx->key_id)
tegra_key_invalidate(ctx->se, rctx->key_id, ctx->alg);
out:
crypto_finalize_aead_request(se->engine, req, ret);
return 0;
}
static int tegra_sm4_gcm_cra_init(struct crypto_aead *tfm)
{
struct tegra_sm4_gcm_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_alg *alg = crypto_aead_alg(tfm);
struct tegra_se_alg *se_alg;
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
se_alg = container_of(alg, struct tegra_se_alg, alg.aead.base);
#else
se_alg = container_of(alg, struct tegra_se_alg, alg.aead);
#endif
crypto_aead_set_reqsize(tfm, sizeof(struct tegra_sm4_gcm_reqctx));
ctx->se = se_alg->se_dev;
ctx->key_id = 0;
ctx->alg = SE_ALG_SM4_GCM;
ctx->final_alg = SE_ALG_SM4_GCM_FINAL;
ctx->verify_alg = SE_ALG_SM4_GCM_VERIFY;
ctx->mac_alg = SE_ALG_SM4_GMAC;
#ifndef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
ctx->enginectx.op.do_one_request = tegra_sm4_gcm_do_one_req;
#endif
return 0;
}
static int tegra_sm4_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct tegra_sm4_gcm_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
ret = crypto_gcm_check_authsize(authsize);
if (ret)
return ret;
ctx->authsize = authsize;
return 0;
}
static void tegra_sm4_gcm_cra_exit(struct crypto_aead *tfm)
{
struct tegra_sm4_gcm_ctx *ctx = crypto_tfm_ctx(&tfm->base);
if (ctx->key_id)
tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
}
static int tegra_sm4_gcm_crypt(struct aead_request *req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct tegra_sm4_gcm_ctx *ctx = crypto_aead_ctx(tfm);
struct tegra_sm4_gcm_reqctx *rctx = aead_request_ctx(req);
rctx->encrypt = encrypt;
return crypto_transfer_aead_request_to_engine(ctx->se->engine, req);
}
static int tegra_sm4_gcm_encrypt(struct aead_request *req)
{
return tegra_sm4_gcm_crypt(req, true);
}
static int tegra_sm4_gcm_decrypt(struct aead_request *req)
{
return tegra_sm4_gcm_crypt(req, false);
}
static int tegra_sm4_gcm_setkey(struct crypto_aead *tfm,
const u8 *key, u32 keylen)
{
struct tegra_sm4_gcm_ctx *ctx = crypto_aead_ctx(tfm);
if (aes_check_keylen(keylen)) {
dev_err(ctx->se->dev, "key length validation failed\n");
return -EINVAL;
}
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
}
static int tegra_sm4_cmac_prep_cmd(struct tegra_se *se, u32 *cpuvaddr, struct tegra_sm4_cmac_reqctx *rctx)
{
unsigned int data_count, res_bits = 0;
int i = 0, j;
u32 op;
data_count = (rctx->datbuf.size / AES_BLOCK_SIZE);
op = SE_AES_OP_WRSTALL | SE_AES_OP_START | SE_AES_OP_LASTBUF;
if (!(rctx->task & SHA_UPDATE)) {
op |= SE_AES_OP_FINAL;
res_bits = (rctx->datbuf.size % AES_BLOCK_SIZE) * 8;
}
if (!res_bits && data_count)
data_count--;
if (rctx->task & SHA_FIRST) {
op |= SE_AES_OP_INIT;
rctx->task &= ~SHA_FIRST;
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
/* Load 0 IV */
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
cpuvaddr[i++] = 0;
}
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
SE_LAST_BLOCK_RES_BITS(res_bits);
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
cpuvaddr[i++] = rctx->config;
cpuvaddr[i++] = rctx->crypto_config;
/* Source Address */
cpuvaddr[i++] = lower_32_bits(rctx->datbuf.addr);
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->datbuf.addr)) |
SE_ADDR_HI_SZ(rctx->datbuf.size);
/* Destination Address */
cpuvaddr[i++] = rctx->digest.addr;
cpuvaddr[i++] = (u32)(SE_ADDR_HI_MSB(upper_32_bits(rctx->digest.addr)) |
SE_ADDR_HI_SZ(rctx->digest.size));
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
cpuvaddr[i++] = op;
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
dev_dbg(se->dev, "cfg %#x\n", rctx->config);
return i;
}
static int tegra_sm4_cmac_do_update(struct ahash_request *req)
{
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
unsigned int nblks, nresidue, size;
nresidue = (req->nbytes + rctx->residue.size) % rctx->blk_size;
nblks = (req->nbytes + rctx->residue.size) / rctx->blk_size;
/*
* Reserve the last block as residue during final() to process.
*/
if (!nresidue && nblks) {
nresidue += rctx->blk_size;
nblks--;
}
rctx->src_sg = req->src;
rctx->datbuf.size = (req->nbytes + rctx->residue.size) - nresidue;
rctx->total_len += rctx->datbuf.size;
rctx->config = se->regcfg->cfg(ctx->alg, 0);
rctx->crypto_config = se->regcfg->crypto_cfg(ctx->alg, 0) |
SE_AES_KEY_INDEX(rctx->key_id);
/*
* Keep one block and residue bytes in residue and
* return. The bytes will be processed in final()
*/
if (nblks < 1) {
scatterwalk_map_and_copy(rctx->residue.buf + rctx->residue.size,
rctx->src_sg, 0, req->nbytes, 0);
rctx->residue.size += req->nbytes;
return 0;
}
rctx->datbuf.buf = dma_alloc_coherent(se->dev, rctx->datbuf.size,
&rctx->datbuf.addr, GFP_KERNEL);
if (!rctx->datbuf.buf)
return -ENOMEM;
/* Copy the previous residue first */
if (rctx->residue.size)
memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
scatterwalk_map_and_copy(rctx->datbuf.buf + rctx->residue.size,
rctx->src_sg, 0, req->nbytes - nresidue, 0);
scatterwalk_map_and_copy(rctx->residue.buf, rctx->src_sg,
req->nbytes - nresidue, nresidue, 0);
/* Update residue value with the residue after current block */
rctx->residue.size = nresidue;
size = tegra_sm4_cmac_prep_cmd(se, se->cmdbuf->addr, rctx);
return tegra_se_host1x_submit(se, size);
}
static int tegra_sm4_cmac_do_final(struct ahash_request *req)
{
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
int ret = 0, i, size;
rctx->datbuf.size = rctx->residue.size;
rctx->total_len += rctx->residue.size;
rctx->config = se->regcfg->cfg(ctx->final_alg, 0);
if (rctx->residue.size) {
rctx->datbuf.buf = dma_alloc_coherent(se->dev, rctx->residue.size,
&rctx->datbuf.addr, GFP_KERNEL);
if (!rctx->datbuf.buf) {
ret = -ENOMEM;
goto out_free;
}
memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
}
/* Prepare command and submit */
size = tegra_sm4_cmac_prep_cmd(se, se->cmdbuf->addr, rctx);
ret = tegra_se_host1x_submit(se, size);
if (ret)
goto out;
/* Read and clear Result register */
memcpy(req->result, rctx->digest.buf, rctx->digest.size);
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(0, se->base + se->hw->regs->result + (i * 4));
if (rctx->key_id != ctx->key_id)
tegra_key_invalidate(ctx->se, rctx->key_id, ctx->alg);
out:
if (rctx->residue.size)
dma_free_coherent(se->dev, rctx->datbuf.size,
rctx->datbuf.buf, rctx->datbuf.addr);
out_free:
dma_free_coherent(se->dev, crypto_ahash_blocksize(tfm) * 2,
rctx->residue.buf, rctx->residue.addr);
dma_free_coherent(se->dev, rctx->digest.size, rctx->digest.buf,
rctx->digest.addr);
return ret;
}
static int tegra_sm4_cmac_do_one_req(struct crypto_engine *engine, void *areq)
{
struct ahash_request *req = ahash_request_cast(areq);
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
int ret = -EINVAL;
if (rctx->task & SHA_UPDATE) {
ret = tegra_sm4_cmac_do_update(req);
rctx->task &= ~SHA_UPDATE;
}
if (rctx->task & SHA_FINAL) {
ret = tegra_sm4_cmac_do_final(req);
rctx->task &= ~SHA_FINAL;
}
crypto_finalize_hash_request(se->engine, req, ret);
return ret;
}
static int tegra_sm4_cmac_cra_init(struct crypto_tfm *tfm)
{
struct tegra_sm4_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
struct tegra_se_alg *se_alg;
const char *algname;
algname = crypto_tfm_alg_name(tfm);
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
se_alg = container_of(alg, struct tegra_se_alg, alg.ahash.base);
#else
se_alg = container_of(alg, struct tegra_se_alg, alg.ahash);
#endif
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct tegra_sm4_cmac_reqctx));
ctx->se = se_alg->se_dev;
ctx->key_id = 0;
ctx->alg = SE_ALG_SM4_CMAC;
ctx->final_alg = SE_ALG_SM4_CMAC_FINAL;
#ifndef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
ctx->enginectx.op.do_one_request = tegra_sm4_cmac_do_one_req;
#endif
return 0;
}
static void tegra_sm4_cmac_cra_exit(struct crypto_tfm *tfm)
{
struct tegra_sm4_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
}
static int tegra_sm4_cmac_init(struct ahash_request *req)
{
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_se *se = ctx->se;
int i;
rctx->total_len = 0;
rctx->datbuf.size = 0;
rctx->residue.size = 0;
rctx->key_id = 0;
rctx->task = SHA_FIRST;
rctx->blk_size = crypto_ahash_blocksize(tfm);
rctx->digest.size = crypto_ahash_digestsize(tfm);
/* Retrieve the key slot for CMAC */
if (ctx->key_id) {
rctx->key_id = tegra_key_get_idx(ctx->se, ctx->key_id);
if (!rctx->key_id)
return -ENOMEM;
}
rctx->digest.buf = dma_alloc_coherent(se->dev, rctx->digest.size,
&rctx->digest.addr, GFP_KERNEL);
if (!rctx->digest.buf)
goto digbuf_fail;
rctx->residue.buf = dma_alloc_coherent(se->dev, rctx->blk_size * 2,
&rctx->residue.addr, GFP_KERNEL);
if (!rctx->residue.buf)
goto resbuf_fail;
rctx->residue.size = 0;
rctx->datbuf.size = 0;
/* Clear any previous result */
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(0, se->base + se->hw->regs->result + (i * 4));
return 0;
resbuf_fail:
dma_free_coherent(se->dev, rctx->blk_size, rctx->digest.buf,
rctx->digest.addr);
digbuf_fail:
if (rctx->key_id != ctx->key_id)
tegra_key_invalidate(ctx->se, rctx->key_id, ctx->alg);
return -ENOMEM;
}
static int tegra_sm4_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
if (aes_check_keylen(keylen)) {
dev_err(ctx->se->dev, "key length validation failed\n");
return -EINVAL;
}
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
}
static int tegra_sm4_cmac_update(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
rctx->task |= SHA_UPDATE;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_sm4_cmac_final(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
rctx->task |= SHA_FINAL;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_sm4_cmac_finup(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
rctx->task |= SHA_UPDATE | SHA_FINAL;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_sm4_cmac_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
tegra_sm4_cmac_init(req);
rctx->task |= SHA_UPDATE | SHA_FINAL;
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
}
static int tegra_sm4_cmac_export(struct ahash_request *req, void *out)
{
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
u32 result_reg = ctx->se->hw->regs->result;
int i;
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
rctx->result[i] = readl(ctx->se->base + result_reg + (i * 4));
memcpy(out, rctx, sizeof(*rctx));
return 0;
}
static int tegra_sm4_cmac_import(struct ahash_request *req, const void *in)
{
struct tegra_sm4_cmac_reqctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct tegra_sm4_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
u32 result_reg = ctx->se->hw->regs->result;
int i;
memcpy(rctx, in, sizeof(*rctx));
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
writel(rctx->result[i], ctx->se->base + result_reg + (i * 4));
return 0;
}
static struct tegra_se_alg tegra_sm4_gcm_algs[] = {
{
.alg.aead = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_gcm_cra_init,
.exit = tegra_sm4_gcm_cra_exit,
.setkey = tegra_sm4_gcm_setkey,
.setauthsize = tegra_sm4_gcm_setauthsize,
.encrypt = tegra_sm4_gcm_encrypt,
.decrypt = tegra_sm4_gcm_decrypt,
.maxauthsize = AES_BLOCK_SIZE,
.ivsize = GCM_AES_IV_SIZE,
.base = {
.cra_name = "gcm(sm4)",
.cra_driver_name = "gcm-sm4-tegra",
.cra_priority = 500,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_gcm_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_gcm_do_one_req,
#endif
}
}
};
static struct tegra_se_alg tegra_sm4_cmac_algs[] = {
{
.alg.ahash = {
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
.base = {
#endif
.init = tegra_sm4_cmac_init,
.setkey = tegra_sm4_cmac_setkey,
.update = tegra_sm4_cmac_update,
.final = tegra_sm4_cmac_final,
.finup = tegra_sm4_cmac_finup,
.digest = tegra_sm4_cmac_digest,
.export = tegra_sm4_cmac_export,
.import = tegra_sm4_cmac_import,
.halg.digestsize = AES_BLOCK_SIZE,
.halg.statesize = sizeof(struct tegra_sm4_cmac_reqctx),
.halg.base = {
.cra_name = "cmac(sm4)",
.cra_driver_name = "cmac-sm4-tegra",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_AHASH,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct tegra_sm4_cmac_ctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_init = tegra_sm4_cmac_cra_init,
.cra_exit = tegra_sm4_cmac_cra_exit,
},
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
},
.op.do_one_request = tegra_sm4_cmac_do_one_req,
#endif
}
}
};
struct tegra_se_regcfg tegra264_sm4_regcfg = {
.cfg = tegra264_sm4_cfg,
.crypto_cfg = tegra264_sm4_crypto_cfg,
.manifest = tegra_sm4_kac2_manifest
};
#ifdef NV_CONFTEST_REMOVE_STRUCT_CRYPTO_ENGINE_CTX
int tegra_init_sm4(struct tegra_se *se)
{
struct aead_engine_alg *aead_alg;
struct ahash_engine_alg *ahash_alg;
struct skcipher_engine_alg *sk_alg;
int i, ret;
se->regcfg = &tegra264_sm4_regcfg;
for (i = 0; i < ARRAY_SIZE(tegra_sm4_algs); i++) {
tegra_sm4_algs[i].se_dev = se;
sk_alg = &tegra_sm4_algs[i].alg.skcipher;
ret = CRYPTO_REGISTER(skcipher, sk_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
sk_alg->base.base.cra_name);
goto sm4_err;
}
}
for (i = 0; i < ARRAY_SIZE(tegra_sm4_gcm_algs); i++) {
tegra_sm4_gcm_algs[i].se_dev = se;
aead_alg = &tegra_sm4_gcm_algs[i].alg.aead;
ret = CRYPTO_REGISTER(aead, aead_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
aead_alg->base.base.cra_name);
goto aead_err;
}
}
for (i = 0; i < ARRAY_SIZE(tegra_sm4_cmac_algs); i++) {
tegra_sm4_cmac_algs[i].se_dev = se;
ahash_alg = &tegra_sm4_cmac_algs[i].alg.ahash;
ret = CRYPTO_REGISTER(ahash, ahash_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
ahash_alg->base.halg.base.cra_name);
goto cmac_err;
}
}
return 0;
cmac_err:
for (--i; i >= 0; i--)
CRYPTO_UNREGISTER(ahash, &tegra_sm4_cmac_algs[i].alg.ahash);
i = ARRAY_SIZE(tegra_sm4_gcm_algs);
aead_err:
for (--i; i >= 0; i--)
CRYPTO_UNREGISTER(aead, &tegra_sm4_gcm_algs[i].alg.aead);
i = ARRAY_SIZE(tegra_sm4_algs);
sm4_err:
for (--i; i >= 0; i--)
CRYPTO_UNREGISTER(skcipher, &tegra_sm4_algs[i].alg.skcipher);
return ret;
}
#else
int tegra_init_sm4(struct tegra_se *se)
{
struct aead_alg *aead_alg;
struct ahash_alg *ahash_alg;
struct skcipher_alg *sk_alg;
int i, ret;
se->regcfg = &tegra264_sm4_regcfg;
for (i = 0; i < ARRAY_SIZE(tegra_sm4_algs); i++) {
tegra_sm4_algs[i].se_dev = se;
sk_alg = &tegra_sm4_algs[i].alg.skcipher;
ret = CRYPTO_REGISTER(skcipher, sk_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
sk_alg->base.cra_name);
goto sm4_err;
}
}
for (i = 0; i < ARRAY_SIZE(tegra_sm4_gcm_algs); i++) {
tegra_sm4_gcm_algs[i].se_dev = se;
aead_alg = &tegra_sm4_gcm_algs[i].alg.aead;
ret = CRYPTO_REGISTER(aead, aead_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
aead_alg->base.cra_name);
goto aead_err;
}
}
for (i = 0; i < ARRAY_SIZE(tegra_sm4_cmac_algs); i++) {
tegra_sm4_cmac_algs[i].se_dev = se;
ahash_alg = &tegra_sm4_cmac_algs[i].alg.ahash;
ret = CRYPTO_REGISTER(ahash, ahash_alg);
if (ret) {
dev_err(se->dev, "failed to register %s\n",
ahash_alg->halg.base.cra_name);
goto cmac_err;
}
}
return 0;
cmac_err:
for (--i; i >= 0; i--)
CRYPTO_UNREGISTER(ahash, &tegra_sm4_cmac_algs[i].alg.ahash);
i = ARRAY_SIZE(tegra_sm4_gcm_algs);
aead_err:
for (--i; i >= 0; i--)
CRYPTO_UNREGISTER(aead, &tegra_sm4_gcm_algs[i].alg.aead);
i = ARRAY_SIZE(tegra_sm4_algs);
sm4_err:
for (--i; i >= 0; i--)
CRYPTO_UNREGISTER(skcipher, &tegra_sm4_algs[i].alg.skcipher);
return ret;
}
#endif
void tegra_deinit_sm4(struct tegra_se *se)
{
int i;
for (i = 0; i < ARRAY_SIZE(tegra_sm4_gcm_algs); i++)
CRYPTO_UNREGISTER(aead, &tegra_sm4_gcm_algs[i].alg.aead);
for (i = 0; i < ARRAY_SIZE(tegra_sm4_cmac_algs); i++)
CRYPTO_UNREGISTER(ahash, &tegra_sm4_cmac_algs[i].alg.ahash);
for (i = 0; i < ARRAY_SIZE(tegra_sm4_algs); i++)
CRYPTO_UNREGISTER(skcipher, &tegra_sm4_algs[i].alg.skcipher);
}