gpu: nvgpu: cyclestats mode E snapshots support

That is a kernel supporting code for cyclestats mode E.
Cyclestats mode E implemented following Windows-design in user-space
and required the following operations to be implemented:
- attach a client for shared hardware buffer of device
- detach client from shared hardware buffer
- flush means copy of available data from hardware buffer to private
  client buffers according to perfmon IDs assigned for clients
- perfmon IDs management for user-space clients
- a NVGPU_GPU_FLAGS_SUPPORT_CYCLE_STATS_SNAPSHOT capability added

Bug 1573150

Change-Id: I9e09f0fbb2be5a95c47e6d80a2e23fa839b46f9a
Signed-off-by: Leonid Moiseichuk <lmoiseichuk@nvidia.com>
Reviewed-on: http://git-master/r/740653
(cherry picked from commit 79fe89fd4cea39d8ab9dbef0558cd806ddfda87f)
Reviewed-on: http://git-master/r/753274
Reviewed-by: Automatic_Commit_Validation_User
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
Tested-by: Terje Bergstrom <tbergstrom@nvidia.com>
This commit is contained in:
Leonid Moiseichuk
2015-05-08 15:06:42 +03:00
committed by Terje Bergstrom
parent ef8fa4999f
commit 837ceffcab
10 changed files with 1225 additions and 2 deletions

View File

@@ -82,6 +82,9 @@ nvgpu-$(CONFIG_TEGRA_CLK_FRAMEWORK) += \
nvgpu-$(CONFIG_GK20A_DEVFREQ) += \
gk20a/gk20a_scale.o
nvgpu-$(CONFIG_GK20A_CYCLE_STATS) += \
gk20a/css_gr_gk20a.o
ifeq ($(CONFIG_ARCH_TEGRA_18x_SOC),y)
ccflags-$(CONFIG_GK20A) += -I$(srctree)/../kernel-t18x/drivers/gpu/nvgpu
ccflags-$(CONFIG_GK20A) += -I$(srctree)/../kernel-t18x/include

View File

@@ -486,6 +486,95 @@ static int gk20a_channel_cycle_stats(struct channel_gk20a *ch,
return -EINVAL;
}
}
static int gk20a_flush_cycle_stats_snapshot(struct channel_gk20a *ch)
{
int ret;
mutex_lock(&ch->cs_client_mutex);
if (ch->cs_client)
ret = gr_gk20a_css_flush(ch->g, ch->cs_client);
else
ret = -EBADF;
mutex_unlock(&ch->cs_client_mutex);
return ret;
}
static int gk20a_attach_cycle_stats_snapshot(struct channel_gk20a *ch,
u32 dmabuf_fd,
u32 perfmon_id_count,
u32 *perfmon_id_start)
{
int ret;
mutex_lock(&ch->cs_client_mutex);
if (ch->cs_client) {
ret = -EEXIST;
} else {
ret = gr_gk20a_css_attach(ch->g,
dmabuf_fd,
perfmon_id_count,
perfmon_id_start,
&ch->cs_client);
}
mutex_unlock(&ch->cs_client_mutex);
return ret;
}
static int gk20a_free_cycle_stats_snapshot(struct channel_gk20a *ch)
{
int ret;
mutex_lock(&ch->cs_client_mutex);
if (ch->cs_client) {
ret = gr_gk20a_css_detach(ch->g, ch->cs_client);
ch->cs_client = NULL;
} else {
ret = 0;
}
mutex_unlock(&ch->cs_client_mutex);
return ret;
}
static int gk20a_channel_cycle_stats_snapshot(struct channel_gk20a *ch,
struct nvgpu_cycle_stats_snapshot_args *args)
{
int ret;
if (!args->dmabuf_fd)
return -EINVAL;
/* handle the command (most frequent cases first) */
switch (args->cmd) {
case NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT_CMD_FLUSH:
ret = gk20a_flush_cycle_stats_snapshot(ch);
args->extra = 0;
break;
case NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT_CMD_ATTACH:
ret = gk20a_attach_cycle_stats_snapshot(ch,
args->dmabuf_fd,
args->extra,
&args->extra);
break;
case NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT_CMD_DETACH:
ret = gk20a_free_cycle_stats_snapshot(ch);
args->extra = 0;
break;
default:
pr_err("cyclestats: unknown command %u\n", args->cmd);
ret = -EINVAL;
break;
}
return ret;
}
#endif
static int gk20a_init_error_notifier(struct channel_gk20a *ch,
@@ -602,6 +691,7 @@ void gk20a_free_channel(struct channel_gk20a *ch, bool finish)
#if defined(CONFIG_GK20A_CYCLE_STATS)
gk20a_free_cycle_stats_buffer(ch);
gk20a_free_cycle_stats_snapshot(ch);
#endif
channel_gk20a_free_priv_cmdbuf(ch);
@@ -1639,6 +1729,7 @@ int gk20a_init_channel_support(struct gk20a *g, u32 chid)
INIT_LIST_HEAD(&c->jobs);
#if defined(CONFIG_GK20A_CYCLE_STATS)
mutex_init(&c->cyclestate.cyclestate_buffer_mutex);
mutex_init(&c->cs_client_mutex);
#endif
INIT_LIST_HEAD(&c->dbg_s_list);
mutex_init(&c->dbg_s_lock);
@@ -2335,6 +2426,20 @@ long gk20a_channel_ioctl(struct file *filp,
err = gk20a_channel_events_ctrl(ch,
(struct nvgpu_channel_events_ctrl_args *)buf);
break;
#ifdef CONFIG_GK20A_CYCLE_STATS
case NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT:
err = gk20a_busy(dev);
if (err) {
dev_err(&dev->dev,
"%s: failed to host gk20a for ioctl cmd: 0x%x",
__func__, cmd);
break;
}
err = gk20a_channel_cycle_stats_snapshot(ch,
(struct nvgpu_cycle_stats_snapshot_args *)buf);
gk20a_idle(dev);
break;
#endif
default:
dev_dbg(&dev->dev, "unrecognized ioctl cmd: 0x%x", cmd);
err = -ENOTTY;

View File

@@ -133,6 +133,9 @@ struct channel_gk20a {
struct dma_buf *cyclestate_buffer_handler;
struct mutex cyclestate_buffer_mutex;
} cyclestate;
struct mutex cs_client_mutex;
struct gk20a_cs_snapshot_client *cs_client;
#endif
struct mutex dbg_s_lock;
struct list_head dbg_s_list;

View File

@@ -0,0 +1,759 @@
/*
* GK20A Cycle stats snapshots support (subsystem for gr_gk20a).
*
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/dma-buf.h>
#include <linux/mutex.h>
#include <linux/vmalloc.h>
#include "gk20a.h"
#include "hw_perf_gk20a.h"
#include "hw_mc_gk20a.h"
/* cycle stats fifo header (must match NvSnapshotBufferFifo) */
struct gk20a_cs_snapshot_fifo {
/* layout description of the buffer */
u32 start;
u32 end;
/* snafu bits */
u32 hw_overflow_events_occured;
u32 sw_overflow_events_occured;
/* the kernel copies new entries to put and
* increment the put++. if put == get then
* overflowEventsOccured++
*/
u32 put;
u32 _reserved10;
u32 _reserved11;
u32 _reserved12;
/* the driver/client reads from get until
* put==get, get++ */
u32 get;
u32 _reserved20;
u32 _reserved21;
u32 _reserved22;
/* unused */
u32 _reserved30;
u32 _reserved31;
u32 _reserved32;
u32 _reserved33;
};
/* cycle stats fifo entry (must match NvSnapshotBufferFifoEntry) */
struct gk20a_cs_snapshot_fifo_entry {
/* global 48 timestamp */
u32 timestamp31_00:32;
u32 timestamp39_32:8;
/* id of perfmon, should correlate with CSS_MAX_PERFMON_IDS */
u32 perfmon_id:8;
/* typically samples_counter is wired to #pmtrigger count */
u32 samples_counter:12;
/* DS=Delay Sample, SZ=Size (0=32B, 1=16B) */
u32 ds:1;
u32 sz:1;
u32 zero0:1;
u32 zero1:1;
/* counter results */
u32 event_cnt:32;
u32 trigger0_cnt:32;
u32 trigger1_cnt:32;
u32 sample_cnt:32;
/* Local PmTrigger results for Maxwell+ or padding otherwise */
u16 local_trigger_b_count:16;
u16 book_mark_b:16;
u16 local_trigger_a_count:16;
u16 book_mark_a:16;
};
/* cycle stats snapshot client data (e.g. associated with channel) */
struct gk20a_cs_snapshot_client {
struct list_head list;
u32 dmabuf_fd;
struct dma_buf *dma_handler;
struct gk20a_cs_snapshot_fifo *snapshot;
u32 snapshot_size;
u32 perfmon_start;
u32 perfmon_count;
};
/* check client for pointed perfmon ownership */
#define CONTAINS_PERFMON(cl, pm) \
((cl)->perfmon_start <= (pm) && \
((pm) - (cl)->perfmon_start) < (cl)->perfmon_count)
/* the minimal size of HW buffer - should be enough to avoid HW overflows */
#define CSS_MIN_HW_SNAPSHOT_SIZE (8 * 1024 * 1024)
/* the minimal size of client buffer */
#define CSS_MIN_CLIENT_SNAPSHOT_SIZE \
(sizeof(struct gk20a_cs_snapshot_fifo) + \
sizeof(struct gk20a_cs_snapshot_fifo_entry) * 256)
/* address of fifo entry by offset */
#define CSS_FIFO_ENTRY(fifo, offs) \
((struct gk20a_cs_snapshot_fifo_entry *)(((char *)(fifo)) + (offs)))
/* calculate area capacity in number of fifo entries */
#define CSS_FIFO_ENTRY_CAPACITY(s) \
(((s) - sizeof(struct gk20a_cs_snapshot_fifo)) \
/ sizeof(struct gk20a_cs_snapshot_fifo_entry))
/* reserved to indicate failures with data */
#define CSS_FIRST_PERFMON_ID 32
/* should correlate with size of gk20a_cs_snapshot_fifo_entry::perfmon_id */
#define CSS_MAX_PERFMON_IDS 256
/* this type is used for storing bits in perfmon mask */
typedef u32 css_perfmon_t;
/* local definitions to avoid hardcodes sizes and shifts */
#define PM_BITS (sizeof(css_perfmon_t) * BITS_PER_BYTE)
#define PM_BITS_MASK (PM_BITS - 1)
#define PM_BITMAP_SIZE ((CSS_MAX_PERFMON_IDS + PM_BITS - 1) / PM_BITS)
#define PM_SLOT(i) ((i) / PM_BITS)
#define PM_SHIFT(i) ((i) & PM_BITS_MASK)
#define PM_BIT(i) (1u << PM_SHIFT(i))
#define CSS_PERFMON_GET(p, i) (1 == ((p[PM_SLOT(i)] >> PM_SHIFT(i)) & 1))
#define CSS_PERFMON_USE(p, i) (p[PM_SLOT(i)] |= PM_BIT(i))
#define CSS_PERFMON_REL(p, i) (p[PM_SLOT(i)] &= ~PM_BIT(i))
/* cycle stats snapshot control structure for one HW entry and many clients */
struct gk20a_cs_snapshot {
css_perfmon_t perfmon_ids[PM_BITMAP_SIZE];
struct list_head clients;
struct mem_desc hw_memdesc;
/* pointer to allocated cpu_va memory where GPU place data */
struct gk20a_cs_snapshot_fifo_entry *hw_snapshot;
struct gk20a_cs_snapshot_fifo_entry *hw_end;
struct gk20a_cs_snapshot_fifo_entry *hw_get;
};
/* reports whether the hw queue overflowed */
static inline bool css_hw_get_overflow_status(struct gk20a *g)
{
const u32 st = perf_pmasys_control_membuf_status_overflowed_f();
return st == (gk20a_readl(g, perf_pmasys_control_r()) & st);
}
/* returns how many pending snapshot entries are pending */
static inline u32 css_hw_get_pending_snapshots(struct gk20a *g)
{
return gk20a_readl(g, perf_pmasys_mem_bytes_r()) /
sizeof(struct gk20a_cs_snapshot_fifo_entry);
}
/* informs hw how many snapshots have been processed (frees up fifo space) */
static inline void css_hw_set_handled_snapshots(struct gk20a *g, u32 done)
{
if (done > 0) {
gk20a_writel(g, perf_pmasys_mem_bump_r(),
done * sizeof(struct gk20a_cs_snapshot_fifo_entry));
}
}
/* disable streaming to memory */
static void css_hw_reset_streaming(struct gk20a *g)
{
u32 engine_status;
u32 old_pmc = gk20a_readl(g, mc_enable_r());
/* reset the perfmon */
gk20a_writel(g, mc_enable_r(),
old_pmc & ~mc_enable_perfmon_enabled_f());
gk20a_writel(g, mc_enable_r(), old_pmc);
/* RBUFEMPTY must be set -- otherwise we'll pick up */
/* snapshot that have been queued up from earlier */
engine_status = gk20a_readl(g, perf_pmasys_enginestatus_r());
WARN_ON(0 == (engine_status
& perf_pmasys_enginestatus_rbufempty_empty_f()));
/* turn off writes */
gk20a_writel(g, perf_pmasys_control_r(),
perf_pmasys_control_membuf_clear_status_doit_f());
/* pointing all pending snapshots as handled */
css_hw_set_handled_snapshots(g, css_hw_get_pending_snapshots(g));
}
/*
* WARNING: all css_gr_XXX functions are local and expected to be called
* from locked context (protected by cs_lock)
*/
static int css_gr_create_shared_data(struct gr_gk20a *gr)
{
struct gk20a_cs_snapshot *data;
if (gr->cs_data)
return 0;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
INIT_LIST_HEAD(&data->clients);
gr->cs_data = data;
return 0;
}
static int css_hw_enable_snapshot(struct gr_gk20a *gr, u32 snapshot_size)
{
struct gk20a *g = gr->g;
struct gk20a_cs_snapshot *data = gr->cs_data;
int ret;
u32 virt_addr_lo;
u32 virt_addr_hi;
u32 inst_pa_page;
if (data->hw_snapshot)
return 0;
if (snapshot_size < CSS_MIN_HW_SNAPSHOT_SIZE)
snapshot_size = CSS_MIN_HW_SNAPSHOT_SIZE;
ret = gk20a_gmmu_alloc_map(&g->mm.pmu.vm, snapshot_size,
&data->hw_memdesc);
if (ret)
return ret;
/* perf output buffer may not cross a 4GB boundary - with a separate */
/* va smaller than that, it won't but check anyway */
if (!data->hw_memdesc.cpu_va ||
data->hw_memdesc.size < snapshot_size ||
data->hw_memdesc.gpu_va + u64_lo32(snapshot_size) > SZ_4G) {
ret = -EFAULT;
goto failed_allocation;
}
data->hw_snapshot =
(struct gk20a_cs_snapshot_fifo_entry *)data->hw_memdesc.cpu_va;
data->hw_end = data->hw_snapshot +
snapshot_size / sizeof(struct gk20a_cs_snapshot_fifo_entry);
data->hw_get = data->hw_snapshot;
memset(data->hw_snapshot, 0xff, snapshot_size);
/* address and size are aligned to 32 bytes, the lowest bits read back
* as zeros */
virt_addr_lo = u64_lo32(data->hw_memdesc.gpu_va);
virt_addr_hi = u64_hi32(data->hw_memdesc.gpu_va);
css_hw_reset_streaming(g);
gk20a_writel(g, perf_pmasys_outbase_r(), virt_addr_lo);
gk20a_writel(g, perf_pmasys_outbaseupper_r(),
perf_pmasys_outbaseupper_ptr_f(virt_addr_hi));
gk20a_writel(g, perf_pmasys_outsize_r(), snapshot_size);
/* this field is aligned to 4K */
inst_pa_page = gk20a_mem_phys(&g->mm.hwpm.inst_block) >> 12;
/* A write to MEM_BLOCK triggers the block bind operation. MEM_BLOCK
* should be written last */
gk20a_writel(g, perf_pmasys_mem_block_r(),
perf_pmasys_mem_block_base_f(inst_pa_page) |
perf_pmasys_mem_block_valid_true_f() |
perf_pmasys_mem_block_target_lfb_f());
gk20a_dbg_info("cyclestats: buffer for hardware snapshots enabled\n");
return 0;
failed_allocation:
if (data->hw_memdesc.size) {
gk20a_gmmu_unmap_free(&g->mm.pmu.vm, &data->hw_memdesc);
memset(&data->hw_memdesc, 0, sizeof(data->hw_memdesc));
}
data->hw_snapshot = NULL;
return ret;
}
static void css_hw_disable_snapshot(struct gr_gk20a *gr)
{
struct gk20a *g = gr->g;
struct gk20a_cs_snapshot *data = gr->cs_data;
if (!data->hw_snapshot)
return;
css_hw_reset_streaming(g);
gk20a_writel(g, perf_pmasys_outbase_r(), 0);
gk20a_writel(g, perf_pmasys_outbaseupper_r(),
perf_pmasys_outbaseupper_ptr_f(0));
gk20a_writel(g, perf_pmasys_outsize_r(), 0);
gk20a_writel(g, perf_pmasys_mem_block_r(),
perf_pmasys_mem_block_base_f(0) |
perf_pmasys_mem_block_valid_false_f() |
perf_pmasys_mem_block_target_f(0));
gk20a_gmmu_unmap_free(&g->mm.pmu.vm, &data->hw_memdesc);
memset(&data->hw_memdesc, 0, sizeof(data->hw_memdesc));
data->hw_snapshot = NULL;
gk20a_dbg_info("cyclestats: buffer for hardware snapshots disabled\n");
}
static void css_gr_free_shared_data(struct gr_gk20a *gr)
{
if (gr->cs_data) {
/* the clients list is expected to be empty */
css_hw_disable_snapshot(gr);
/* release the objects */
kfree(gr->cs_data);
gr->cs_data = NULL;
}
}
static struct gk20a_cs_snapshot_client*
css_gr_search_client(struct list_head *clients, u32 perfmon)
{
struct list_head *pos;
list_for_each(pos, clients) {
struct gk20a_cs_snapshot_client *client =
container_of(pos,
struct gk20a_cs_snapshot_client, list);
if (CONTAINS_PERFMON(client, perfmon))
return client;
}
return NULL;
}
static int css_gr_flush_snapshots(struct gr_gk20a *gr)
{
struct gk20a *g = gr->g;
struct gk20a_cs_snapshot *css = gr->cs_data;
struct gk20a_cs_snapshot_client *cur;
u32 pending;
/* variables for iterating over HW entries */
u32 sid;
struct gk20a_cs_snapshot_fifo_entry *src;
/* due to data sharing with userspace we allowed update only */
/* overflows and put field in the fifo header */
struct gk20a_cs_snapshot_fifo *dst;
struct gk20a_cs_snapshot_fifo_entry *dst_get;
struct gk20a_cs_snapshot_fifo_entry *dst_put;
struct gk20a_cs_snapshot_fifo_entry *dst_head;
struct gk20a_cs_snapshot_fifo_entry *dst_tail;
if (!css)
return -EINVAL;
if (!css->hw_snapshot)
return -EINVAL;
if (list_empty(&css->clients))
return -EBADF;
/* check data available */
pending = css_hw_get_pending_snapshots(g);
if (!pending)
return 0;
if (css_hw_get_overflow_status(g)) {
struct list_head *pos;
list_for_each(pos, &css->clients) {
cur = container_of(pos,
struct gk20a_cs_snapshot_client, list);
cur->snapshot->hw_overflow_events_occured++;
}
gk20a_warn(dev_from_gk20a(g),
"cyclestats: hardware overflow detected\n");
}
/* proceed all items in HW buffer */
sid = 0;
cur = NULL;
dst = NULL;
dst_put = NULL;
src = css->hw_get;
/* proceed all completed records */
while (sid < pending && 0 == src->zero0) {
/* we may have a new perfmon_id which required to */
/* switch to a new client -> let's forget current */
if (cur && !CONTAINS_PERFMON(cur, src->perfmon_id)) {
dst->put = (char *)dst_put - (char *)dst;
dst = NULL;
cur = NULL;
}
/* now we have to select a new current client */
/* the client selection rate depends from experiment */
/* activity but on Android usually happened 1-2 times */
if (!cur) {
cur = css_gr_search_client(&css->clients,
src->perfmon_id);
if (cur) {
/* found - setup all required data */
dst = cur->snapshot;
dst_get = CSS_FIFO_ENTRY(dst, dst->get);
dst_put = CSS_FIFO_ENTRY(dst, dst->put);
dst_head = CSS_FIFO_ENTRY(dst, dst->start);
dst_tail = CSS_FIFO_ENTRY(dst, dst->end) - 1;
} else {
/* client not found - skipping this entry */
gk20a_warn(dev_from_gk20a(g),
"cyclestats: orphaned perfmon %u\n",
src->perfmon_id);
goto next_hw_fifo_entry;
}
}
/* check for software overflows */
if (dst_put + 1 == dst_get ||
(dst_put == dst_tail && dst_get == dst_head)) {
/* no data copy, no pointer updates */
dst->sw_overflow_events_occured++;
gk20a_warn(dev_from_gk20a(g),
"cyclestats: perfmon %u soft overflow\n",
src->perfmon_id);
} else {
*dst_put = *src;
if (dst_put == dst_tail)
dst_put = dst_head;
else
dst_put++;
}
next_hw_fifo_entry:
sid++;
if (++src >= css->hw_end)
src = css->hw_snapshot;
}
/* update client put pointer if necessary */
if (cur && dst)
dst->put = (char *)dst_put - (char *)dst;
/* re-set HW buffer after processing taking wrapping into account */
if (css->hw_get < src) {
memset(css->hw_get, 0xff, (src - css->hw_get) * sizeof(*src));
} else {
memset(css->hw_snapshot, 0xff,
(src - css->hw_snapshot) * sizeof(*src));
memset(css->hw_get, 0xff,
(css->hw_end - css->hw_get) * sizeof(*src));
}
gr->cs_data->hw_get = src;
css_hw_set_handled_snapshots(g, sid);
if (pending != sid) {
/* not all entries proceed correctly. some of problems */
/* reported as overflows, some as orphaned perfmons, */
/* but it will be better notify with summary about it */
gk20a_warn(dev_from_gk20a(g),
"cyclestats: done %u from %u entries\n",
sid, pending);
}
return 0;
}
static u32 css_gr_allocate_perfmon_ids(struct gk20a_cs_snapshot *data,
u32 count)
{
u32 *pids = data->perfmon_ids;
u32 f;
u32 e = CSS_MAX_PERFMON_IDS - count;
if (!count || count > CSS_MAX_PERFMON_IDS - CSS_FIRST_PERFMON_ID)
return 0;
for (f = CSS_FIRST_PERFMON_ID; f < e; f++) {
u32 slots = 0;
u32 cur;
u32 end = f + count;
/* lookup for continuous hole [f, f+count) of unused bits */
for (cur = f; cur < end; cur++) {
if (CSS_PERFMON_GET(pids, cur))
break;
slots++;
}
if (count == slots) {
/* we found of hole of unused bits with required */
/* length -> can occupy it for our perfmon IDs */
for (cur = f; cur < end; cur++)
CSS_PERFMON_USE(pids, cur);
return f;
}
}
return 0;
}
static u32 css_gr_release_perfmon_ids(struct gk20a_cs_snapshot *data,
u32 start,
u32 count)
{
u32 *pids = data->perfmon_ids;
u32 end = start + count;
u32 cnt = 0;
if (start >= CSS_FIRST_PERFMON_ID && end <= CSS_MAX_PERFMON_IDS) {
u32 i;
for (i = start; i < end; i++) {
if (CSS_PERFMON_GET(pids, i)) {
CSS_PERFMON_REL(pids, i);
cnt++;
}
}
}
return cnt;
}
static int css_gr_free_client_data(struct gk20a_cs_snapshot *data,
struct gk20a_cs_snapshot_client *client)
{
int ret = 0;
list_del(&client->list);
if (client->perfmon_start && client->perfmon_count) {
if (client->perfmon_count != css_gr_release_perfmon_ids(data,
client->perfmon_start, client->perfmon_count))
ret = -EINVAL;
}
if (client->dma_handler) {
dma_buf_vunmap(client->dma_handler, client->snapshot);
dma_buf_put(client->dma_handler);
}
kfree(client);
return ret;
}
static int css_gr_create_client_data(struct gk20a_cs_snapshot *data,
u32 dmabuf_fd, u32 perfmon_count,
struct gk20a_cs_snapshot_client **client)
{
struct gk20a_cs_snapshot_client *cur;
int ret = 0;
cur = kzalloc(sizeof(*cur), GFP_KERNEL);
if (!cur) {
ret = -ENOMEM;
goto failed;
}
cur->dmabuf_fd = dmabuf_fd;
cur->dma_handler = dma_buf_get(cur->dmabuf_fd);
if (IS_ERR(cur->dma_handler)) {
ret = PTR_ERR(cur->dma_handler);
cur->dma_handler = NULL;
goto failed;
}
cur->snapshot = (struct gk20a_cs_snapshot_fifo *)
dma_buf_vmap(cur->dma_handler);
if (!cur->snapshot) {
ret = -ENOMEM;
goto failed;
}
cur->snapshot_size = cur->dma_handler->size;
if (cur->snapshot_size < CSS_MIN_CLIENT_SNAPSHOT_SIZE) {
ret = -ENOMEM;
goto failed;
}
memset(cur->snapshot, 0, sizeof(*cur->snapshot));
cur->snapshot->start = sizeof(*cur->snapshot);
/* we should be ensure that can fit all fifo entries here */
cur->snapshot->end =
CSS_FIFO_ENTRY_CAPACITY(cur->snapshot_size)
* sizeof(struct gk20a_cs_snapshot_fifo_entry)
+ sizeof(struct gk20a_cs_snapshot_fifo);
cur->snapshot->get = cur->snapshot->start;
cur->snapshot->put = cur->snapshot->start;
cur->perfmon_count = perfmon_count;
if (cur->perfmon_count) {
cur->perfmon_start = css_gr_allocate_perfmon_ids(data,
cur->perfmon_count);
if (!cur->perfmon_start) {
ret = -ENOENT;
goto failed;
}
}
list_add_tail(&cur->list, &data->clients);
*client = cur;
return 0;
failed:
*client = NULL;
if (cur)
css_gr_free_client_data(data, cur);
return ret;
}
int gr_gk20a_css_attach(struct gk20a *g,
u32 dmabuf_fd,
u32 perfmon_count,
u32 *perfmon_start,
struct gk20a_cs_snapshot_client **cs_client)
{
int ret = 0;
struct gr_gk20a *gr;
if (!g->allow_all)
return -EACCES;
/* we must have a placeholder to store pointer to client structure */
if (!cs_client)
return -EINVAL;
gr = &g->gr;
*cs_client = NULL;
mutex_lock(&gr->cs_lock);
ret = css_gr_create_shared_data(gr);
if (ret)
goto failed;
ret = css_gr_create_client_data(gr->cs_data,
dmabuf_fd,
perfmon_count,
cs_client);
if (ret)
goto failed;
ret = css_hw_enable_snapshot(gr, (*cs_client)->snapshot_size);
if (ret)
goto failed;
if (perfmon_start)
*perfmon_start = (*cs_client)->perfmon_start;
mutex_unlock(&gr->cs_lock);
return 0;
failed:
if (gr->cs_data) {
if (*cs_client) {
css_gr_free_client_data(gr->cs_data, *cs_client);
*cs_client = NULL;
}
if (list_empty(&gr->cs_data->clients))
css_gr_free_shared_data(gr);
}
mutex_unlock(&gr->cs_lock);
if (perfmon_start)
*perfmon_start = 0;
return ret;
}
int gr_gk20a_css_detach(struct gk20a *g,
struct gk20a_cs_snapshot_client *cs_client)
{
int ret = 0;
struct gr_gk20a *gr;
if (!g->allow_all)
return -EACCES;
if (!cs_client)
return -EINVAL;
gr = &g->gr;
mutex_lock(&gr->cs_lock);
if (gr->cs_data) {
struct gk20a_cs_snapshot *data = gr->cs_data;
ret = css_gr_free_client_data(data, cs_client);
if (list_empty(&data->clients))
css_gr_free_shared_data(gr);
} else {
ret = -EBADF;
}
mutex_unlock(&gr->cs_lock);
return ret;
}
int gr_gk20a_css_flush(struct gk20a *g,
struct gk20a_cs_snapshot_client *cs_client)
{
int ret = 0;
struct gr_gk20a *gr;
if (!g->allow_all)
return -EACCES;
if (!cs_client)
return -EINVAL;
gr = &g->gr;
mutex_lock(&gr->cs_lock);
ret = css_gr_flush_snapshots(gr);
mutex_unlock(&gr->cs_lock);
return ret;
}
/* helper function with locking to cleanup snapshot code code in gr_gk20a.c */
void gr_gk20a_free_cyclestats_snapshot_data(struct gk20a *g)
{
struct gr_gk20a *gr = &g->gr;
mutex_lock(&gr->cs_lock);
css_gr_free_shared_data(gr);
mutex_unlock(&gr->cs_lock);
}

View File

@@ -2011,8 +2011,10 @@ int gk20a_init_gpu_characteristics(struct gk20a *g)
gk20a_platform_has_syncpoints(g->dev))
gpu->flags |= NVGPU_GPU_FLAGS_HAS_SYNCPOINTS;
if (IS_ENABLED(CONFIG_GK20A_CYCLE_STATS))
if (IS_ENABLED(CONFIG_GK20A_CYCLE_STATS)) {
gpu->flags |= NVGPU_GPU_FLAGS_SUPPORT_CYCLE_STATS;
gpu->flags |= NVGPU_GPU_FLAGS_SUPPORT_CYCLE_STATS_SNAPSHOT;
}
gpu->gpc_mask = 1;

View File

@@ -2847,6 +2847,8 @@ static void gk20a_remove_gr_support(struct gr_gk20a *gr)
gk20a_dbg_fn("");
gr_gk20a_free_cyclestats_snapshot_data(g);
gr_gk20a_free_global_ctx_buffers(g);
gk20a_gmmu_free(g, &gr->mmu_wr_mem);
@@ -4523,6 +4525,11 @@ int gk20a_init_gr_support(struct gk20a *g)
gk20a_dbg_fn("");
#if defined(CONFIG_GK20A_CYCLE_STATS)
mutex_init(&g->gr.cs_lock);
g->gr.cs_data = NULL;
#endif
/* this is required before gr_gk20a_init_ctx_state */
mutex_init(&g->gr.fecs_mutex);

View File

@@ -170,6 +170,11 @@ struct sm_info {
u8 tpc_index;
};
#if defined(CONFIG_GK20A_CYCLE_STATS)
struct gk20a_cs_snapshot_client;
struct gk20a_cs_snapshot;
#endif
struct gr_gk20a {
struct gk20a *g;
struct {
@@ -294,6 +299,10 @@ struct gr_gk20a {
u32 fbp_en_mask;
u32 no_of_sm;
struct sm_info *sm_to_cluster;
#if defined(CONFIG_GK20A_CYCLE_STATS)
struct mutex cs_lock;
struct gk20a_cs_snapshot *cs_data;
#endif
};
void gk20a_fecs_dump_falcon_stats(struct gk20a *g);
@@ -497,4 +506,27 @@ void gr_gk20a_free_gr_ctx(struct gk20a *g,
int gr_gk20a_halt_pipe(struct gk20a *g);
int gr_gk20a_debugfs_init(struct gk20a *g);
#if defined(CONFIG_GK20A_CYCLE_STATS)
int gr_gk20a_css_attach(struct gk20a *g, /* in - main hw structure */
u32 dmabuf_fd, /* in - dma mapped memory */
u32 perfmon_id_count, /* in - number of perfmons*/
u32 *perfmon_id_start, /* out- index of first pm */
/* out - pointer to client data used in later */
struct gk20a_cs_snapshot_client **css_client);
int gr_gk20a_css_detach(struct gk20a *g,
struct gk20a_cs_snapshot_client *css_client);
int gr_gk20a_css_flush(struct gk20a *g,
struct gk20a_cs_snapshot_client *css_client);
void gr_gk20a_free_cyclestats_snapshot_data(struct gk20a *g);
#else
/* fake empty cleanup function if no cyclestats snapshots enabled */
static inline void gr_gk20a_free_cyclestats_snapshot_data(struct gk20a *g)
{
(void)g;
}
#endif
#endif /*__GR_GK20A_H__*/

View File

@@ -50,6 +50,38 @@
#ifndef _hw_perf_gk20a_h_
#define _hw_perf_gk20a_h_
static inline u32 perf_pmasys_control_r(void)
{
return 0x001b4000;
}
static inline u32 perf_pmasys_control_membuf_status_v(u32 r)
{
return (r >> 4) & 0x1;
}
static inline u32 perf_pmasys_control_membuf_status_overflowed_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_control_membuf_status_overflowed_f(void)
{
return 0x10;
}
static inline u32 perf_pmasys_control_membuf_clear_status_f(u32 v)
{
return (v & 0x1) << 5;
}
static inline u32 perf_pmasys_control_membuf_clear_status_v(u32 r)
{
return (r >> 5) & 0x1;
}
static inline u32 perf_pmasys_control_membuf_clear_status_doit_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_control_membuf_clear_status_doit_f(void)
{
return 0x20;
}
static inline u32 perf_pmasys_mem_block_r(void)
{
return 0x001b4070;
@@ -74,6 +106,22 @@ static inline u32 perf_pmasys_mem_block_target_lfb_f(void)
{
return 0x0;
}
static inline u32 perf_pmasys_mem_block_target_sys_coh_v(void)
{
return 0x00000002;
}
static inline u32 perf_pmasys_mem_block_target_sys_coh_f(void)
{
return 0x20000000;
}
static inline u32 perf_pmasys_mem_block_target_sys_ncoh_v(void)
{
return 0x00000003;
}
static inline u32 perf_pmasys_mem_block_target_sys_ncoh_f(void)
{
return 0x30000000;
}
static inline u32 perf_pmasys_mem_block_valid_f(u32 v)
{
return (v & 0x1) << 31;
@@ -102,6 +150,10 @@ static inline u32 perf_pmasys_outbase_r(void)
{
return 0x001b4074;
}
static inline u32 perf_pmasys_outbase_ptr_f(u32 v)
{
return (v & 0x7ffffff) << 5;
}
static inline u32 perf_pmasys_outbaseupper_r(void)
{
return 0x001b4078;
@@ -114,4 +166,40 @@ static inline u32 perf_pmasys_outsize_r(void)
{
return 0x001b407c;
}
static inline u32 perf_pmasys_outsize_numbytes_f(u32 v)
{
return (v & 0x7ffffff) << 5;
}
static inline u32 perf_pmasys_mem_bytes_r(void)
{
return 0x001b4084;
}
static inline u32 perf_pmasys_mem_bytes_numbytes_f(u32 v)
{
return (v & 0xfffffff) << 4;
}
static inline u32 perf_pmasys_mem_bump_r(void)
{
return 0x001b4088;
}
static inline u32 perf_pmasys_mem_bump_numbytes_f(u32 v)
{
return (v & 0xfffffff) << 4;
}
static inline u32 perf_pmasys_enginestatus_r(void)
{
return 0x001b40a4;
}
static inline u32 perf_pmasys_enginestatus_rbufempty_f(u32 v)
{
return (v & 0x1) << 4;
}
static inline u32 perf_pmasys_enginestatus_rbufempty_empty_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_enginestatus_rbufempty_empty_f(void)
{
return 0x10;
}
#endif

View File

@@ -0,0 +1,205 @@
/*
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Function naming determines intended use:
*
* <x>_r(void) : Returns the offset for register <x>.
*
* <x>_o(void) : Returns the offset for element <x>.
*
* <x>_w(void) : Returns the word offset for word (4 byte) element <x>.
*
* <x>_<y>_s(void) : Returns size of field <y> of register <x> in bits.
*
* <x>_<y>_f(u32 v) : Returns a value based on 'v' which has been shifted
* and masked to place it at field <y> of register <x>. This value
* can be |'d with others to produce a full register value for
* register <x>.
*
* <x>_<y>_m(void) : Returns a mask for field <y> of register <x>. This
* value can be ~'d and then &'d to clear the value of field <y> for
* register <x>.
*
* <x>_<y>_<z>_f(void) : Returns the constant value <z> after being shifted
* to place it at field <y> of register <x>. This value can be |'d
* with others to produce a full register value for <x>.
*
* <x>_<y>_v(u32 r) : Returns the value of field <y> from a full register
* <x> value 'r' after being shifted to place its LSB at bit 0.
* This value is suitable for direct comparison with other unshifted
* values appropriate for use in field <y> of register <x>.
*
* <x>_<y>_<z>_v(void) : Returns the constant value for <z> defined for
* field <y> of register <x>. This value is suitable for direct
* comparison with unshifted values appropriate for use in field <y>
* of register <x>.
*/
#ifndef _hw_perf_gm20b_h_
#define _hw_perf_gm20b_h_
static inline u32 perf_pmasys_control_r(void)
{
return 0x001b4000;
}
static inline u32 perf_pmasys_control_membuf_status_v(u32 r)
{
return (r >> 4) & 0x1;
}
static inline u32 perf_pmasys_control_membuf_status_overflowed_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_control_membuf_status_overflowed_f(void)
{
return 0x10;
}
static inline u32 perf_pmasys_control_membuf_clear_status_f(u32 v)
{
return (v & 0x1) << 5;
}
static inline u32 perf_pmasys_control_membuf_clear_status_v(u32 r)
{
return (r >> 5) & 0x1;
}
static inline u32 perf_pmasys_control_membuf_clear_status_doit_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_control_membuf_clear_status_doit_f(void)
{
return 0x20;
}
static inline u32 perf_pmasys_mem_block_r(void)
{
return 0x001b4070;
}
static inline u32 perf_pmasys_mem_block_base_f(u32 v)
{
return (v & 0xfffffff) << 0;
}
static inline u32 perf_pmasys_mem_block_target_f(u32 v)
{
return (v & 0x3) << 28;
}
static inline u32 perf_pmasys_mem_block_target_v(u32 r)
{
return (r >> 28) & 0x3;
}
static inline u32 perf_pmasys_mem_block_target_lfb_v(void)
{
return 0x00000000;
}
static inline u32 perf_pmasys_mem_block_target_lfb_f(void)
{
return 0x0;
}
static inline u32 perf_pmasys_mem_block_target_sys_coh_v(void)
{
return 0x00000002;
}
static inline u32 perf_pmasys_mem_block_target_sys_coh_f(void)
{
return 0x20000000;
}
static inline u32 perf_pmasys_mem_block_target_sys_ncoh_v(void)
{
return 0x00000003;
}
static inline u32 perf_pmasys_mem_block_target_sys_ncoh_f(void)
{
return 0x30000000;
}
static inline u32 perf_pmasys_mem_block_valid_f(u32 v)
{
return (v & 0x1) << 31;
}
static inline u32 perf_pmasys_mem_block_valid_v(u32 r)
{
return (r >> 31) & 0x1;
}
static inline u32 perf_pmasys_mem_block_valid_true_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_mem_block_valid_true_f(void)
{
return 0x80000000;
}
static inline u32 perf_pmasys_mem_block_valid_false_v(void)
{
return 0x00000000;
}
static inline u32 perf_pmasys_mem_block_valid_false_f(void)
{
return 0x0;
}
static inline u32 perf_pmasys_outbase_r(void)
{
return 0x001b4074;
}
static inline u32 perf_pmasys_outbase_ptr_f(u32 v)
{
return (v & 0x7ffffff) << 5;
}
static inline u32 perf_pmasys_outbaseupper_r(void)
{
return 0x001b4078;
}
static inline u32 perf_pmasys_outbaseupper_ptr_f(u32 v)
{
return (v & 0xff) << 0;
}
static inline u32 perf_pmasys_outsize_r(void)
{
return 0x001b407c;
}
static inline u32 perf_pmasys_outsize_numbytes_f(u32 v)
{
return (v & 0x7ffffff) << 5;
}
static inline u32 perf_pmasys_mem_bytes_r(void)
{
return 0x001b4084;
}
static inline u32 perf_pmasys_mem_bytes_numbytes_f(u32 v)
{
return (v & 0xfffffff) << 4;
}
static inline u32 perf_pmasys_mem_bump_r(void)
{
return 0x001b4088;
}
static inline u32 perf_pmasys_mem_bump_numbytes_f(u32 v)
{
return (v & 0xfffffff) << 4;
}
static inline u32 perf_pmasys_enginestatus_r(void)
{
return 0x001b40a4;
}
static inline u32 perf_pmasys_enginestatus_rbufempty_f(u32 v)
{
return (v & 0x1) << 4;
}
static inline u32 perf_pmasys_enginestatus_rbufempty_empty_v(void)
{
return 0x00000001;
}
static inline u32 perf_pmasys_enginestatus_rbufempty_empty_f(void)
{
return 0x10;
}
#endif

View File

@@ -106,6 +106,8 @@ struct nvgpu_gpu_zbc_query_table_args {
#define NVGPU_GPU_FLAGS_SUPPORT_CYCLE_STATS (1 << 4)
/* MAP_BUFFER_EX with unmapped PTE */
#define NVGPU_GPU_FLAGS_SUPPORT_UNMAPPED_PTE (1 << 5)
/* NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT is available */
#define NVGPU_GPU_FLAGS_SUPPORT_CYCLE_STATS_SNAPSHOT (1 << 6)
struct nvgpu_gpu_characteristics {
__u32 arch;
@@ -731,6 +733,21 @@ struct nvgpu_channel_events_ctrl_args {
#define NVGPU_IOCTL_CHANNEL_EVENTS_CTRL_CMD_ENABLE 1
#define NVGPU_IOCTL_CHANNEL_EVENTS_CTRL_CMD_CLEAR 2
/* cycle stats snapshot buffer support for mode E */
struct nvgpu_cycle_stats_snapshot_args {
__u32 cmd; /* in: command to handle */
__u32 dmabuf_fd; /* in: dma buffer handler */
__u32 extra; /* in/out: extra payload e.g.*/
/* counter/start perfmon */
__u32 pad0[1];
};
/* valid commands to control cycle stats shared buffer */
#define NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT_CMD_FLUSH 0
#define NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT_CMD_ATTACH 1
#define NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT_CMD_DETACH 2
#define NVGPU_IOCTL_CHANNEL_SET_NVMAP_FD \
_IOW(NVGPU_IOCTL_MAGIC, 5, struct nvgpu_set_nvmap_fd_args)
#define NVGPU_IOCTL_CHANNEL_SET_TIMEOUT \
@@ -769,9 +786,11 @@ struct nvgpu_channel_events_ctrl_args {
_IO(NVGPU_IOCTL_MAGIC, 116)
#define NVGPU_IOCTL_CHANNEL_EVENTS_CTRL \
_IOW(NVGPU_IOCTL_MAGIC, 117, struct nvgpu_channel_events_ctrl_args)
#define NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT \
_IOWR(NVGPU_IOCTL_MAGIC, 118, struct nvgpu_cycle_stats_snapshot_args)
#define NVGPU_IOCTL_CHANNEL_LAST \
_IOC_NR(NVGPU_IOCTL_CHANNEL_EVENTS_CTRL)
_IOC_NR(NVGPU_IOCTL_CHANNEL_CYCLE_STATS_SNAPSHOT)
#define NVGPU_IOCTL_CHANNEL_MAX_ARG_SIZE sizeof(struct nvgpu_submit_gpfifo_args)
/*