mirror of
git://nv-tegra.nvidia.com/linux-nv-oot.git
synced 2025-12-22 09:11:26 +03:00
Use SPDX license GPL-V2.0 format and change Nvidia copyright year to include 2023. Bug 4078035 Change-Id: I4db6577ddb806690f6ec04f5eaf1364578102d14 Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/c/linux-nv-oot/+/2890635 Reviewed-by: Jonathan Hunter <jonathanh@nvidia.com> Reviewed-by: Ketan Patil <ketanp@nvidia.com> GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
1036 lines
25 KiB
C
1036 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2014-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/nvmap.h>
|
|
#include <linux/version.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/io.h>
|
|
|
|
#if defined(NVMAP_LOADABLE_MODULE)
|
|
#include <linux/nvmap_t19x.h>
|
|
#endif
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
|
|
#include <linux/sched/clock.h>
|
|
#endif
|
|
|
|
#include <linux/cma.h>
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
|
|
#include <linux/dma-map-ops.h>
|
|
#else
|
|
#include <linux/dma-contiguous.h>
|
|
#include <asm/dma-contiguous.h>
|
|
#endif
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
|
|
#include "include/linux/nvmap_exports.h"
|
|
#endif
|
|
|
|
#include "nvmap_priv.h"
|
|
|
|
#ifdef CONFIG_TEGRA_VIRTUALIZATION
|
|
#include <linux/tegra-ivc.h>
|
|
#include <soc/tegra/virt/syscalls.h>
|
|
#endif
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
|
|
#ifdef CONFIG_ARM_DMA_IOMMU_ALIGNMENT
|
|
#define DMA_BUF_ALIGNMENT CONFIG_ARM_DMA_IOMMU_ALIGNMENT
|
|
#else
|
|
#define DMA_BUF_ALIGNMENT 8
|
|
#endif
|
|
#endif /* LINUX_VERSION_CODE */
|
|
|
|
#ifndef NVMAP_UPSTREAM_KERNEL
|
|
#ifndef NVMAP_CONFIG_VPR_RESIZE
|
|
extern phys_addr_t tegra_vpr_start;
|
|
extern phys_addr_t tegra_vpr_size;
|
|
extern bool tegra_vpr_resize;
|
|
#endif /* NVMAP_CONFIG_VPR_RESIZE */
|
|
#endif /* !NVMAP_UPSTREAM_KERNEL */
|
|
|
|
struct device __weak tegra_generic_dev;
|
|
|
|
struct device __weak tegra_vpr_dev;
|
|
EXPORT_SYMBOL(tegra_vpr_dev);
|
|
|
|
struct device __weak tegra_generic_cma_dev;
|
|
struct device __weak tegra_vpr_cma_dev;
|
|
|
|
#ifdef NVMAP_LOADABLE_MODULE
|
|
static struct platform_device *pdev;
|
|
#endif /* NVMAP_LOADABLE_MODULE */
|
|
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
struct dma_resize_notifier_ops __weak vpr_dev_ops;
|
|
|
|
static struct dma_declare_info generic_dma_info = {
|
|
.name = "generic",
|
|
.size = 0,
|
|
.notifier.ops = NULL,
|
|
};
|
|
|
|
static struct dma_declare_info vpr_dma_info = {
|
|
.name = "vpr",
|
|
.size = SZ_32M,
|
|
.notifier.ops = &vpr_dev_ops,
|
|
};
|
|
#endif
|
|
|
|
const struct of_device_id nvmap_of_ids[] = {
|
|
{ .compatible = "nvidia,carveouts" },
|
|
{ .compatible = "nvidia,carveouts-t18x" },
|
|
{ .compatible = "nvidia,carveouts-t19x" },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, nvmap_of_ids);
|
|
|
|
static struct nvmap_platform_carveout nvmap_carveouts[] = {
|
|
[0] = {
|
|
.name = "generic-0",
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_GENERIC,
|
|
.base = 0,
|
|
.size = 0,
|
|
.dma_dev = &tegra_generic_dev,
|
|
.cma_dev = &tegra_generic_cma_dev,
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
.dma_info = &generic_dma_info,
|
|
#endif
|
|
},
|
|
[1] = {
|
|
.name = "vpr",
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_VPR,
|
|
.base = 0,
|
|
.size = 0,
|
|
.dma_dev = &tegra_vpr_dev,
|
|
.cma_dev = &tegra_vpr_cma_dev,
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
.dma_info = &vpr_dma_info,
|
|
#endif
|
|
.enable_static_dma_map = true,
|
|
},
|
|
[2] = {
|
|
.name = "vidmem",
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_VIDMEM,
|
|
.base = 0,
|
|
.size = 0,
|
|
.disable_dynamic_dma_map = true,
|
|
.no_cpu_access = true,
|
|
},
|
|
[3] = {
|
|
.name = "fsi",
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_FSI,
|
|
.base = 0,
|
|
.size = 0,
|
|
},
|
|
[4] = {
|
|
.name = "compression",
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_COMPRESSION,
|
|
.base = 0,
|
|
.size = 0,
|
|
},
|
|
/* Need uninitialized entries for IVM carveouts */
|
|
[5] = {
|
|
.name = NULL,
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_IVM,
|
|
},
|
|
[6] = {
|
|
.name = NULL,
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_IVM,
|
|
},
|
|
[7] = {
|
|
.name = NULL,
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_IVM,
|
|
},
|
|
[8] = {
|
|
.name = NULL,
|
|
.usage_mask = NVMAP_HEAP_CARVEOUT_IVM,
|
|
},
|
|
};
|
|
|
|
static struct nvmap_platform_data nvmap_data = {
|
|
.carveouts = nvmap_carveouts,
|
|
.nr_carveouts = 5,
|
|
};
|
|
|
|
static struct nvmap_platform_carveout *nvmap_get_carveout_pdata(const char *name)
|
|
{
|
|
struct nvmap_platform_carveout *co;
|
|
for (co = nvmap_carveouts;
|
|
co < nvmap_carveouts + ARRAY_SIZE(nvmap_carveouts); co++) {
|
|
int i = min_t(int, strcspn(name, "_"), strcspn(name, "-"));
|
|
/* handle IVM carveouts */
|
|
if ((co->usage_mask == NVMAP_HEAP_CARVEOUT_IVM) && !co->name)
|
|
goto found;
|
|
|
|
if (strncmp(co->name, name, i))
|
|
continue;
|
|
found:
|
|
co->dma_dev = co->dma_dev ? co->dma_dev : &co->dev;
|
|
return co;
|
|
}
|
|
pr_err("not enough space for all nvmap carveouts\n");
|
|
return NULL;
|
|
}
|
|
|
|
int nvmap_register_vidmem_carveout(struct device *dma_dev,
|
|
phys_addr_t base, size_t size)
|
|
{
|
|
struct nvmap_platform_carveout *vidmem_co;
|
|
|
|
if (!base || !size || (base != PAGE_ALIGN(base)) ||
|
|
(size != PAGE_ALIGN(size)))
|
|
return -EINVAL;
|
|
|
|
vidmem_co = nvmap_get_carveout_pdata("vidmem");
|
|
if (!vidmem_co)
|
|
return -ENODEV;
|
|
|
|
if (vidmem_co->base || vidmem_co->size)
|
|
return -EEXIST;
|
|
|
|
vidmem_co->base = base;
|
|
vidmem_co->size = size;
|
|
if (dma_dev)
|
|
vidmem_co->dma_dev = dma_dev;
|
|
return nvmap_create_carveout(vidmem_co);
|
|
}
|
|
EXPORT_SYMBOL(nvmap_register_vidmem_carveout);
|
|
|
|
#ifdef CONFIG_TEGRA_VIRTUALIZATION
|
|
static int __init nvmap_populate_ivm_carveout(struct device *dev)
|
|
{
|
|
char *name;
|
|
const __be32 *prop;
|
|
int ret = 0;
|
|
struct nvmap_platform_carveout *co;
|
|
struct of_phandle_iterator it;
|
|
struct tegra_hv_ivm_cookie *ivm;
|
|
unsigned long long id;
|
|
unsigned int guestid;
|
|
|
|
if (!of_phandle_iterator_init(&it, dev->of_node, "memory-region", NULL, 0)) {
|
|
while (!of_phandle_iterator_next(&it) && it.node) {
|
|
if (of_device_is_available(it.node) &&
|
|
of_device_is_compatible(it.node, "nvidia,ivm_carveout") > 0) {
|
|
co = nvmap_get_carveout_pdata("nvidia,ivm_carveout");
|
|
if (!co) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
if (hyp_read_gid(&guestid)) {
|
|
pr_err("failed to read gid\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
prop = of_get_property(it.node, "ivm", NULL);
|
|
if (!prop) {
|
|
pr_err("failed to read ivm property\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
id = of_read_number(prop + 1, 1);
|
|
if (id > UINT_MAX) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
ivm = tegra_hv_mempool_reserve(id);
|
|
if (IS_ERR_OR_NULL(ivm)) {
|
|
pr_err("failed to reserve IVM memory pool %llu\n", id);
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
/* XXX: Are these the available fields from IVM cookie? */
|
|
co->base = (phys_addr_t)ivm->ipa;
|
|
co->peer = ivm->peer_vmid;
|
|
co->size = ivm->size;
|
|
co->vmid = guestid;
|
|
|
|
if (!co->base || !co->size) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
/* See if this VM can allocate (or just create handle from ID)
|
|
* generated by peer partition
|
|
*/
|
|
prop = of_get_property(it.node, "alloc", NULL);
|
|
if (!prop) {
|
|
pr_err("failed to read alloc property\n");
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
name = kzalloc(32, GFP_KERNEL);
|
|
if (!name) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
co->can_alloc = of_read_number(prop, 1);
|
|
co->is_ivm = true;
|
|
sprintf(name, "ivm%02u%02u%02d", co->vmid, co->peer, co->can_alloc);
|
|
pr_info("IVM carveout IPA:%p, size=%zu, peer vmid=%u, name=%s\n",
|
|
(void *)(uintptr_t)co->base, co->size, co->peer, name);
|
|
co->name = name;
|
|
nvmap_data.nr_carveouts++;
|
|
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
fail:
|
|
co->base = 0;
|
|
co->peer = 0;
|
|
co->size = 0;
|
|
co->vmid = 0;
|
|
err:
|
|
return ret;
|
|
|
|
}
|
|
#endif /* CONFIG_TEGRA_VIRTUALIZATION */
|
|
|
|
/*
|
|
* This requires proper kernel arguments to have been passed.
|
|
*/
|
|
#ifndef NVMAP_UPSTREAM_KERNEL
|
|
static int __nvmap_init_legacy(struct device *dev)
|
|
{
|
|
#ifndef NVMAP_CONFIG_VPR_RESIZE
|
|
/* VPR */
|
|
if (!nvmap_carveouts[1].base) {
|
|
nvmap_carveouts[1].base = tegra_vpr_start;
|
|
nvmap_carveouts[1].size = tegra_vpr_size;
|
|
nvmap_carveouts[1].cma_dev = NULL;
|
|
}
|
|
#endif /* NVMAP_CONFIG_VPR_RESIZE */
|
|
|
|
return 0;
|
|
}
|
|
#endif /* !NVMAP_UPSTREAM_KERNEL */
|
|
|
|
static int __nvmap_init_dt(struct platform_device *pdev)
|
|
{
|
|
if (!of_match_device(nvmap_of_ids, &pdev->dev)) {
|
|
pr_err("Missing DT entry!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
#ifndef NVMAP_UPSTREAM_KERNEL
|
|
/* For VM_2 we need carveout. So, enabling it here */
|
|
__nvmap_init_legacy(&pdev->dev);
|
|
#endif /* !NVMAP_UPSTREAM_KERNEL */
|
|
|
|
pdev->dev.platform_data = &nvmap_data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
|
|
static inline struct page **nvmap_kvzalloc_pages(u32 count)
|
|
{
|
|
if (count * sizeof(struct page *) <= PAGE_SIZE)
|
|
return kzalloc(count * sizeof(struct page *), GFP_KERNEL);
|
|
else
|
|
return vzalloc(count * sizeof(struct page *));
|
|
}
|
|
|
|
static void *__nvmap_dma_alloc_from_coherent(struct device *dev,
|
|
struct dma_coherent_mem_replica *mem,
|
|
size_t size,
|
|
dma_addr_t *dma_handle,
|
|
unsigned long attrs,
|
|
unsigned long start)
|
|
{
|
|
int order = get_order(size);
|
|
unsigned long flags;
|
|
unsigned int count = 0, i = 0, j = 0, k = 0;
|
|
unsigned int alloc_size;
|
|
unsigned long align, pageno, page_count, first_pageno;
|
|
void *addr = NULL;
|
|
struct page **pages = NULL;
|
|
int do_memset = 0;
|
|
int *bitmap_nos = NULL;
|
|
const char *device_name;
|
|
bool is_compression = false;
|
|
|
|
device_name = dev_name(dev);
|
|
if (!device_name) {
|
|
pr_err("Could not get device_name\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!strncmp(device_name, "compression", 11))
|
|
is_compression = true;
|
|
|
|
if (is_compression) {
|
|
/* Calculation for Compression carveout should consider 2MB chunks */
|
|
count = size >> PAGE_SHIFT_2MB;
|
|
} else {
|
|
if (dma_get_attr(DMA_ATTR_ALLOC_EXACT_SIZE, attrs)) {
|
|
page_count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
if (page_count > UINT_MAX) {
|
|
dev_err(dev, "Page count more than max value\n");
|
|
return NULL;
|
|
}
|
|
count = (unsigned int)page_count;
|
|
} else
|
|
count = 1 << order;
|
|
}
|
|
|
|
if (!count)
|
|
return NULL;
|
|
|
|
bitmap_nos = vzalloc(count * sizeof(int));
|
|
if (!bitmap_nos) {
|
|
dev_err(dev, "failed to allocate memory\n");
|
|
return NULL;
|
|
}
|
|
if ((mem->flags & DMA_MEMORY_NOMAP) &&
|
|
dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs)) {
|
|
alloc_size = 1;
|
|
/* pages contain the array of pages of kernel PAGE_SIZE */
|
|
if (!is_compression)
|
|
pages = nvmap_kvzalloc_pages(count);
|
|
else
|
|
pages = nvmap_kvzalloc_pages(count * PAGES_PER_2MB);
|
|
|
|
if (!pages) {
|
|
kvfree(bitmap_nos);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
alloc_size = count;
|
|
}
|
|
|
|
spin_lock_irqsave(&mem->spinlock, flags);
|
|
|
|
if (!is_compression && unlikely(size > ((u64)mem->size << PAGE_SHIFT)))
|
|
goto err;
|
|
else if (is_compression && unlikely(size > ((u64)mem->size << PAGE_SHIFT_2MB)))
|
|
goto err;
|
|
|
|
if (((mem->flags & DMA_MEMORY_NOMAP) &&
|
|
dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs)) ||
|
|
is_compression) {
|
|
align = 0;
|
|
} else {
|
|
if (order > DMA_BUF_ALIGNMENT)
|
|
align = (1 << DMA_BUF_ALIGNMENT) - 1;
|
|
else
|
|
align = (1 << order) - 1;
|
|
}
|
|
|
|
while (count) {
|
|
pageno = bitmap_find_next_zero_area(mem->bitmap, mem->size,
|
|
start, alloc_size, align);
|
|
|
|
if (pageno >= mem->size)
|
|
goto err;
|
|
|
|
if (!i)
|
|
first_pageno = pageno;
|
|
|
|
count -= alloc_size;
|
|
if (pages) {
|
|
if (!is_compression)
|
|
pages[i++] = pfn_to_page(mem->pfn_base + pageno);
|
|
else {
|
|
/* Handle 2MB chunks */
|
|
for (k = 0; k < (alloc_size * PAGES_PER_2MB); k++)
|
|
pages[i++] = pfn_to_page(mem->pfn_base +
|
|
pageno * PAGES_PER_2MB + k);
|
|
}
|
|
}
|
|
|
|
bitmap_set(mem->bitmap, pageno, alloc_size);
|
|
bitmap_nos[j++] = pageno;
|
|
}
|
|
|
|
/*
|
|
* Memory was found in the coherent area.
|
|
*/
|
|
if (!is_compression)
|
|
*dma_handle = mem->device_base + (first_pageno << PAGE_SHIFT);
|
|
else
|
|
*dma_handle = mem->device_base + (first_pageno << PAGE_SHIFT_2MB);
|
|
|
|
if (!(mem->flags & DMA_MEMORY_NOMAP)) {
|
|
addr = mem->virt_base + (first_pageno << PAGE_SHIFT);
|
|
do_memset = 1;
|
|
} else if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs)) {
|
|
addr = pages;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
|
|
if (do_memset)
|
|
memset(addr, 0, size);
|
|
|
|
kvfree(bitmap_nos);
|
|
return addr;
|
|
err:
|
|
while (j--)
|
|
bitmap_clear(mem->bitmap, bitmap_nos[j], alloc_size);
|
|
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
kvfree(pages);
|
|
kvfree(bitmap_nos);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
void *nvmap_dma_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle,
|
|
gfp_t flag, unsigned long attrs)
|
|
{
|
|
struct dma_coherent_mem_replica *mem;
|
|
|
|
if (!dev || !dev->dma_mem)
|
|
return NULL;
|
|
|
|
WARN_ON_ONCE(!dev->coherent_dma_mask);
|
|
|
|
mem = (struct dma_coherent_mem_replica *)(dev->dma_mem);
|
|
|
|
return __nvmap_dma_alloc_from_coherent(dev, mem, size, dma_handle,
|
|
attrs, 0);
|
|
}
|
|
EXPORT_SYMBOL(nvmap_dma_alloc_attrs);
|
|
|
|
void nvmap_dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t dma_handle, unsigned long attrs)
|
|
{
|
|
void *mem_addr;
|
|
unsigned long flags;
|
|
unsigned int pageno, page_shift_val;
|
|
struct dma_coherent_mem_replica *mem;
|
|
bool is_compression = false;
|
|
const char *device_name;
|
|
|
|
if (!dev || !dev->dma_mem)
|
|
return;
|
|
|
|
device_name = dev_name(dev);
|
|
if (!device_name) {
|
|
pr_err("Could not get device_name\n");
|
|
return;
|
|
}
|
|
|
|
if (!strncmp(device_name, "compression", 11))
|
|
is_compression = true;
|
|
|
|
mem = (struct dma_coherent_mem_replica *)(dev->dma_mem);
|
|
if ((mem->flags & DMA_MEMORY_NOMAP) &&
|
|
dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs)) {
|
|
struct page **pages = cpu_addr;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&mem->spinlock, flags);
|
|
if (!is_compression) {
|
|
for (i = 0; i < (size >> PAGE_SHIFT); i++) {
|
|
pageno = page_to_pfn(pages[i]) - mem->pfn_base;
|
|
if (WARN_ONCE(pageno > mem->size,
|
|
"invalid pageno:%d\n", pageno))
|
|
continue;
|
|
bitmap_clear(mem->bitmap, pageno, 1);
|
|
}
|
|
} else {
|
|
for (i = 0; i < (size >> PAGE_SHIFT); i += PAGES_PER_2MB) {
|
|
pageno = (page_to_pfn(pages[i]) - mem->pfn_base) / PAGES_PER_2MB;
|
|
if (WARN_ONCE(pageno > mem->size,
|
|
"invalid pageno:%d\n", pageno))
|
|
continue;
|
|
bitmap_clear(mem->bitmap, pageno, 1);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
kvfree(pages);
|
|
return;
|
|
}
|
|
|
|
if (mem->flags & DMA_MEMORY_NOMAP)
|
|
mem_addr = (void *)(uintptr_t)mem->device_base;
|
|
else
|
|
mem_addr = mem->virt_base;
|
|
|
|
page_shift_val = is_compression ? PAGE_SHIFT_2MB : PAGE_SHIFT;
|
|
if (mem && cpu_addr >= mem_addr &&
|
|
cpu_addr - mem_addr < (u64)mem->size << page_shift_val) {
|
|
unsigned int page = (cpu_addr - mem_addr) >> page_shift_val;
|
|
unsigned long flags;
|
|
unsigned int count;
|
|
|
|
if (DMA_ATTR_ALLOC_EXACT_SIZE & attrs) {
|
|
if (is_compression)
|
|
count = ALIGN_2MB(size) >> page_shift_val;
|
|
else
|
|
count = PAGE_ALIGN(size) >> page_shift_val;
|
|
}
|
|
else
|
|
count = 1 << get_order(size);
|
|
|
|
spin_lock_irqsave(&mem->spinlock, flags);
|
|
bitmap_clear(mem->bitmap, page, count);
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(nvmap_dma_free_attrs);
|
|
|
|
void *nvmap_dma_mark_declared_memory_occupied(struct device *dev,
|
|
dma_addr_t device_addr, size_t size)
|
|
{
|
|
struct dma_coherent_mem_replica *mem;
|
|
unsigned long flags, pageno;
|
|
unsigned int alloc_size;
|
|
int pos;
|
|
|
|
if (!dev || !dev->dma_mem)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mem = (struct dma_coherent_mem_replica *)(dev->dma_mem);
|
|
|
|
size += device_addr & ~PAGE_MASK;
|
|
alloc_size = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
spin_lock_irqsave(&mem->spinlock, flags);
|
|
pos = PFN_DOWN(device_addr - mem->device_base);
|
|
pageno = bitmap_find_next_zero_area(mem->bitmap, mem->size, pos, alloc_size, 0);
|
|
if (pageno != pos)
|
|
goto error;
|
|
bitmap_set(mem->bitmap, pageno, alloc_size);
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
return mem->virt_base + (pos << PAGE_SHIFT);
|
|
|
|
error:
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
void nvmap_dma_mark_declared_memory_unoccupied(struct device *dev,
|
|
dma_addr_t device_addr, size_t size)
|
|
{
|
|
struct dma_coherent_mem_replica *mem;
|
|
unsigned long flags;
|
|
unsigned int alloc_size;
|
|
int pos;
|
|
|
|
if (!dev || !dev->dma_mem)
|
|
return;
|
|
|
|
mem = (struct dma_coherent_mem_replica *)(dev->dma_mem);
|
|
|
|
size += device_addr & ~PAGE_MASK;
|
|
alloc_size = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
spin_lock_irqsave(&mem->spinlock, flags);
|
|
pos = PFN_DOWN(device_addr - mem->device_base);
|
|
bitmap_clear(mem->bitmap, pos, alloc_size);
|
|
spin_unlock_irqrestore(&mem->spinlock, flags);
|
|
}
|
|
|
|
void nvmap_dma_release_coherent_memory(struct dma_coherent_mem_replica *mem)
|
|
{
|
|
if (!mem)
|
|
return;
|
|
if (!(mem->flags & DMA_MEMORY_NOMAP))
|
|
memunmap(mem->virt_base);
|
|
kfree(mem->bitmap);
|
|
kfree(mem);
|
|
}
|
|
|
|
static int nvmap_dma_assign_coherent_memory(struct device *dev,
|
|
struct dma_coherent_mem_replica *mem)
|
|
{
|
|
if (!dev)
|
|
return -ENODEV;
|
|
|
|
if (dev->dma_mem)
|
|
return -EBUSY;
|
|
|
|
dev->dma_mem = (struct dma_coherent_mem *)mem;
|
|
return 0;
|
|
}
|
|
|
|
static int nvmap_dma_init_coherent_memory(
|
|
phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
|
|
struct dma_coherent_mem_replica **mem, bool is_compression)
|
|
{
|
|
struct dma_coherent_mem_replica *dma_mem = NULL;
|
|
void *mem_base = NULL;
|
|
int pages;
|
|
int bitmap_size;
|
|
int ret;
|
|
|
|
if (!size)
|
|
return -EINVAL;
|
|
|
|
if (is_compression)
|
|
pages = size >> PAGE_SHIFT_2MB;
|
|
else
|
|
pages = size >> PAGE_SHIFT;
|
|
|
|
bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
|
|
|
|
if (!(flags & DMA_MEMORY_NOMAP)) {
|
|
mem_base = memremap(phys_addr, size, MEMREMAP_WC);
|
|
if (!mem_base)
|
|
return -EINVAL;
|
|
}
|
|
|
|
dma_mem = kzalloc(sizeof(struct dma_coherent_mem_replica), GFP_KERNEL);
|
|
if (!dma_mem) {
|
|
ret = -ENOMEM;
|
|
goto err_memunmap;
|
|
}
|
|
|
|
dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!dma_mem->bitmap) {
|
|
ret = -ENOMEM;
|
|
goto err_free_dma_mem;
|
|
}
|
|
|
|
dma_mem->virt_base = mem_base;
|
|
dma_mem->device_base = device_addr;
|
|
dma_mem->pfn_base = PFN_DOWN(device_addr);
|
|
dma_mem->size = pages;
|
|
dma_mem->flags = flags;
|
|
spin_lock_init(&dma_mem->spinlock);
|
|
|
|
*mem = dma_mem;
|
|
return 0;
|
|
|
|
err_free_dma_mem:
|
|
kfree(dma_mem);
|
|
|
|
err_memunmap:
|
|
memunmap(mem_base);
|
|
return ret;
|
|
}
|
|
|
|
int nvmap_dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
|
|
dma_addr_t device_addr, size_t size, int flags, bool is_compression)
|
|
{
|
|
struct dma_coherent_mem_replica *mem;
|
|
int ret;
|
|
|
|
ret = nvmap_dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem,
|
|
is_compression);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nvmap_dma_assign_coherent_memory(dev, mem);
|
|
if (ret)
|
|
nvmap_dma_release_coherent_memory(mem);
|
|
return ret;
|
|
}
|
|
#endif /* LINUX_VERSION_CODE */
|
|
|
|
static int __init nvmap_co_device_init(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
struct nvmap_platform_carveout *co = rmem->priv;
|
|
int err = 0;
|
|
|
|
if (!co)
|
|
return -ENODEV;
|
|
|
|
/* if co size is 0, => co is not present. So, skip init. */
|
|
if (!co->size)
|
|
return 0;
|
|
|
|
if (!co->cma_dev) {
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 14, 0)
|
|
err = dma_declare_coherent_memory(co->dma_dev, 0,
|
|
co->base, co->size,
|
|
DMA_MEMORY_NOMAP);
|
|
#else
|
|
err = nvmap_dma_declare_coherent_memory(co->dma_dev, 0,
|
|
co->base, co->size,
|
|
DMA_MEMORY_NOMAP, co->is_compression_co);
|
|
#endif
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
|
|
if (!err) {
|
|
#else
|
|
if (err & DMA_MEMORY_NOMAP) {
|
|
#endif
|
|
pr_info("%s :dma coherent mem declare %pa,%zu\n",
|
|
co->name, &co->base, co->size);
|
|
co->init_done = true;
|
|
err = 0;
|
|
} else
|
|
pr_err("%s :dma coherent mem declare fail %pa,%zu,err:%d\n",
|
|
co->name, &co->base, co->size, err);
|
|
} else {
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 10, 0)
|
|
/*
|
|
* When vpr memory is reserved, kmemleak tries to scan vpr
|
|
* memory for pointers. vpr memory should not be accessed
|
|
* from cpu so avoid scanning it. When vpr memory is removed,
|
|
* the memblock_remove() API ensures that kmemleak won't scan
|
|
* a removed block.
|
|
*/
|
|
if (!strncmp(co->name, "vpr", 3))
|
|
kmemleak_no_scan(__va(co->base));
|
|
#endif
|
|
|
|
co->dma_info->cma_dev = co->cma_dev;
|
|
err = dma_declare_coherent_resizable_cma_memory(
|
|
co->dma_dev, co->dma_info);
|
|
if (err)
|
|
pr_err("%s coherent memory declaration failed\n",
|
|
co->name);
|
|
else
|
|
#endif
|
|
co->init_done = true;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void nvmap_co_device_release(struct reserved_mem *rmem, struct device *dev)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static const struct reserved_mem_ops nvmap_co_ops = {
|
|
.device_init = nvmap_co_device_init,
|
|
.device_release = nvmap_co_device_release,
|
|
};
|
|
|
|
#ifndef NVMAP_LOADABLE_MODULE
|
|
int __init nvmap_co_setup(struct reserved_mem *rmem)
|
|
{
|
|
struct nvmap_platform_carveout *co;
|
|
int ret = 0;
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
struct cma *cma;
|
|
#endif
|
|
ulong start = sched_clock();
|
|
|
|
co = nvmap_get_carveout_pdata(rmem->name);
|
|
if (!co)
|
|
return ret;
|
|
|
|
rmem->ops = &nvmap_co_ops;
|
|
rmem->priv = co;
|
|
|
|
co->base = rmem->base;
|
|
co->size = rmem->size;
|
|
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
if (!of_get_flat_dt_prop(rmem->fdt_node, "reusable", NULL) ||
|
|
of_get_flat_dt_prop(rmem->fdt_node, "no-map", NULL))
|
|
goto skip_cma;
|
|
|
|
WARN_ON(!rmem->base);
|
|
if (dev_get_cma_area(co->cma_dev)) {
|
|
pr_info("cma area initialed in legacy way already\n");
|
|
goto finish;
|
|
}
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
|
|
ret = cma_init_reserved_mem(rmem->base, rmem->size, 0,
|
|
rmem->name, &cma);
|
|
#else
|
|
ret = cma_init_reserved_mem(rmem->base, rmem->size, 0, &cma);
|
|
#endif
|
|
if (ret) {
|
|
pr_info("cma_init_reserved_mem fails for %s\n", rmem->name);
|
|
goto finish;
|
|
}
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
|
|
dma_contiguous_early_fixup_vpr(rmem->base, rmem->size);
|
|
if (co->cma_dev)
|
|
co->cma_dev->cma_area = cma;
|
|
#else
|
|
dma_contiguous_early_fixup(rmem->base, rmem->size);
|
|
dev_set_cma_area(co->cma_dev, cma);
|
|
#endif
|
|
pr_debug("tegra-carveouts carveout=%s %pa@%pa\n",
|
|
rmem->name, &rmem->size, &rmem->base);
|
|
goto finish;
|
|
|
|
skip_cma:
|
|
#endif
|
|
co->cma_dev = NULL;
|
|
#ifdef NVMAP_CONFIG_VPR_RESIZE
|
|
finish:
|
|
#endif
|
|
nvmap_init_time += sched_clock() - start;
|
|
return ret;
|
|
}
|
|
#else
|
|
int __init nvmap_co_setup(struct reserved_mem *rmem)
|
|
{
|
|
struct nvmap_platform_carveout *co;
|
|
ulong start = sched_clock();
|
|
int ret = 0;
|
|
|
|
co = nvmap_get_carveout_pdata(rmem->name);
|
|
if (!co)
|
|
return ret;
|
|
|
|
rmem->ops = &nvmap_co_ops;
|
|
rmem->priv = co;
|
|
|
|
co->base = rmem->base;
|
|
co->size = rmem->size;
|
|
co->cma_dev = NULL;
|
|
if (!strncmp(co->name, "compression", 11))
|
|
co->is_compression_co = true;
|
|
|
|
nvmap_init_time += sched_clock() - start;
|
|
return ret;
|
|
}
|
|
#endif /* !NVMAP_LOADABLE_MODULE */
|
|
|
|
RESERVEDMEM_OF_DECLARE(nvmap_co, "nvidia,generic_carveout", nvmap_co_setup);
|
|
#ifndef NVMAP_LOADABLE_MODULE
|
|
RESERVEDMEM_OF_DECLARE(nvmap_vpr_co, "nvidia,vpr-carveout", nvmap_co_setup);
|
|
RESERVEDMEM_OF_DECLARE(nvmap_fsi_co, "nvidia,fsi-carveout", nvmap_co_setup);
|
|
#endif /* !NVMAP_LOADABLE_MODULE */
|
|
|
|
/*
|
|
* Fills in the platform data either from the device tree or with the
|
|
* legacy path.
|
|
*/
|
|
int __init nvmap_init(struct platform_device *pdev)
|
|
{
|
|
int err;
|
|
struct reserved_mem rmem;
|
|
#ifdef NVMAP_LOADABLE_MODULE
|
|
struct reserved_mem *rmem2;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct of_phandle_iterator it;
|
|
const char *compp;
|
|
|
|
if (!of_phandle_iterator_init(&it, np, "memory-region", NULL, 0)) {
|
|
while (!of_phandle_iterator_next(&it) && it.node) {
|
|
if (of_device_is_available(it.node) &&
|
|
!of_device_is_compatible(it.node, "nvidia,ivm_carveout")) {
|
|
rmem2 = of_reserved_mem_lookup(it.node);
|
|
if (!rmem2) {
|
|
if (!of_property_read_string(it.node, "compatible", &compp))
|
|
pr_err("unable to acquire memory-region: %s\n",
|
|
compp);
|
|
return -EINVAL;
|
|
}
|
|
nvmap_co_setup(rmem2);
|
|
}
|
|
}
|
|
}
|
|
#endif /* NVMAP_LOADABLE_MODULE */
|
|
|
|
if (pdev->dev.of_node) {
|
|
err = __nvmap_init_dt(pdev);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = of_reserved_mem_device_init(&pdev->dev);
|
|
if (err)
|
|
pr_debug("reserved_mem_device_init fails, try legacy init\n");
|
|
|
|
/* try legacy init */
|
|
if (!nvmap_carveouts[0].init_done) {
|
|
rmem.priv = &nvmap_carveouts[0];
|
|
err = nvmap_co_device_init(&rmem, &pdev->dev);
|
|
if (err)
|
|
goto end;
|
|
}
|
|
|
|
if (!nvmap_carveouts[1].init_done) {
|
|
rmem.priv = &nvmap_carveouts[1];
|
|
err = nvmap_co_device_init(&rmem, &pdev->dev);
|
|
if (err)
|
|
goto end;
|
|
}
|
|
|
|
#ifdef CONFIG_TEGRA_VIRTUALIZATION
|
|
err = nvmap_populate_ivm_carveout(&pdev->dev);
|
|
#endif /* CONFIG_TEGRA_VIRTUALIZATION */
|
|
|
|
end:
|
|
return err;
|
|
}
|
|
|
|
#ifdef NVMAP_LOADABLE_MODULE
|
|
static bool nvmap_is_carveout_node_present(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
np = of_find_node_by_name(NULL, "tegra-carveouts");
|
|
if (of_device_is_available(np)) {
|
|
of_node_put(np);
|
|
return true;
|
|
}
|
|
of_node_put(np);
|
|
return false;
|
|
}
|
|
#endif /* NVMAP_LOADABLE_MODULE */
|
|
|
|
static struct platform_driver __refdata nvmap_driver = {
|
|
.probe = nvmap_probe,
|
|
.remove = nvmap_remove,
|
|
|
|
.driver = {
|
|
.name = "tegra-carveouts",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = nvmap_of_ids,
|
|
.suppress_bind_attrs = true,
|
|
},
|
|
};
|
|
|
|
static int __init nvmap_init_driver(void)
|
|
{
|
|
int e = 0;
|
|
|
|
e = nvmap_heap_init();
|
|
if (e)
|
|
goto fail;
|
|
|
|
e = platform_driver_register(&nvmap_driver);
|
|
if (e) {
|
|
nvmap_heap_deinit();
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
return e;
|
|
}
|
|
|
|
#ifdef NVMAP_LOADABLE_MODULE
|
|
module_init(nvmap_init_driver);
|
|
#else
|
|
fs_initcall(nvmap_init_driver);
|
|
#endif /* NVMAP_LOADABLE_MODULE */
|
|
|
|
static void __exit nvmap_exit_driver(void)
|
|
{
|
|
#ifdef NVMAP_LOADABLE_MODULE
|
|
if (!nvmap_is_carveout_node_present())
|
|
platform_device_unregister(pdev);
|
|
#endif /* NVMAP_LOADABLE_MODULE */
|
|
platform_driver_unregister(&nvmap_driver);
|
|
nvmap_heap_deinit();
|
|
nvmap_dev = NULL;
|
|
}
|
|
module_exit(nvmap_exit_driver);
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 16, 0)
|
|
MODULE_IMPORT_NS(DMA_BUF);
|
|
#endif
|
|
MODULE_DESCRIPTION("NvMap: Nvidia Tegra Memory Management Driver");
|
|
MODULE_AUTHOR("Puneet Saxena <puneets@nvidia.com>");
|
|
MODULE_LICENSE("GPL v2");
|