Files
linux-nv-oot/drivers/scsi/ufs/ufs-tegra-common.c
Jon Hunter ee357025ee ufs: Fix Tegra UFS for Linux v6.13
In Linux v6.13, the quirk definition 'UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS'
was removed and replaced with a function pointer than can be used to set
the DMA mask as needed for a given device. Update the Tegra UFS driver
to fix support for Linux v6.13. Note that prior to Linux v6.13, the flag
'UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS' would set the DMA mask to 32-bits
and so this change is equivalent to the configuration of prior kernels.

Bug 4991705

Change-Id: I859331e9eea918d2438d68b871642fee5e4148e0
Signed-off-by: Jon Hunter <jonathanh@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nv-oot/+/3283447
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: buildbot_gerritrpt <buildbot_gerritrpt@nvidia.com>
Reviewed-by: svcacv <svcacv@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: Thierry Reding <treding@nvidia.com>
2025-07-24 10:19:13 +00:00

2604 lines
73 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
// SPDX-FileCopyrightText: Copyright (c) 2015-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#include <nvidia/conftest.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/time.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/version.h>
#include <soc/tegra/fuse.h>
#include <linux/reset.h>
#include <soc/tegra/pmc.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio.h>
#include <linux/jiffies.h>
#include <soc/tegra/fuse-helper.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_gpio.h>
#include <linux/iommu.h>
#include <linux/pinctrl/consumer.h>
#include <linux/debugfs.h>
#if defined(NV_UFS_UFSHCD_H_PRESENT)
#include <drivers-private/scsi/ufs/ufshcd-pltfrm.h>
#include <ufs/ufshcd.h>
#include <ufs/unipro.h>
#include <ufs/ufshci.h>
#else
#include <drivers-private/scsi/ufs/ufshcd-pltfrm.h>
#include <drivers-private/scsi/ufs/ufshcd.h>
#include <drivers-private/scsi/ufs/unipro.h>
#include <drivers-private/scsi/ufs/ufshci.h>
#endif
#include "ufs-tegra.h"
#include "ufs-provision.h"
/* Fuse register offset to know if chip is RDL part or not */
#define TEGRA_FUSE_OPT_LOT_CODE_0_0 0x108U
#define NON_RDL_STRUCTURE 0x90570c8
#define NON_RDL_LEAD 0x83c1002
static void ufs_tegra_mphy_startup_sequence(struct ufs_tegra_host *ufs_tegra);
static int mphy_go_bit_status(void __iomem *mphy_base, u32 offset) {
unsigned int timeout;
unsigned int err = 0;
u32 mphy_rx_vendor2 = 0;
timeout = 500U; /* Number of iterations */
while (timeout != 0U) {
mphy_rx_vendor2 = mphy_readl(mphy_base, offset);
if ((mphy_rx_vendor2 & MPHY_GO_BIT) == 0U) {
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
err = -ETIMEDOUT;
}
return err;
}
#ifdef CONFIG_DEBUG_FS
static void ufs_tegra_init_debugfs(struct ufs_hba *hba)
{
struct dentry *device_root;
struct ufs_tegra_host *ufs_tegra = hba->priv;
device_root = debugfs_create_dir(dev_name(hba->dev), NULL);
if (ufs_tegra->enable_ufs_provisioning)
debugfs_provision_init(hba, device_root);
}
#endif
static void ufs_tegra_set_clk_div(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
u32 hclk_val;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
return;
if (ufs_tegra->soc->chip_id == TEGRA264)
hclk_val = UFS_VNDR_HCLKDIV_1US_TICK_T264;
else
hclk_val = UFS_VNDR_HCLKDIV_1US_TICK;
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
ufshcd_writel(hba, UFS_VNDR_HCLKDIV_1US_TICK_FPGA, REG_UFS_VNDR_HCLKDIV);
else
ufshcd_writel(hba, hclk_val, REG_UFS_VNDR_HCLKDIV);
udelay(20);
}
static void ufs_tegra_ufs_mmio_axi(struct ufs_hba *hba)
{
u32 mask = GENMASK(15, 13);
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
return;
ufshcd_rmwl(hba, mask, VS_BURSTMBLCONFIG, VS_BURSTMBLREGISTER);
}
static int ufs_tegra_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out)
{
struct clk *clk;
int err = 0;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
return 0;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
if (err != -EPROBE_DEFER) {
dev_err(dev, "%s: failed to get %s err %d",
__func__, name, err);
}
} else {
*clk_out = clk;
}
return err;
}
static int ufs_tegra_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
/**
* ufs_tegra_mphy_receiver_calibration
* @ufs_tegra: ufs_tegra_host controller instance
*
* Implements MPhy Receiver Calibration Sequence
*
* Returns -ETIMEDOUT if receiver calibration fails
* and returns zero on success.
*/
static int ufs_tegra_mphy_receiver_calibration(struct ufs_tegra_host *ufs_tegra,
void __iomem *mphy_base)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
u32 mphy_rx_vendor2_reg;
u32 mphy_rx_vendor2;
unsigned int timeout;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VDK)
return 0;
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
return 0;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
return 0;
if (ufs_tegra->enable_mphy_rx_calib)
return 0;
if (ufs_tegra->soc->chip_id >= TEGRA234) {
mphy_rx_vendor2_reg = MPHY_RX_APB_VENDOR2_0_T234;
} else {
mphy_rx_vendor2_reg = MPHY_RX_APB_VENDOR2_0;
}
if (ufs_tegra->soc->chip_id >= TEGRA234) {
/* Set RX lane calibration */
if (ufs_tegra->x2config == true) {
dev_dbg(dev, "%s:x2config is true so invoking mphy_update\n",
__func__);
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN,
mphy_rx_vendor2_reg);
/* TODO: GO bit has to be read back after updating it */
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, mphy_rx_vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, mphy_rx_vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy1\n", __func__);
goto fail;
}
}
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN, mphy_rx_vendor2_reg);
/* TODO: GO bit has to be read back after updating it */
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
mphy_rx_vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, mphy_rx_vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto fail;
}
if (ufs_tegra->x2config == true) {
/* Wait till lane calibration is done */
timeout = 100U; /* Number of iterations */
while (timeout != 0U) {
mphy_rx_vendor2 = mphy_readl(ufs_tegra->mphy_l1_base,
mphy_rx_vendor2_reg);
if ((mphy_rx_vendor2 & MPHY_RX_APB_VENDOR2_0_RX_CAL_DONE) != 0U) {
dev_dbg(dev, "%s: MPhy Receiver Calibration passed\n", __func__);
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy Receiver Calibration failed\n", __func__);
err = -ETIMEDOUT;
goto fail;
}
/* Clear RX lane calibration */
mphy_clear_bits(ufs_tegra->mphy_l1_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN,
mphy_rx_vendor2_reg);
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, mphy_rx_vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, mphy_rx_vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy1\n", __func__);
goto fail;
}
/* Wait till lane calibration is done */
timeout = 100U; /* Number of iterations */
while (timeout != 0U) {
mphy_rx_vendor2 = mphy_readl(ufs_tegra->mphy_l1_base,
mphy_rx_vendor2_reg);
if ((mphy_rx_vendor2 & MPHY_RX_APB_VENDOR2_0_RX_CAL_DONE) == 0U) {
dev_dbg(dev, "%s: MPhy Receiver Calibration passed\n", __func__);
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy Receiver Calibration failed\n", __func__);
err = -ETIMEDOUT;
goto fail;
}
}
timeout = 100U; /* Number of iterations */
while (timeout != 0U) {
mphy_rx_vendor2 = mphy_readl(ufs_tegra->mphy_l0_base,
mphy_rx_vendor2_reg);
if ((mphy_rx_vendor2 & MPHY_RX_APB_VENDOR2_0_RX_CAL_DONE) != 0U) {
dev_info(dev, "%s: MPhy Receiver Calibration passed\n", __func__);
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy Receiver Calibration failed\n", __func__);
err = -ETIMEDOUT;
goto fail;
}
/* Clear RX lane calibration */
mphy_clear_bits(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN,
mphy_rx_vendor2_reg);
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_GO_BIT, mphy_rx_vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, mphy_rx_vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto fail;
}
timeout = 100U; /* Number of iterations */
while (timeout != 0U) {
mphy_rx_vendor2 = mphy_readl(ufs_tegra->mphy_l0_base,
mphy_rx_vendor2_reg);
if ((mphy_rx_vendor2 & MPHY_RX_APB_VENDOR2_0_RX_CAL_DONE) == 0U) {
dev_dbg(dev, "%s: MPhy Receiver Calibration passed\n", __func__);
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy Receiver Calibration failed\n", __func__);
err = -ETIMEDOUT;
}
} else {
if (ufs_tegra->x2config == true) {
dev_dbg(dev, "%s:x2config is true so invoking mphy_update\n",
__func__);
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN,
mphy_rx_vendor2_reg);
}
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_VENDOR2_0_RX_CAL_EN, mphy_rx_vendor2_reg);
if (ufs_tegra->x2config == true) {
/* TODO: GO bit has to be read back after updating it */
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, mphy_rx_vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, mphy_rx_vendor2_reg);
if (err) {
goto fail;
}
}
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
mphy_rx_vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, mphy_rx_vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto fail;
}
timeout = 10U; /* Number of iterations */
while (timeout != 0U) {
udelay(1000);
mphy_rx_vendor2 = mphy_readl(ufs_tegra->mphy_l0_base,
mphy_rx_vendor2_reg);
if ((mphy_rx_vendor2 & MPHY_RX_APB_VENDOR2_0_RX_CAL_EN) == 0U) {
dev_dbg(dev, "%s: MPhy Receiver Calibration passed\n", __func__);
break;
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy Receiver Calibration failed\n", __func__);
err = -ETIMEDOUT;
}
}
fail:
return err;
}
static int ufs_tegra_mphy_tx_calibration_enable(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
if ((tegra_sku_info.platform == TEGRA_PLATFORM_VDK) ||
(tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA) ||
(tegra_sku_info.platform == TEGRA_PLATFORM_VSP) ||
(ufs_tegra->soc->chip_id != TEGRA264))
goto end;
/* Enable TX Calibration */
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_TX_APB_VENDOR2_0_TX_CAL_EN, MPHY_TX_APB_TX_VENDOR2_0_T264);
if (ufs_tegra->x2config == true) {
dev_err(dev, "%s:x2config is true so invoking mphy_update\n",
__func__);
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_TX_APB_VENDOR2_0_TX_CAL_EN,
MPHY_TX_APB_TX_VENDOR2_0_T264);
}
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0_T234);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, MPHY_TX_APB_TX_VENDOR0_0_T234);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto end;
}
if (ufs_tegra->x2config == true) {
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, MPHY_TX_APB_TX_VENDOR0_0_T234);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, MPHY_TX_APB_TX_VENDOR0_0_T234);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy1\n", __func__);
}
}
end:
if (err)
dev_err(dev, "%s: failed\n", __func__);
return err;
}
static int ufs_tegra_mphy_tx_calibration_status(struct ufs_tegra_host *ufs_tegra,
void __iomem *mphy_base)
{
int err = 0;
u32 mphy_tx_vendor2;
unsigned int timeout;
struct device *dev = ufs_tegra->hba->dev;
/* Wait till lane calibration is done */
timeout = 100U; /* Number of iterations */
while (timeout != 0U) {
mphy_tx_vendor2 = mphy_readl(mphy_base,
MPHY_TX_APB_TX_VENDOR2_0_T264);
if ((mphy_tx_vendor2 & MPHY_TX_APB_VENDOR2_0_TX_CAL_DONE) != 0U) {
dev_dbg(dev, "%s: MPhy TX Calibration done\n", __func__);
/* Clear TX lane calibration */
mphy_tx_vendor2 &=~(MPHY_TX_APB_VENDOR2_0_TX_CAL_EN);
mphy_writel(mphy_base, mphy_tx_vendor2, MPHY_TX_APB_TX_VENDOR2_0_T264);
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy TX Calibration failed\n", __func__);
err = -ETIMEDOUT;
goto fail;
}
mphy_update(mphy_base, MPHY_GO_BIT,
MPHY_TX_APB_TX_VENDOR0_0_T234);
err = mphy_go_bit_status(mphy_base, MPHY_TX_APB_TX_VENDOR0_0_T234);
if (err) {
dev_err(dev, "%s: failed\n", __func__);
goto fail;
}
/* Wait till lane calibration clear is done */
timeout = 100U; /* Number of iterations */
while (timeout != 0U) {
mphy_tx_vendor2 = mphy_readl(mphy_base,
MPHY_TX_APB_TX_VENDOR2_0_T264);
if ((mphy_tx_vendor2 & MPHY_TX_APB_VENDOR2_0_TX_CAL_DONE) == 0U) {
dev_dbg(dev,
"%s: MPhy TX Calibration clear completed\n",
__func__);
break;
} else {
udelay(1);
}
timeout--;
}
if (timeout == 0U) {
dev_err(dev, "%s: MPhy TX Calibration clear failed\n", __func__);
err = -ETIMEDOUT;
}
fail:
return err;
}
static int ufs_tegra_mphy_check_tx_calibration_done_status(struct ufs_tegra_host *ufs_tegra)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
if ((tegra_sku_info.platform == TEGRA_PLATFORM_VDK) ||
(tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA) ||
(tegra_sku_info.platform == TEGRA_PLATFORM_VSP) ||
(ufs_tegra->soc->chip_id != TEGRA264))
return 0;
if (ufs_tegra->x2config == true) {
err = ufs_tegra_mphy_tx_calibration_status(ufs_tegra,
ufs_tegra->mphy_l1_base);
if (err ) {
dev_err(dev, "%s: MPhy1 TX Calibration status check failed \n", __func__);
goto fail;
}
}
err = ufs_tegra_mphy_tx_calibration_status(ufs_tegra,
ufs_tegra->mphy_l0_base);
if (err ) {
dev_err(dev, "%s: MPhy0 TX Calibration status check failed \n", __func__);
goto fail;
}
dev_info(dev, "%s: MPhy TX Calibration completed\n", __func__);
fail:
return err;
}
static void ufs_tegra_mphy_war(struct ufs_tegra_host *ufs_tegra)
{
if ((ufs_tegra->soc->chip_id == TEGRA234) && (ufs_tegra->x2config)) {
reset_control_assert(ufs_tegra->mphy_l1_rx_rst);
udelay(50);
reset_control_deassert(ufs_tegra->mphy_l1_rx_rst);
udelay(2);
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_ENABLE_RX_MPHY2UPHY_IF_OVR_CTRL,
MPHY_RX_APB_VENDOR3_0_T234);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
MPHY_RX_APB_VENDOR2_0_T234);
udelay(5);
}
}
static void ufs_tegra_disable_mphylane_clks(struct ufs_tegra_host *host)
{
if (!host->is_lane_clks_enabled)
return;
clk_disable_unprepare(host->mphy_core_pll_fixed);
clk_disable_unprepare(host->mphy_l0_tx_symb);
clk_disable_unprepare(host->mphy_tx_1mhz_ref);
clk_disable_unprepare(host->mphy_l0_rx_ana);
clk_disable_unprepare(host->mphy_l0_rx_symb);
clk_disable_unprepare(host->mphy_l0_tx_ls_3xbit);
clk_disable_unprepare(host->mphy_l0_rx_ls_bit);
if (host->x2config)
clk_disable_unprepare(host->mphy_l1_rx_ana);
if (host->soc->chip_id == TEGRA264)
clk_disable_unprepare(host->mphy_l0_uphy_tx_fifo);
host->is_lane_clks_enabled = false;
}
static int ufs_tegra_enable_t234_mphy_clocks(struct ufs_tegra_host *host)
{
int err;
struct device *dev = host->hba->dev;
err = clk_set_rate(host->mphy_tx_hs_symb_div, MPHY_TX_HS_BIT_DIV_CLK);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev,
"%s: mphy_tx_hs_symb_div set rate failed %d\n",
__func__, err);
goto out;
}
if (host->soc->chip_id != TEGRA264) {
err = clk_set_parent(host->mphy_tx_hs_mux_symb_div, host->mphy_tx_hs_symb_div);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev,
"%s mphy_tx_hs_mux_symb_div set parent failed %d\n",
__func__, err);
goto out;
}
}
err = ufs_tegra_host_clk_enable(dev, "mphy_tx_hs_symb_div",
host->mphy_tx_hs_symb_div);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev,
"%s mphy_tx_hs_symb_div clock enable failed %d\n",
__func__, err);
goto out;
}
err = clk_set_rate(host->mphy_rx_hs_symb_div, MPHY_RX_HS_BIT_DIV_CLK);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev,
"%s: mphy_rx_hs_symb_div set rate failed %d\n",
__func__, err);
goto disable_mphy_tx_hs_symb_div;
}
if (host->soc->chip_id != TEGRA264) {
err = clk_set_parent(host->mphy_rx_hs_mux_symb_div, host->mphy_rx_hs_symb_div);
if (err) {
dev_err(dev,
"%s: mphy_rx_hs_symb_div set parent failed %d\n",
__func__, err);
goto disable_mphy_tx_hs_symb_div;
}
}
err = ufs_tegra_host_clk_enable(dev, "mphy_rx_hs_symb_div", host->mphy_rx_hs_symb_div);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev,
"%s: mphy_rx_hs_symb_div clock enable failed %d\n",
__func__, err);
goto disable_mphy_tx_hs_symb_div;
}
if (host->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_tx_2x_symb", host->mphy_l0_tx_2x_symb);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev,
"%s: mphy_l0_tx_2x_symb clock enable failed %d\n",
__func__, err);
goto disable_mphy_rx_hs_symb_div;
}
}
goto out;
disable_mphy_rx_hs_symb_div:
clk_disable_unprepare(host->mphy_rx_hs_symb_div);
disable_mphy_tx_hs_symb_div:
clk_disable_unprepare(host->mphy_tx_hs_symb_div);
out:
return err;
}
static int ufs_tegra_enable_mphylane_clks(struct ufs_tegra_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
if (host->soc->chip_id == TEGRA264)
err = ufs_tegra_host_clk_enable(dev,
"mphy_l0_uphy_tx_fifo",
host->mphy_l0_uphy_tx_fifo);
else
err = clk_prepare_enable(host->pllrefe_clk);
if (err)
goto out;
err = ufs_tegra_host_clk_enable(dev, "mphy_core_pll_fixed",
host->mphy_core_pll_fixed);
if (err)
goto disable_mphy_clk;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_tx_symb",
host->mphy_l0_tx_symb);
if (err)
goto disable_l0_tx_symb;
err = ufs_tegra_host_clk_enable(dev, "mphy_tx_1mhz_ref",
host->mphy_tx_1mhz_ref);
if (err)
goto disable_tx_1mhz_ref;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_rx_ana",
host->mphy_l0_rx_ana);
if (err)
goto disable_l0_rx_ana;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_rx_symb",
host->mphy_l0_rx_symb);
if (err)
goto disable_l0_rx_symb;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_tx_ls_3xbit",
host->mphy_l0_tx_ls_3xbit);
if (err)
goto disable_l0_tx_ls_3xbit;
err = ufs_tegra_host_clk_enable(dev, "mphy_l0_rx_ls_bit",
host->mphy_l0_rx_ls_bit);
if (err)
goto disable_l0_rx_ls_bit;
if (host->x2config) {
err = ufs_tegra_host_clk_enable(dev, "mphy_l1_rx_ana",
host->mphy_l1_rx_ana);
if (err)
goto disable_l1_rx_ana;
}
if (host->soc->chip_id >= TEGRA234) {
err = ufs_tegra_enable_t234_mphy_clocks(host);
if (err)
goto disable_t234_clocks;
}
host->is_lane_clks_enabled = true;
goto out;
disable_t234_clocks:
if (host->x2config)
clk_disable_unprepare(host->mphy_l1_rx_ana);
disable_l1_rx_ana:
clk_disable_unprepare(host->mphy_l0_rx_ls_bit);
disable_l0_rx_ls_bit:
clk_disable_unprepare(host->mphy_l0_tx_ls_3xbit);
disable_l0_tx_ls_3xbit:
clk_disable_unprepare(host->mphy_l0_rx_symb);
disable_l0_rx_symb:
clk_disable_unprepare(host->mphy_l0_rx_ana);
disable_l0_rx_ana:
clk_disable_unprepare(host->mphy_tx_1mhz_ref);
disable_tx_1mhz_ref:
clk_disable_unprepare(host->mphy_l0_tx_symb);
disable_l0_tx_symb:
clk_disable_unprepare(host->mphy_core_pll_fixed);
disable_mphy_clk:
if (host->soc->chip_id == TEGRA264)
clk_disable_unprepare(host->mphy_l0_uphy_tx_fifo);
else
clk_disable_unprepare(host->pllrefe_clk);
out:
return err;
}
static int ufs_tegra_init_mphy_lane_clks(struct ufs_tegra_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (host->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev,
"pllrefe_vcoout", &host->pllrefe_clk);
if (err)
goto out;
} else {
err = ufs_tegra_host_clk_get(dev, "mphy_l0_uphy_tx_fifo",
&host->mphy_l0_uphy_tx_fifo);
if (err)
goto out;
}
err = ufs_tegra_host_clk_get(dev,
"mphy_core_pll_fixed", &host->mphy_core_pll_fixed);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev,
"mphy_l0_tx_symb", &host->mphy_l0_tx_symb);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_tx_1mhz_ref",
&host->mphy_tx_1mhz_ref);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_ana",
&host->mphy_l0_rx_ana);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_symb",
&host->mphy_l0_rx_symb);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_tx_ls_3xbit",
&host->mphy_l0_tx_ls_3xbit);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_ls_bit",
&host->mphy_l0_rx_ls_bit);
if (err)
goto out;
if (host->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev, "mphy_force_ls_mode",
&host->mphy_force_ls_mode);
if (err)
goto out;
}
err = ufs_tegra_host_clk_get(dev, "mphy_l0_tx_hs_symb_div",
&host->mphy_tx_hs_symb_div);
if (err)
goto out;
if (host->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev, "mphy_l0_tx_mux_symb_div",
&host->mphy_tx_hs_mux_symb_div);
if (err)
goto out;
}
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_hs_symb_div",
&host->mphy_rx_hs_symb_div);
if (err)
goto out;
if (host->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev, "mphy_l0_rx_mux_symb_div",
&host->mphy_rx_hs_mux_symb_div);
if (err)
goto out;
}
if (host->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev, "mphy_l0_tx_2x_symb",
&host->mphy_l0_tx_2x_symb);
if (err)
goto out;
}
if (host->x2config) {
err = ufs_tegra_host_clk_get(dev, "mphy_l1_rx_ana",
&host->mphy_l1_rx_ana);
if (err)
goto out;
}
out:
return err;
}
static int ufs_tegra_enable_ufs_uphy_pll3(struct ufs_tegra_host *ufs_tegra,
bool is_rate_b)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
unsigned long rate_b_freq;
if (!ufs_tegra->configure_uphy_pll3)
return 0;
err = ufs_tegra_host_clk_enable(dev, "uphy_pll3",
ufs_tegra->ufs_uphy_pll3);
if (err)
return err;
if (is_rate_b) {
if (ufs_tegra->ufs_uphy_pll3) {
if (ufs_tegra->soc->chip_id == TEGRA264)
rate_b_freq = UFS_CLK_UPHY_PLL3_RATEB_T264;
else
rate_b_freq = UFS_CLK_UPHY_PLL3_RATEB;
err = clk_set_rate(ufs_tegra->ufs_uphy_pll3,
rate_b_freq);
}
} else {
if (ufs_tegra->ufs_uphy_pll3)
err = clk_set_rate(ufs_tegra->ufs_uphy_pll3,
UFS_CLK_UPHY_PLL3_RATEA);
}
if (err)
dev_err(dev, "%s: failed to set ufs_uphy_pll3 freq err %d",
__func__, err);
return err;
}
static int ufs_tegra_init_uphy_pll3(struct ufs_tegra_host *ufs_tegra)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
if (!ufs_tegra->configure_uphy_pll3)
return 0;
err = ufs_tegra_host_clk_get(dev,
"uphy_pll3", &ufs_tegra->ufs_uphy_pll3);
return err;
}
static int ufs_tegra_init_ufs_clks(struct ufs_tegra_host *ufs_tegra)
{
int err = 0;
struct device *dev = ufs_tegra->hba->dev;
err = ufs_tegra_host_clk_get(dev,
"ufshc", &ufs_tegra->ufshc_clk);
if (err)
goto out;
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto out;
if (ufs_tegra->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev,
"pll_p", &ufs_tegra->ufshc_parent);
if (err)
goto out;
} else {
err = ufs_tegra_host_clk_get(dev,
"pllrefe_vcoout", &ufs_tegra->ufshc_parent);
if (err) {
dev_err(dev, "%s: pllrefe_vcoout clock get failed: Err %d",
__func__, err);
goto out;
}
err = ufs_tegra_host_clk_get(dev,
"ufshc_div", &ufs_tegra->ufshc_clk_div);
if (err) {
dev_err(dev, "%s: ufshc_div clock get failed: Err %d",
__func__, err);
goto out;
}
err = ufs_tegra_host_clk_get(dev,
"isc_cpu", &ufs_tegra->isc_cpu);
if (err) {
dev_err(dev, "%s: isc_cpu clock get failed: Err %d",
__func__, err);
goto out;
}
err = ufs_tegra_host_clk_get(dev,
"utmi_pll1", &ufs_tegra->utmi_pll1);
if (err) {
dev_err(dev, "%s: utmi_pll1 clock get failed: Err %d",
__func__, err);
goto out;
}
}
if (ufs_tegra->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_get(dev,
"clk_m", &ufs_tegra->ufsdev_parent);
if (err)
goto out;
}
err = ufs_tegra_host_clk_get(dev,
"ufsdev_ref", &ufs_tegra->ufsdev_ref_clk);
if (err)
goto out;
err = ufs_tegra_host_clk_get(dev,
"osc", &ufs_tegra->ufsdev_osc);
out:
return err;
}
static int ufs_tegra_enable_ufs_clks(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA) {
err = ufs_tegra_host_clk_enable(dev, "ufshc",
ufs_tegra->ufshc_clk);
goto out;
}
if (ufs_tegra->soc->chip_id == TEGRA264) {
/* TEGRA264_CLK_UFSHC_CG_SYS_DIV is parent
* for ufs
*/
err = clk_set_parent(ufs_tegra->ufshc_clk,
ufs_tegra->ufshc_clk_div);
if (err) {
pr_err("\n ufshc_clk clk_set_parent failed\n");
goto out;
}
err = clk_set_parent(ufs_tegra->isc_cpu,
ufs_tegra->utmi_pll1);
} else {
err = clk_set_parent(ufs_tegra->ufshc_clk,
ufs_tegra->ufshc_parent);
}
if (err) {
pr_err("\n clk_set_parent failed\n");
goto out;
}
if (ufs_tegra->soc->chip_id != TEGRA264) {
err = clk_set_rate(ufs_tegra->ufshc_clk, UFSHC_CLK_FREQ);
} else {
/* In T264, set frequency for ufs parent and enable
* ufs clock
*/
err = clk_set_rate(ufs_tegra->ufshc_clk_div, UFSHC_CLK_FREQ_T264);
}
if (err) {
pr_err("Function clk_set_rate failed\n");
goto out;
}
err = ufs_tegra_host_clk_enable(dev, "ufshc",
ufs_tegra->ufshc_clk);
if (err) {
pr_err("ufshc clock enable failed %d\n", err);
goto out;
}
/* clk_m is the parent for ufsdev_ref
* Frequency is 19.2 MHz.
*/
err = ufs_tegra_host_clk_enable(dev, "ufsdev_ref",
ufs_tegra->ufsdev_ref_clk);
if (err)
goto disable_ufshc;
if ((ufs_tegra->soc->chip_id >= TEGRA234) &&
(ufs_tegra->enable_38mhz_clk)) {
err = clk_set_parent(ufs_tegra->ufsdev_ref_clk,
ufs_tegra->ufsdev_osc);
if (err) {
pr_err("Function clk_set_parent failed\n");
goto out;
}
}
ufs_tegra->hba->clk_gating.state = CLKS_ON;
return err;
disable_ufshc:
clk_disable_unprepare(ufs_tegra->ufshc_clk);
out:
return err;
}
static void ufs_tegra_disable_ufs_clks(struct ufs_tegra_host *ufs_tegra)
{
if (ufs_tegra->hba->clk_gating.state == CLKS_OFF)
return;
clk_disable_unprepare(ufs_tegra->ufshc_clk);
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto end;
clk_disable_unprepare(ufs_tegra->ufsdev_ref_clk);
end:
ufs_tegra->hba->clk_gating.state = CLKS_OFF;
}
static int ufs_tegra_ufs_reset_init(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int ret = 0;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
return 0;
ufs_tegra->ufs_rst = devm_reset_control_get(dev, "ufs-rst");
if (IS_ERR(ufs_tegra->ufs_rst)) {
ret = PTR_ERR(ufs_tegra->ufs_rst);
dev_err(dev,
"Reset control for ufs-rst not found: %d\n", ret);
}
ufs_tegra->ufs_axi_m_rst = devm_reset_control_get(dev, "ufs-axi-m-rst");
if (IS_ERR(ufs_tegra->ufs_axi_m_rst)) {
ret = PTR_ERR(ufs_tegra->ufs_axi_m_rst);
dev_err(dev,
"Reset control for ufs-axi-m-rst not found: %d\n", ret);
}
ufs_tegra->ufshc_lp_rst = devm_reset_control_get(dev, "ufshc-lp-rst");
if (IS_ERR(ufs_tegra->ufshc_lp_rst)) {
ret = PTR_ERR(ufs_tegra->ufshc_lp_rst);
dev_err(dev,
"Reset control for ufshc-lp-rst not found: %d\n", ret);
}
return ret;
}
static void ufs_tegra_ufs_deassert_reset(struct ufs_tegra_host *ufs_tegra)
{
reset_control_assert(ufs_tegra->ufs_rst);
reset_control_assert(ufs_tegra->ufs_axi_m_rst);
reset_control_assert(ufs_tegra->ufshc_lp_rst);
udelay(100);
reset_control_deassert(ufs_tegra->ufs_rst);
reset_control_deassert(ufs_tegra->ufs_axi_m_rst);
reset_control_deassert(ufs_tegra->ufshc_lp_rst);
}
static int ufs_tegra_mphy_reset_init(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int ret = 0;
ufs_tegra->mphy_l0_rx_rst =
devm_reset_control_get(dev, "mphy-l0-rx-rst");
if (IS_ERR(ufs_tegra->mphy_l0_rx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l0_rx_rst);
dev_err(dev,
"Reset control for mphy-l0-rx-rst not found: %d\n",
ret);
}
ufs_tegra->mphy_l0_tx_rst =
devm_reset_control_get(dev, "mphy-l0-tx-rst");
if (IS_ERR(ufs_tegra->mphy_l0_tx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l0_tx_rst);
dev_err(dev,
"Reset control for mphy-l0-tx-rst not found: %d\n",
ret);
}
ufs_tegra->mphy_clk_ctl_rst =
devm_reset_control_get(dev, "mphy-clk-ctl-rst");
if (IS_ERR(ufs_tegra->mphy_clk_ctl_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_clk_ctl_rst);
dev_err(dev,
"Reset control for mphy-clk-ctl-rst not found: %d\n",
ret);
}
if (ufs_tegra->x2config) {
ufs_tegra->mphy_l1_rx_rst =
devm_reset_control_get(dev, "mphy-l1-rx-rst");
if (IS_ERR(ufs_tegra->mphy_l1_rx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l1_rx_rst);
dev_err(dev,
"Reset control for mphy-l1-rx-rst not found: %d\n",
ret);
}
ufs_tegra->mphy_l1_tx_rst =
devm_reset_control_get(dev, "mphy-l1-tx-rst");
if (IS_ERR(ufs_tegra->mphy_l1_tx_rst)) {
ret = PTR_ERR(ufs_tegra->mphy_l1_tx_rst);
dev_err(dev,
"Reset control for mphy_l1_tx_rst not found: %d\n",
ret);
}
}
return ret;
}
static void ufs_tegra_mphy_assert_reset(struct ufs_tegra_host *ufs_tegra)
{
reset_control_assert(ufs_tegra->mphy_l0_rx_rst);
reset_control_assert(ufs_tegra->mphy_l0_tx_rst);
reset_control_assert(ufs_tegra->mphy_clk_ctl_rst);
if (ufs_tegra->x2config) {
reset_control_assert(ufs_tegra->mphy_l1_rx_rst);
reset_control_assert(ufs_tegra->mphy_l1_tx_rst);
}
}
static void ufs_tegra_mphy_deassert_reset(struct ufs_tegra_host *ufs_tegra)
{
reset_control_deassert(ufs_tegra->mphy_l0_rx_rst);
reset_control_deassert(ufs_tegra->mphy_l0_tx_rst);
reset_control_deassert(ufs_tegra->mphy_clk_ctl_rst);
if (ufs_tegra->x2config) {
reset_control_deassert(ufs_tegra->mphy_l1_rx_rst);
reset_control_deassert(ufs_tegra->mphy_l1_tx_rst);
}
}
static int ufs_tegra_pwr_change_clk_boost(struct ufs_tegra_host *ufs_tegra)
{
u32 reg_vendor_0;
struct device *dev = ufs_tegra->hba->dev;
int err;
if (ufs_tegra->soc->chip_id >= TEGRA234)
reg_vendor_0 = MPHY_RX_APB_VENDOR2_0_T234;
else
reg_vendor_0 = MPHY_RX_APB_VENDOR2_0;
mphy_writel(ufs_tegra->mphy_l0_base, MPHY_PWR_CHANGE_CLK_BOOST,
MPHY_RX_APB_VENDOR49_0_T234);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT, reg_vendor_0);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, reg_vendor_0);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto end;
}
if (ufs_tegra->x2config) {
mphy_writel(ufs_tegra->mphy_l1_base, MPHY_PWR_CHANGE_CLK_BOOST,
MPHY_RX_APB_VENDOR49_0_T234);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT, reg_vendor_0);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, reg_vendor_0);
if (err) {
dev_err(dev, "%s: Go bit clear failed for for mphy1\n", __func__);
goto end;
}
}
udelay(20);
end:
return err;
}
static int ufs_tegra_mphy_rx_sync_capability(struct ufs_tegra_host *ufs_tegra)
{
u32 val_88_8b = 0;
u32 val_94_97 = 0;
u32 val_8c_8f = 0;
u32 val_98_9b = 0;
u32 vendor2_reg, vendor3_reg;
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
if (ufs_tegra->soc->chip_id >= TEGRA234) {
vendor2_reg = MPHY_RX_APB_VENDOR2_0_T234;
vendor3_reg = MPHY_RX_APB_VENDOR3_0_T234;
} else {
vendor2_reg = MPHY_RX_APB_VENDOR2_0;
vendor3_reg = MPHY_RX_APB_VENDOR3_0;
}
/* MPHY RX sync lengths capability changes */
/*Update HS_G1 Sync Length MPHY_RX_APB_CAPABILITY_88_8B_0*/
val_88_8b = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_88_8B_0);
val_88_8b &= ~RX_HS_G1_SYNC_LENGTH_CAPABILITY(~0);
val_88_8b |= RX_HS_G1_SYNC_LENGTH_CAPABILITY(RX_HS_SYNC_LENGTH);
/*Update HS_G2&G3 Sync Length MPHY_RX_APB_CAPABILITY_94_97_0*/
val_94_97 = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_94_97_0);
val_94_97 &= ~RX_HS_G2_SYNC_LENGTH_CAPABILITY(~0);
val_94_97 |= RX_HS_G2_SYNC_LENGTH_CAPABILITY(RX_HS_SYNC_LENGTH);
val_94_97 &= ~RX_HS_G3_SYNC_LENGTH_CAPABILITY(~0);
val_94_97 |= RX_HS_G3_SYNC_LENGTH_CAPABILITY(RX_HS_SYNC_LENGTH);
/* MPHY RX TActivate_capability changes */
/* Update MPHY_RX_APB_CAPABILITY_8C_8F_0 */
val_8c_8f = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_8C_8F_0);
val_8c_8f &= ~RX_MIN_ACTIVATETIME_CAP_ARG(~0);
val_8c_8f |= RX_MIN_ACTIVATETIME_CAP_ARG(RX_MIN_ACTIVATETIME);
/* Update MPHY_RX_APB_CAPABILITY_98_9B_0 */
val_98_9b = mphy_readl(ufs_tegra->mphy_l0_base,
MPHY_RX_APB_CAPABILITY_98_9B_0);
val_98_9b &= ~RX_ADVANCED_FINE_GRANULARITY(~0);
val_98_9b &= ~RX_ADVANCED_GRANULARITY(~0);
val_98_9b &= ~RX_ADVANCED_MIN_ACTIVATETIME(~0);
val_98_9b |= RX_ADVANCED_MIN_ACTIVATETIME(RX_ADVANCED_MIN_AT);
mphy_writel(ufs_tegra->mphy_l0_base, val_88_8b,
MPHY_RX_APB_CAPABILITY_88_8B_0);
mphy_writel(ufs_tegra->mphy_l0_base, val_94_97,
MPHY_RX_APB_CAPABILITY_94_97_0);
mphy_writel(ufs_tegra->mphy_l0_base, val_8c_8f,
MPHY_RX_APB_CAPABILITY_8C_8F_0);
mphy_writel(ufs_tegra->mphy_l0_base, val_98_9b,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_ENABLE_RX_MPHY2UPHY_IF_OVR_CTRL,
vendor3_reg);
mphy_update(ufs_tegra->mphy_l0_base,
MPHY_GO_BIT, vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto fail;
}
if (ufs_tegra->x2config) {
mphy_writel(ufs_tegra->mphy_l1_base, val_88_8b,
MPHY_RX_APB_CAPABILITY_88_8B_0);
mphy_writel(ufs_tegra->mphy_l1_base, val_94_97,
MPHY_RX_APB_CAPABILITY_94_97_0);
mphy_writel(ufs_tegra->mphy_l1_base, val_8c_8f,
MPHY_RX_APB_CAPABILITY_8C_8F_0);
mphy_writel(ufs_tegra->mphy_l1_base, val_98_9b,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_ENABLE_RX_MPHY2UPHY_IF_OVR_CTRL,
vendor3_reg);
/* set gobit */
mphy_update(ufs_tegra->mphy_l1_base,
MPHY_GO_BIT, vendor2_reg);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, vendor2_reg);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy1\n", __func__);
}
}
fail:
return err;
}
static int ufs_tegra_mphy_rx_advgran(struct ufs_tegra_host *ufs_tegra)
{
u32 val = 0, reg_vendor_2;
struct device *dev = ufs_tegra->hba->dev;
int err;
if (ufs_tegra->soc->chip_id >= TEGRA234)
reg_vendor_2 = MPHY_RX_APB_VENDOR2_0_T234;
else
reg_vendor_2 = MPHY_RX_APB_VENDOR2_0;
val = mphy_readl(ufs_tegra->mphy_l0_base, MPHY_RX_APB_CAPABILITY_98_9B_0);
val &= ~RX_ADVANCED_GRANULARITY(~0);
val |= RX_ADVANCED_GRANULARITY(0x1);
val &= ~RX_ADVANCED_MIN_ACTIVATETIME(~0);
val |= RX_ADVANCED_MIN_ACTIVATETIME(0x8);
mphy_writel(ufs_tegra->mphy_l0_base, val,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT,
reg_vendor_2);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, reg_vendor_2);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto end;
}
if (ufs_tegra->x2config) {
val = mphy_readl(ufs_tegra->mphy_l1_base,
MPHY_RX_APB_CAPABILITY_98_9B_0);
val &= ~RX_ADVANCED_GRANULARITY(~0);
val |= RX_ADVANCED_GRANULARITY(0x1);
val &= ~RX_ADVANCED_MIN_ACTIVATETIME(~0);
val |= RX_ADVANCED_MIN_ACTIVATETIME(0x8);
mphy_writel(ufs_tegra->mphy_l1_base, val,
MPHY_RX_APB_CAPABILITY_98_9B_0);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
reg_vendor_2);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, reg_vendor_2);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy1\n", __func__);
}
}
end:
return err;
}
static void ufs_tegra_ufs_aux_ref_clk_enable(struct ufs_tegra_host *ufs_tegra)
{
ufs_aux_update(ufs_tegra->ufs_aux_base, UFSHC_DEV_CLK_EN,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
}
static void ufs_tegra_ufs_aux_ref_clk_disable(struct ufs_tegra_host *ufs_tegra)
{
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base, UFSHC_DEV_CLK_EN,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
}
static void ufs_tegra_aux_reset_enable(struct ufs_tegra_host *ufs_tegra)
{
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base,
UFSHC_DEV_RESET,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
}
static void ufs_tegra_ufs_aux_prog(struct ufs_tegra_host *ufs_tegra)
{
/*
* Release the reset to UFS device on pin ufs_rst_n
*/
if (ufs_tegra->ufshc_state != UFSHC_SUSPEND)
ufs_aux_update(ufs_tegra->ufs_aux_base, UFSHC_DEV_RESET,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
if (ufs_tegra->ufshc_state == UFSHC_SUSPEND) {
/*
* Disable reference clock to Device
*/
ufs_tegra_ufs_aux_ref_clk_disable(ufs_tegra);
} else {
/*
* Enable reference clock to Device
*/
ufs_tegra_ufs_aux_ref_clk_enable(ufs_tegra);
}
}
static void ufs_tegra_context_save(struct ufs_tegra_host *ufs_tegra)
{
u32 reg_len = 0;
u32 len = 0;
u32 *mphy_context_save = ufs_tegra->mphy_context;
reg_len = ARRAY_SIZE(mphy_rx_apb);
/*
* Save mphy_rx_apb lane0 and lane1 context
*/
ufs_save_regs(ufs_tegra->mphy_l0_base, mphy_context_save,
mphy_rx_apb, reg_len);
len += reg_len;
if (ufs_tegra->x2config) {
ufs_save_regs(ufs_tegra->mphy_l1_base, mphy_context_save + len,
mphy_rx_apb, reg_len);
len += reg_len;
}
reg_len = ARRAY_SIZE(mphy_tx_apb);
/*
* Save mphy_tx_apb lane0 and lane1 context
*/
ufs_save_regs(ufs_tegra->mphy_l0_base, mphy_context_save + len,
mphy_tx_apb, reg_len);
len += reg_len;
if (ufs_tegra->x2config)
ufs_save_regs(ufs_tegra->mphy_l1_base,
mphy_context_save + len, mphy_tx_apb, reg_len);
}
static void ufs_tegra_context_restore(struct ufs_tegra_host *ufs_tegra)
{
u32 reg_len = 0;
u32 len = 0;
u32 *mphy_context_restore = ufs_tegra->mphy_context;
u32 reg_vendor_0, reg_vendor_2;
if (ufs_tegra->soc->chip_id >= TEGRA234) {
reg_vendor_0 = MPHY_TX_APB_TX_VENDOR0_0_T234;
reg_vendor_2 = MPHY_RX_APB_VENDOR2_0_T234;
} else {
reg_vendor_0 = MPHY_TX_APB_TX_VENDOR0_0;
reg_vendor_2 = MPHY_RX_APB_VENDOR2_0;
}
reg_len = ARRAY_SIZE(mphy_rx_apb);
/*
* Restore mphy_rx_apb lane0 and lane1 context
*/
ufs_restore_regs(ufs_tegra->mphy_l0_base, mphy_context_restore,
mphy_rx_apb, reg_len);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT, reg_vendor_2);
len += reg_len;
if (ufs_tegra->x2config) {
ufs_restore_regs(ufs_tegra->mphy_l1_base,
mphy_context_restore + len, mphy_rx_apb, reg_len);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT,
reg_vendor_2);
len += reg_len;
}
reg_len = ARRAY_SIZE(mphy_tx_apb);
/*
* Restore mphy_tx_apb lane0 and lane1 context
*/
ufs_restore_regs(ufs_tegra->mphy_l0_base, mphy_context_restore + len,
mphy_tx_apb, reg_len);
mphy_writel(ufs_tegra->mphy_l0_base, MPHY_GO_BIT, reg_vendor_0);
len += reg_len;
if (ufs_tegra->x2config) {
ufs_restore_regs(ufs_tegra->mphy_l1_base,
mphy_context_restore + len, mphy_tx_apb, reg_len);
mphy_writel(ufs_tegra->mphy_l1_base, MPHY_GO_BIT, reg_vendor_0);
}
}
#if defined(NV_UFS_HBA_VARIANT_OPS_SUSPEND_HAS_STATUS_ARG)
static int ufs_tegra_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
enum ufs_notify_change_status status)
#else
static int ufs_tegra_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
#endif
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
struct device *dev = hba->dev;
u32 val;
int ret = 0;
int timeout = 500;
bool is_ufs_lp_pwr_gated = false;
if (pm_op != UFS_SYSTEM_PM)
return 0;
ufs_tegra->ufshc_state = UFSHC_SUSPEND;
if (ufs_tegra->soc->chip_id < TEGRA234) {
/*
* Enable DPD for UFS
*/
if (ufs_tegra->ufs_pinctrl &&
!IS_ERR_OR_NULL(ufs_tegra->dpd_enable)) {
ret = pinctrl_select_state(ufs_tegra->ufs_pinctrl,
ufs_tegra->dpd_enable);
if (ret)
dev_err(dev, "pinctrl power down fail %d\n",
ret);
}
do {
udelay(100);
val = ufs_aux_readl(ufs_tegra->ufs_aux_base,
UFSHC_AUX_UFSHC_STATUS_0);
if (val & UFSHC_HIBERNATE_STATUS) {
is_ufs_lp_pwr_gated = true;
break;
}
timeout--;
} while (timeout > 0);
if (timeout <= 0) {
dev_err(dev, "UFSHC_AUX_UFSHC_STATUS_0 = %x\n", val);
return -ETIMEDOUT;
}
if (is_ufs_lp_pwr_gated) {
/*
* Save all armphy_rx_apb and armphy_tx_apb registers
* T234 does not require context save
*/
ufs_tegra_context_save(ufs_tegra);
reset_control_assert(ufs_tegra->ufshc_lp_rst);
}
} else {
/*
* For T234, during sc7 entry, the link is set to off state
* so that during sc7 exit link startup happens (According to IAS)
*/
ufshcd_set_link_off(hba);
}
/* TODO: Check why disabling clocks causing crash */
if (ufs_tegra->soc->chip_id == TEGRA264) {
goto end;
}
/* Clocks are not present on VDK */
if (tegra_sku_info.platform == TEGRA_PLATFORM_VDK)
goto end;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
goto end;
/*
* Disable ufs, mphy tx/rx lane clocks if they are on
* and assert the reset
*/
/* MPHY is not present on FPGA */
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto disable_ufs_clks;
ufs_tegra_disable_mphylane_clks(ufs_tegra);
ufs_tegra_mphy_assert_reset(ufs_tegra);
disable_ufs_clks:
ufs_tegra_disable_ufs_clks(ufs_tegra);
goto end;
reset_control_assert(ufs_tegra->ufs_axi_m_rst);
end:
return ret;
}
static int ufs_tegra_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
struct device *dev = hba->dev;
int ret = 0;
if (pm_op != UFS_SYSTEM_PM)
return 0;
ufs_tegra->ufshc_state = UFSHC_RESUME;
ret = ufs_tegra_enable_ufs_clks(ufs_tegra);
if (ret)
return ret;
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto deassert_ufs_clk;
ret = ufs_tegra_enable_mphylane_clks(ufs_tegra);
if (ret)
goto out_disable_ufs_clks;
ufs_tegra_mphy_deassert_reset(ufs_tegra);
deassert_ufs_clk:
ufs_tegra_ufs_deassert_reset(ufs_tegra);
ufs_tegra_ufs_aux_prog(ufs_tegra);
if (ufs_tegra->soc->chip_id < TEGRA234) {
if (ufs_tegra->ufs_pinctrl &&
!IS_ERR_OR_NULL(ufs_tegra->dpd_disable)) {
ret = pinctrl_select_state(ufs_tegra->ufs_pinctrl,
ufs_tegra->dpd_disable);
if (ret) {
dev_err(dev, "pinctrl power up fail %d\n", ret);
goto out_disable_mphylane_clks;
}
}
/*
* T234 does not require context restore
*/
ufs_tegra_context_restore(ufs_tegra);
} else {
if (dev_iommu_fwspec_get(dev) != NULL) {
writel(UFS_AUX_ADDR_VIRT_CTRL_EN,
ufs_tegra->ufs_virtualization_base +
UFS_AUX_ADDR_VIRT_CTRL_0);
writel(ufs_tegra->streamid,
ufs_tegra->ufs_virtualization_base +
UFS_AUX_ADDR_VIRT_REG_0);
}
}
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto end;
ufs_tegra_set_clk_div(hba);
end:
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return ret;
out_disable_mphylane_clks:
ufs_tegra_disable_mphylane_clks(ufs_tegra);
out_disable_ufs_clks:
ufs_tegra_disable_ufs_clks(ufs_tegra);
return ret;
}
static void ufs_tegra_print_power_mode_config(struct ufs_hba *hba,
struct ufs_pa_layer_attr *configured_params)
{
u32 rx_gear;
u32 tx_gear;
const char *freq_series = "";
rx_gear = configured_params->gear_rx;
tx_gear = configured_params->gear_tx;
if (configured_params->hs_rate) {
if (configured_params->hs_rate == PA_HS_MODE_A)
freq_series = "RATE_A";
else if (configured_params->hs_rate == PA_HS_MODE_B)
freq_series = "RATE_B";
dev_info(hba->dev,
"HS Mode RX_Gear:gear_%u TX_Gear:gear_%u %s series\n",
rx_gear, tx_gear, freq_series);
} else {
dev_info(hba->dev,
"PWM Mode RX_Gear:gear_%u TX_Gear:gear_%u\n",
rx_gear, tx_gear);
}
}
static void ufs_tegra_scramble_enable(struct ufs_hba *hba)
{
u32 pa_val;
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PEERSCRAMBLING), &pa_val);
if (pa_val & SCREN) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_SCRAMBLING), &pa_val);
pa_val |= SCREN;
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SCRAMBLING), pa_val);
}
}
static int ufs_tegra_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
u32 vs_save_config;
int ret = 0;
u32 pa_reg_check;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
ret = -EINVAL;
goto out;
}
switch (status) {
case PRE_CHANGE:
/* Update VS_DebugSaveConfigTime Tref */
ufshcd_dme_get(hba, UIC_ARG_MIB(VS_DEBUGSAVECONFIGTIME),
&vs_save_config);
/* Update VS_DebugSaveConfigTime st_sct */
vs_save_config &= ~SET_ST_SCT(~0);
vs_save_config |= SET_ST_SCT(VS_DEBUGSAVECONFIGTIME_ST_SCT);
/* Update VS_DebugSaveConfigTime Tref */
vs_save_config &= ~SET_TREF(~0);
vs_save_config |= SET_TREF(VS_DEBUGSAVECONFIGTIME_TREF);
ufshcd_dme_set(hba, UIC_ARG_MIB(VS_DEBUGSAVECONFIGTIME),
vs_save_config);
memcpy(dev_req_params, dev_max_params,
sizeof(struct ufs_pa_layer_attr));
if ((ufs_tegra->enable_hs_mode) && (dev_max_params->hs_rate)) {
if (ufs_tegra->max_hs_gear) {
if (dev_max_params->gear_rx >
ufs_tegra->max_hs_gear)
dev_req_params->gear_rx =
ufs_tegra->max_hs_gear;
if (dev_max_params->gear_tx >
ufs_tegra->max_hs_gear)
dev_req_params->gear_tx =
ufs_tegra->max_hs_gear;
} else {
dev_req_params->gear_rx = UFS_HS_G1;
dev_req_params->gear_tx = UFS_HS_G1;
}
if (ufs_tegra->mask_fast_auto_mode) {
dev_req_params->pwr_rx = FAST_MODE;
dev_req_params->pwr_tx = FAST_MODE;
} else {
dev_req_params->pwr_rx = FASTAUTO_MODE;
dev_req_params->pwr_tx = FASTAUTO_MODE;
}
if (ufs_tegra->mask_hs_mode_b) {
dev_req_params->hs_rate = PA_HS_MODE_A;
ufs_tegra_enable_ufs_uphy_pll3(ufs_tegra,
false);
} else {
ufs_tegra_enable_ufs_uphy_pll3(ufs_tegra, true);
}
if (ufs_tegra->enable_scramble)
ufs_tegra_scramble_enable(hba);
/*
* Clock boost during power change
* is required as per T234 IAS document
*/
if (ufs_tegra->soc->chip_id == TEGRA234) {
ret = ufs_tegra_pwr_change_clk_boost(ufs_tegra);
if (ret)
goto out;
ufshcd_dme_configure_adapt(hba, dev_req_params->gear_rx,
PA_INITIAL_ADAPT);
}
} else {
if (ufs_tegra->max_pwm_gear) {
ufshcd_dme_get(hba,
UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&dev_req_params->gear_rx);
ufshcd_dme_peer_get(hba,
UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&dev_req_params->gear_tx);
if (dev_req_params->gear_rx >
ufs_tegra->max_pwm_gear)
dev_req_params->gear_rx =
ufs_tegra->max_pwm_gear;
if (dev_req_params->gear_tx >
ufs_tegra->max_pwm_gear)
dev_req_params->gear_tx =
ufs_tegra->max_pwm_gear;
} else {
dev_req_params->gear_rx = UFS_PWM_G1;
dev_req_params->gear_tx = UFS_PWM_G1;
}
dev_req_params->pwr_rx = SLOWAUTO_MODE;
dev_req_params->pwr_tx = SLOWAUTO_MODE;
dev_req_params->hs_rate = 0;
}
memcpy(&hba->max_pwr_info.info, dev_req_params,
sizeof(struct ufs_pa_layer_attr));
break;
case POST_CHANGE:
ufs_tegra_print_power_mode_config(hba, dev_req_params);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_SCRAMBLING), &pa_reg_check);
if (pa_reg_check & SCREN)
dev_info(hba->dev, "ufs scrambling feature enabled\n");
break;
default:
break;
}
out:
return ret;
}
static int ufs_tegra_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
struct device *dev = ufs_tegra->hba->dev;
int err = 0;
switch (status) {
case PRE_CHANGE:
if (ufs_tegra->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_enable(dev,
"mphy_force_ls_mode",
ufs_tegra->mphy_force_ls_mode);
if (err)
return err;
}
udelay(500);
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base,
UFSHC_DEV_RESET,
UFSHC_AUX_UFSHC_DEV_CTRL_0);
break;
case POST_CHANGE:
ufs_aux_clear_bits(ufs_tegra->ufs_aux_base,
UFSHC_CG_SYS_CLK_OVR_ON,
UFSHC_AUX_UFSHC_SW_EN_CLK_SLCG_0);
ufs_tegra_ufs_aux_prog(ufs_tegra);
ufs_tegra_set_clk_div(hba);
if (ufs_tegra->soc->chip_id != TEGRA264)
clk_disable_unprepare(ufs_tegra->mphy_force_ls_mode);
if (ufs_tegra->soc->chip_id >= TEGRA234)
ufs_tegra_ufs_mmio_axi(hba);
/* Enable auto hibernate */
if (ufs_tegra->enable_auto_hibern8)
ufs_aux_writel(ufs_tegra->ufs_aux_base, 0x4,
UFSHC_AUX_UFSHC_CARD_DET_LP_PWR_CTRL_0);
break;
default:
break;
}
return err;
}
static void ufs_tegra_unipro_post_linkup(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
/* set cport connection status = 1 */
ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), 0x1);
/* MPHY TX sync length changes to MAX */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TxHsG1SyncLength), 0x4f);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TxHsG2SyncLength), 0x4f);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TxHsG3SyncLength), 0x4f);
/* Local Timer Value Changes */
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_FC0PROTECTIONTIMEOUTVAL), 0x1fff);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_TC0REPLAYTIMEOUTVAL), 0xffff);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_AFC0REQTIMEOUTVAL), 0x7fff);
/* PEER TIMER values changes - PA_PWRModeUserData */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 0x1fff);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 0xffff);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 0x7fff);
/* After link start configuration request from Host controller,
* burst closure delay needs to be configured.
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(VS_TXBURSTCLOSUREDELAY),
ufs_tegra->vs_burst);
}
static void ufs_tegra_unipro_pre_linkup(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
/* Unipro LCC disable */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_Local_TX_LCC_Enable), 0x0);
/* Before link start configuration request from Host controller,
* burst closure delay needs to be configured to 0[7:0]
*/
ufshcd_dme_get(hba, UIC_ARG_MIB(VS_TXBURSTCLOSUREDELAY),
&ufs_tegra->vs_burst);
ufshcd_dme_set(hba, UIC_ARG_MIB(VS_TXBURSTCLOSUREDELAY), 0x0);
}
static int ufs_tegra_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
int err = 0;
switch (status) {
case PRE_CHANGE:
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA) {
ufs_tegra_mphy_startup_sequence(ufs_tegra);
} else {
ufs_tegra_mphy_rx_sync_capability(ufs_tegra);
ufs_tegra_unipro_pre_linkup(hba);
/* Enable TX link calibration */
err = ufs_tegra_mphy_tx_calibration_enable(ufs_tegra);
}
break;
case POST_CHANGE:
/* Check TX link calibration status */
err = ufs_tegra_mphy_check_tx_calibration_done_status(ufs_tegra);
if (err)
return err;
/*POST_CHANGE case is called on success of link start-up*/
dev_info(hba->dev, "dme-link-startup Successful\n");
ufs_tegra_unipro_post_linkup(hba);
err = ufs_tegra_mphy_receiver_calibration(ufs_tegra,
ufs_tegra->mphy_l0_base);
if (err)
return err;
ufs_tegra_mphy_war(ufs_tegra);
break;
default:
break;
}
return err;
}
static int ufs_tegra_config_soc_data(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
struct device_node *np = dev->of_node;
ufs_tegra->enable_mphy_rx_calib =
of_property_read_bool(np, "nvidia,enable-rx-calib");
ufs_tegra->x2config =
of_property_read_bool(np, "nvidia,enable-x2-config");
ufs_tegra->enable_hs_mode =
of_property_read_bool(np, "nvidia,enable-hs-mode");
ufs_tegra->enable_38mhz_clk =
of_property_read_bool(np, "nvidia,enable-38mhz-clk");
ufs_tegra->mask_fast_auto_mode =
of_property_read_bool(np, "nvidia,mask-fast-auto-mode");
ufs_tegra->mask_hs_mode_b =
of_property_read_bool(np, "nvidia,mask-hs-mode-b");
ufs_tegra->enable_ufs_provisioning =
of_property_read_bool(np, "nvidia,enable-ufs-provisioning");
ufs_tegra->configure_uphy_pll3 =
of_property_read_bool(np, "nvidia,configure-uphy-pll3");
of_property_read_u32(np, "nvidia,max-hs-gear", &ufs_tegra->max_hs_gear);
of_property_read_u32(np, "nvidia,max-pwm-gear",
&ufs_tegra->max_pwm_gear);
ufs_tegra->enable_scramble =
of_property_read_bool(np, "nvidia,enable-scramble");
ufs_tegra->enable_auto_hibern8 =
of_property_read_bool(np, "nvidia,enable-auto-hibern8");
#if !defined(NV_UFS_HBA_VARIANT_OPS_HAS_SET_DMA_MASK) /* Linux v6.13 */
if (ufs_tegra->soc->chip_id >= TEGRA234) {
#if defined(NV_UFSHCD_QUIRKS_ENUM_HAS_UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) /* Linux 6.0 */
ufs_tegra->hba->quirks |= UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS;
#else
dev_err(dev, "UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS not supported!\n");
return -ENOTSUPP;
#endif
}
#endif
return 0;
}
static int ufs_tegra_eq_timeout(struct ufs_tegra_host *ufs_tegra)
{
struct device *dev = ufs_tegra->hba->dev;
int err;
mphy_writel(ufs_tegra->mphy_l0_base, MPHY_EQ_TIMEOUT,
MPHY_RX_APB_VENDOR3B_0_T234);
mphy_update(ufs_tegra->mphy_l0_base, MPHY_GO_BIT, MPHY_RX_APB_VENDOR2_0_T234);
err = mphy_go_bit_status(ufs_tegra->mphy_l0_base, MPHY_RX_APB_VENDOR2_0_T234);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy0\n", __func__);
goto end;
}
if (ufs_tegra->x2config) {
mphy_writel(ufs_tegra->mphy_l1_base, MPHY_EQ_TIMEOUT,
MPHY_RX_APB_VENDOR3B_0_T234);
mphy_update(ufs_tegra->mphy_l1_base, MPHY_GO_BIT, MPHY_RX_APB_VENDOR2_0_T234);
err = mphy_go_bit_status(ufs_tegra->mphy_l1_base, MPHY_RX_APB_VENDOR2_0_T234);
if (err) {
dev_err(dev, "%s: Go bit clear failed for mphy1\n", __func__);
}
}
end:
return err;
}
static void ufs_tegra_jtag(struct ufs_tegra_host *ufs_tegra, u32 addr, u32 val)
{
struct ufs_hba *hba = ufs_tegra->hba;
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8192, 0x4), ((addr >> 8) & (0xff)));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8193, 0x4), (addr & 0xff));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8194, 0x4), 0x0);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4), 0x2);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4), 0x0);
udelay(3);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8192, 0x4), ((val >> 8) & (0xff)));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8193, 0x4), (val & 0xff));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8194, 0x4), 0x1);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4), 0x2);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4), 0x0);
udelay(3);
}
static void writeC10RegBank(struct ufs_tegra_host *ufs_tegra, u32 addr, u32 val)
{
struct ufs_hba *hba = ufs_tegra->hba;
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x0016, 0x0), (addr & 0xff));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x0017, 0x0), ((addr >> 8) & 0xff));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x0018, 0x0), (val & 0xff));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x0019, 0x0), ((val >> 8) & 0xff));
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x001c, 0x0), 0x1);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0), 0x1);
udelay(1);
}
static void waitCfgRdyN_TX(struct ufs_tegra_host *ufs_tegra)
{
struct ufs_hba *hba = ufs_tegra->hba;
int cfg_rdy_n = 1;
u32 read_data = 0;
while (cfg_rdy_n == 1) {
ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(0xd08e, 0x0), &read_data);
cfg_rdy_n = ((read_data >> 16) & 0x1);
read_data = 0;
}
}
static void waitCfgRdyN_RX(struct ufs_tegra_host *ufs_tegra)
{
struct ufs_hba *hba = ufs_tegra->hba;
int cfg_rdy_n = 1;
u32 read_data = 0;
while (cfg_rdy_n == 1) {
ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(0xd08e, 0x0), &read_data);
cfg_rdy_n = ((read_data >> 10) & 0x1);
read_data = 0;
}
}
static void ufs_tegra_mphy_startup_sequence(struct ufs_tegra_host *ufs_tegra)
{
struct ufs_hba *hba = ufs_tegra->hba;
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819f, 0x4U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819f, 0x4U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819e, 0x4U), 0x21U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819e, 0x4), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819a, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819a, 0x4U), 0x14U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819a, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819c, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819c, 0x4U), 0x14U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x819c, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818c, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818c, 0x4U), 0x14U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818c, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818d, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818d, 0x4U), 0x14U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818d, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818e, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818e, 0x4U), 0x14U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818e, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818f, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818f, 0x4U), 0x14U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x818f, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0c1, 0x0U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8190, 0x4U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8190, 0x4U), 0x10U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8190, 0x4U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4U), 0x4U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8191, 0x4U), 0x31U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8195, 0x4U), 0x0U);
ufs_tegra_jtag(ufs_tegra, 0x400a, 0x26);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8185, 0x4U), 0x3U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8185, 0x4U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8185, 0x4U), 0x2U);
ufs_tegra_jtag(ufs_tegra, 0x2002, 0x1);
ufs_tegra_jtag(ufs_tegra, 0x200a, 0x01bf);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8184, 0x4U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8189, 0x4U), 0x1aU);
ufs_tegra_jtag(ufs_tegra, 0x3007U, 0x70U);
ufs_tegra_jtag(ufs_tegra, 0x3107U, 0x70U);
ufs_tegra_jtag(ufs_tegra, 0x3004U, 0x2040U);
ufs_tegra_jtag(ufs_tegra, 0x3104U, 0x2040U);
ufs_tegra_jtag(ufs_tegra, 0x2003U, 0x260U);
ufs_tegra_jtag(ufs_tegra, 0x2004U, 0x4bU);
ufs_tegra_jtag(ufs_tegra, 0x3006U, 0x540U);
ufs_tegra_jtag(ufs_tegra, 0x3005U, 0x1e87U);
ufs_tegra_jtag(ufs_tegra, 0x3106U, 0x540U);
ufs_tegra_jtag(ufs_tegra, 0x3105U, 0x1e87U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8182, 0x4U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8114, 0x0U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x811f, 0x0U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8132, 0x0U), 0x80U);
waitCfgRdyN_TX(ufs_tegra);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8009, 0x4U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8013, 0x4U), 0x2U);
waitCfgRdyN_RX(ufs_tegra);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x10U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x008f, 0x4U), 0x2U);
waitCfgRdyN_RX(ufs_tegra);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x10U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8009, 0x5U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8013, 0x5U), 0x2U);
waitCfgRdyN_RX(ufs_tegra);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x20U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x008f, 0x5U), 0x2U);
waitCfgRdyN_RX(ufs_tegra);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x20U);
writeC10RegBank(ufs_tegra, 0x401c, 0x0004);
writeC10RegBank(ufs_tegra, 0x411c, 0x0004);
writeC10RegBank(ufs_tegra, 0x10ae, 0x0001);
writeC10RegBank(ufs_tegra, 0x10ad, 0x0080);
writeC10RegBank(ufs_tegra, 0x10af, 0x001a);
writeC10RegBank(ufs_tegra, 0x10b6, 0x0001);
writeC10RegBank(ufs_tegra, 0x10AE, 0x0000);
writeC10RegBank(ufs_tegra, 0x11AE, 0x0001);
writeC10RegBank(ufs_tegra, 0x11AD, 0x0080);
writeC10RegBank(ufs_tegra, 0x11AF, 0x001A);
writeC10RegBank(ufs_tegra, 0x11B6, 0x0001);
writeC10RegBank(ufs_tegra, 0x11AE, 0x0000);
writeC10RegBank(ufs_tegra, 0x1002, 0xAD00);
writeC10RegBank(ufs_tegra, 0x1102, 0xAD00);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0c1, 0x0U), 0x0U);
waitCfgRdyN_TX(ufs_tegra);
mdelay(200);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x002b, 0x0U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x002b, 0x1U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x2U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8009, 0x0U), 0x0);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x800a, 0x0U), 0x64U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8009, 0x1U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x800a, 0x1U), 0x64U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8011, 0x4U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8012, 0x4U), 0x64U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8011, 0x5U), 0x0U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8012, 0x5), 0x64U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x2U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x1U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x20U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd0fa, 0x0U), 0x10U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x1564, 0x0U), 0x80U);
ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xd086, 0x0U), 0x80U);
}
#if defined(CONFIG_TEGRA_PROD_LEGACY)
static void ufs_tegra_prod_settings(struct ufs_tegra_host *ufs_tegra)
{
int err;
if (!ufs_tegra->prod_list)
return;
err = tegra_prod_set_by_name(&ufs_tegra->mphy_l0_base, "prod", ufs_tegra->prod_list);
if (err < 0) {
dev_info_once(ufs_tegra->hba->dev,
"Prod config not found for mphy0: %d\n", err);
return;
}
if (ufs_tegra->x2config) {
err = tegra_prod_set_by_name(&ufs_tegra->mphy_l1_base, "prod", ufs_tegra->prod_list);
if (err < 0)
dev_info_once(ufs_tegra->hba->dev,
"Prod config not found for mphy1: %d\n", err);
}
return;
}
#endif
/**
* ufs_tegra_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up UPHY enabling clocks
* and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_tegra_init(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra;
struct device *dev = hba->dev;
int err = 0;
resource_size_t ufs_aux_base_addr, ufs_aux_addr_range, mphy_addr_range;
resource_size_t mphy_l0_addr_base, mphy_l1_addr_base;
resource_size_t ufs_virt_base_addr = 0, ufs_virt_addr_range = 0;
struct iommu_fwspec *fwspec;
u32 virt_ctrl_en = 0;
ufs_tegra = devm_kzalloc(dev, sizeof(*ufs_tegra), GFP_KERNEL);
if (!ufs_tegra) {
err = -ENOMEM;
dev_err(dev, "no memory for tegra ufs host\n");
goto out;
}
ufs_tegra->soc = (struct ufs_tegra_soc_data *)of_device_get_match_data(dev);
if (!ufs_tegra->soc)
return -EINVAL;
ufs_tegra->ufshc_state = UFSHC_INIT;
ufs_tegra->hba = hba;
hba->priv = (void *)ufs_tegra;
err = ufs_tegra_config_soc_data(ufs_tegra);
if (err)
return err;
hba->spm_lvl = UFS_PM_LVL_3;
hba->rpm_lvl = UFS_PM_LVL_1;
hba->caps |= UFSHCD_CAP_INTR_AGGR;
if (ufs_tegra->soc->chip_id > TEGRA234) {
ufs_aux_base_addr = NV_ADDRESS_MAP_T264_UFSHC_AUX_BASE;
ufs_aux_addr_range = UFS_AUX_ADDR_RANGE_264;
mphy_l0_addr_base = NV_ADDRESS_MAP_MPHY_L0_BASE_T264;
mphy_l1_addr_base = NV_ADDRESS_MAP_MPHY_L1_BASE_T264;
mphy_addr_range = MPHY_ADDR_RANGE_T264;
ufs_virt_base_addr = NV_ADDRESS_MAP_T264_UFSHC_VIRT_BASE;
ufs_virt_addr_range = UFS_AUX_ADDR_VIRT_RANGE_264;
virt_ctrl_en = UFS_AUX_ADDR_VIRT_CTRL_EN |
UFS_AUX_ADDR_VIRT_PA_VA_CTRL;
} else if (ufs_tegra->soc->chip_id == TEGRA234) {
ufs_aux_base_addr = NV_ADDRESS_MAP_T23X_UFSHC_AUX_BASE;
ufs_aux_addr_range = UFS_AUX_ADDR_RANGE_23X;
mphy_l0_addr_base = NV_ADDRESS_MAP_MPHY_L0_BASE;
mphy_l1_addr_base = NV_ADDRESS_MAP_MPHY_L1_BASE;
mphy_addr_range = MPHY_ADDR_RANGE_T234;
ufs_virt_base_addr = NV_ADDRESS_MAP_T23X_UFSHC_VIRT_BASE;
ufs_virt_addr_range = UFS_AUX_ADDR_VIRT_RANGE_23X;
virt_ctrl_en = UFS_AUX_ADDR_VIRT_CTRL_EN;
#if defined(NV_UFSHCD_QUIRKS_ENUM_HAS_UFSHCD_QUIRK_BROKEN_POWER_SEQUENCE)
ufs_tegra->hba->quirks |= UFSHCD_QUIRK_BROKEN_PWR_SEQUENCE;
#endif
} else {
ufs_aux_base_addr = NV_ADDRESS_MAP_UFSHC_AUX_BASE;
ufs_aux_addr_range = UFS_AUX_ADDR_RANGE;
mphy_l0_addr_base = NV_ADDRESS_MAP_MPHY_L0_BASE;
mphy_l1_addr_base = NV_ADDRESS_MAP_MPHY_L1_BASE;
mphy_addr_range = MPHY_ADDR_RANGE;
}
ufs_tegra->ufs_aux_base = devm_ioremap(dev,
ufs_aux_base_addr, ufs_aux_addr_range);
if (!ufs_tegra->ufs_aux_base) {
err = -ENOMEM;
dev_err(dev, "ufs_aux_base ioremap failed\n");
goto out;
}
ufs_tegra->mphy_l0_base = devm_ioremap(dev,
mphy_l0_addr_base, mphy_addr_range);
if (!ufs_tegra->mphy_l0_base) {
err = -ENOMEM;
dev_err(dev, "mphy_l0_base ioremap failed\n");
goto out;
}
ufs_tegra->mphy_l1_base = devm_ioremap(dev,
mphy_l1_addr_base, mphy_addr_range);
if (!ufs_tegra->mphy_l1_base) {
err = -ENOMEM;
dev_err(dev, "mphy_l1_base ioremap failed\n");
goto out;
}
if (ufs_tegra->soc->chip_id >= TEGRA234) {
hba->caps |= UFSHCD_CAP_WB_EN;
ufs_tegra->ufs_virtualization_base = devm_ioremap(dev,
ufs_virt_base_addr,
ufs_virt_addr_range);
if (!ufs_tegra->ufs_virtualization_base) {
err = -ENOMEM;
dev_err(dev, "UFS Virtualization failed\n");
goto out;
}
}
#if defined(CONFIG_TEGRA_PROD_LEGACY)
ufs_tegra->prod_list = devm_tegra_prod_get(dev);
if (IS_ERR(ufs_tegra->prod_list)) {
dev_dbg(dev, "No Prod list\n");
ufs_tegra->prod_list = NULL;
}
#endif
/*
* Clocks are not present on VDK
*/
if (tegra_sku_info.platform == TEGRA_PLATFORM_VDK)
goto aux_init;
if (tegra_sku_info.platform == TEGRA_PLATFORM_VSP)
goto out;
err = ufs_tegra_init_ufs_clks(ufs_tegra);
if (err)
goto out_host_free;
/* MPHY is not present in FPGA
* don't program MPHY clocks
*
*/
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto enable_ufs_clk;
err = ufs_tegra_init_mphy_lane_clks(ufs_tegra);
if (err) {
dev_err(dev, "mphy clk init failed. Err %d\n", err);
goto out_host_free;
}
err = ufs_tegra_init_uphy_pll3(ufs_tegra);
if (err)
goto out_host_free;
if (ufs_tegra->soc->chip_id != TEGRA264) {
err = ufs_tegra_host_clk_enable(dev, "mphy_force_ls_mode",
ufs_tegra->mphy_force_ls_mode);
if (err)
goto out_host_free;
usleep_range(1000, 2000);
clk_disable_unprepare(ufs_tegra->mphy_force_ls_mode);
}
usleep_range(1000, 2000);
enable_ufs_clk:
err = ufs_tegra_enable_ufs_clks(ufs_tegra);
if (err)
goto out_host_free;
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto ufs_clk_deassert;
err = ufs_tegra_enable_mphylane_clks(ufs_tegra);
if (err)
goto out_disable_ufs_clks;
err = ufs_tegra_mphy_reset_init(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
ufs_tegra_mphy_deassert_reset(ufs_tegra);
ufs_clk_deassert:
err = ufs_tegra_ufs_reset_init(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
ufs_tegra_ufs_deassert_reset(ufs_tegra);
if (tegra_sku_info.platform == TEGRA_PLATFORM_SYSTEM_FPGA)
goto end;
err = ufs_tegra_mphy_rx_advgran(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
aux_init:
ufs_tegra_ufs_aux_ref_clk_disable(ufs_tegra);
ufs_tegra_aux_reset_enable(ufs_tegra);
ufs_tegra_ufs_aux_prog(ufs_tegra);
ufs_tegra_set_clk_div(hba);
err = ufs_tegra_eq_timeout(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
end:
if (ufs_tegra->soc->chip_id >= TEGRA234) {
fwspec = dev_iommu_fwspec_get(dev);
if (fwspec == NULL) {
dev_err(dev, "Failed to get MC streamid. Continuing\n");
} else {
ufs_tegra->streamid = fwspec->ids[0] & 0xffff;
writel(virt_ctrl_en,
ufs_tegra->ufs_virtualization_base +
UFS_AUX_ADDR_VIRT_CTRL_0);
writel(ufs_tegra->streamid,
ufs_tegra->ufs_virtualization_base +
UFS_AUX_ADDR_VIRT_REG_0);
}
}
#if defined(CONFIG_TEGRA_PROD_LEGACY)
/* Configure prod values */
ufs_tegra_prod_settings(ufs_tegra);
#endif
if (ufs_tegra->soc->chip_id > TEGRA234) {
err = ufs_tegra_pwr_change_clk_boost(ufs_tegra);
if (err)
goto out_disable_mphylane_clks;
}
#ifdef CONFIG_DEBUG_FS
ufs_tegra_init_debugfs(hba);
#endif
return err;
out_disable_mphylane_clks:
ufs_tegra_disable_mphylane_clks(ufs_tegra);
out_disable_ufs_clks:
ufs_tegra_disable_ufs_clks(ufs_tegra);
out_host_free:
hba->priv = NULL;
out:
return err;
}
static void ufs_tegra_exit(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
ufs_tegra_disable_mphylane_clks(ufs_tegra);
#ifdef CONFIG_DEBUG_FS
if (ufs_tegra->enable_ufs_provisioning)
debugfs_provision_exit(hba);
#endif
}
#if defined(NV_UFS_HBA_VARIANT_OPS_HAS_SET_DMA_MASK) /* Linux v6.13 */
static int ufs_tegra_set_dma_mask(struct ufs_hba *hba)
{
struct ufs_tegra_host *ufs_tegra = hba->priv;
if (ufs_tegra->soc->chip_id >= TEGRA234)
return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
return 0;
}
#endif
/**
* struct ufs_hba_tegra_vops - UFS TEGRA specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
struct ufs_hba_variant_ops ufs_hba_tegra_vops = {
.name = "ufs-tegra",
.init = ufs_tegra_init,
.exit = ufs_tegra_exit,
.suspend = ufs_tegra_suspend,
.resume = ufs_tegra_resume,
.hce_enable_notify = ufs_tegra_hce_enable_notify,
.link_startup_notify = ufs_tegra_link_startup_notify,
.pwr_change_notify = ufs_tegra_pwr_change_notify,
#if defined(NV_UFS_HBA_VARIANT_OPS_HAS_SET_DMA_MASK) /* Linux v6.13 */
.set_dma_mask = ufs_tegra_set_dma_mask,
#endif
};
static int ufs_tegra_probe(struct platform_device *pdev)
{
int err;
struct device *dev = &pdev->dev;
unsigned int value;
if (tegra_platform_is_silicon()) {
/* Do not enable ufs on non-rdl part*/
err = tegra_fuse_readl(TEGRA_FUSE_OPT_LOT_CODE_0_0, &value);
if (err) {
dev_err(dev, "%s rdl fuse read failed err: %d val: %#x\n", __func__, err, value);
goto end;
}
if ((value == NON_RDL_STRUCTURE) ||
(value == NON_RDL_LEAD)) {
dev_info(dev, "%s This is non-rdl part. No support for UFS %#x\n", __func__, value);
err = -ENODEV;
goto end;
} else {
dev_dbg(dev, "%s This is rdl part. UFS is supported %#x\n", __func__, value);
}
}
/* Perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_tegra_vops);
if (err) {
if (err != -EPROBE_DEFER)
dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err);
}
end:
return err;
}
static int ufs_tegra_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
return 0;
}
static struct ufs_tegra_soc_data tegra194_soc_data = {
.chip_id = TEGRA194,
};
static struct ufs_tegra_soc_data tegra234_soc_data = {
.chip_id = TEGRA234,
};
#if defined(NV_TEGRA264_CHIP_ID_PRESENT) /* Linux v6.5 */
static struct ufs_tegra_soc_data tegra264_soc_data = {
.chip_id = TEGRA264,
};
#endif
static const struct of_device_id ufs_tegra_of_match[] = {
{
.compatible = "tegra194,ufs_variant",
.data = &tegra194_soc_data,
}, {
.compatible = "tegra234,ufs_variant",
.data = &tegra234_soc_data,
#if defined(NV_TEGRA264_CHIP_ID_PRESENT) /* Linux v6.5 */
}, {
.compatible = "tegra264,ufs_variant",
.data = &tegra264_soc_data,
#endif
},
{},
};
static const struct dev_pm_ops ufs_tegra_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ufshcd_system_suspend, ufshcd_system_resume)
SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
};
#if defined(NV_PLATFORM_DRIVER_STRUCT_REMOVE_RETURNS_VOID) /* Linux v6.11 */
static void ufs_tegra_remove_wrapper(struct platform_device *pdev)
{
ufs_tegra_remove(pdev);
}
#else
static int ufs_tegra_remove_wrapper(struct platform_device *pdev)
{
return ufs_tegra_remove(pdev);
}
#endif
static struct platform_driver ufs_tegra_platform = {
.probe = ufs_tegra_probe,
.remove = ufs_tegra_remove_wrapper,
.driver = {
.name = "ufs_tegra",
.pm = &ufs_tegra_pm_ops,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(ufs_tegra_of_match),
},
};
module_platform_driver(ufs_tegra_platform);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Naveen Kumar Arepalli <naveenk@nvidia.com>");
MODULE_AUTHOR("Venkata Jagadish <vjagadish@nvidia.com>");