gpu: nvgpu: add more tests for utils

Add more tests as part of utils UT.

Jira NVGPU-4478

Change-Id: Iaf8f29cd78b03a6a62a15dab11b67f91197eadce
Signed-off-by: ajesh <akv@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2284342
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
This commit is contained in:
ajesh
2020-01-23 15:53:24 +05:30
committed by Alex Waterman
parent 8aac90ce53
commit 9f021d2658
2 changed files with 686 additions and 3 deletions

View File

@@ -30,6 +30,29 @@
#include "posix-utils.h"
#define KHZ (1000U)
#define MHZ (1000000U)
#define ARRAY1_SIZE 4
#define ARRAY2_SIZE 10
#define PAGE_ALIGN_TEST_VALUE 0x3fffffff
#define ALIGN_TEST_VALUE 0xffff
#define ALIGN_WITH_VALUE 0x10
#define ALIGN_WITH_MASK 0x3
#define TO_ROUND_VALUE 11U
#define ROUND_BY_VALUE 4U
#define ROUND_UP_RESULT 12U
#define ROUND_DOWN_RESULT 8U
struct test_container {
uint32_t var1;
uint32_t var2;
};
struct test_container cont = {20, 30};
/*
* Test to ensure the EXPECT_BUG construct works as intended by making sure it
* behaves properly when BUG is called or not.
@@ -73,6 +96,15 @@ int test_hamming_weight(struct unit_module *m,
}
}
for (i = 0; i < 32; i++) {
hwt_32bit = (unsigned int) 1 << i;
result = hweight32(hwt_32bit);
if (result != 1) {
unit_return_fail(m,
"hweight32 failed for %d\n", hwt_32bit);
}
}
for (i = 0; i < 64; i++) {
hwt_64bit = (unsigned long) 1 << i;
result = nvgpu_posix_hweight64(hwt_64bit);
@@ -82,6 +114,15 @@ int test_hamming_weight(struct unit_module *m,
}
}
for (i = 0; i < 64; i++) {
hwt_64bit = (unsigned long) 1 << i;
result = hweight_long(hwt_64bit);
if (result != 1) {
unit_return_fail(m,
"hweight_long failed for %lx\n", hwt_64bit);
}
}
hwt_8bit = 0x0;
result = nvgpu_posix_hweight8(hwt_8bit);
if (result != 0) {
@@ -124,6 +165,20 @@ int test_hamming_weight(struct unit_module *m,
"32 bit hwt failed for %d\n", hwt_32bit);
}
hwt_32bit = 0x0;
result = hweight32(hwt_32bit);
if (result != 0) {
unit_return_fail(m,
"hweight32 failed for %d\n", hwt_32bit);
}
hwt_32bit = 0xffffffff;
result = hweight32(hwt_32bit);
if (result != 32) {
unit_return_fail(m,
"hweight32 failed for %d\n", hwt_32bit);
}
hwt_64bit = 0x0;
result = nvgpu_posix_hweight64(hwt_64bit);
if (result != 0) {
@@ -138,6 +193,20 @@ int test_hamming_weight(struct unit_module *m,
"64 bit hwt failed for %ld\n", hwt_64bit);
}
hwt_64bit = 0x0;
result = hweight_long(hwt_64bit);
if (result != 0) {
unit_return_fail(m,
"hweight_long failed for %ld\n", hwt_64bit);
}
hwt_64bit = 0xffffffffffffffff;
result = hweight_long(hwt_64bit);
if (result != 64) {
unit_return_fail(m,
"hweight_long failed for %ld\n", hwt_64bit);
}
return UNIT_SUCCESS;
}
@@ -164,9 +233,395 @@ int test_be32tocpu(struct unit_module *m,
return UNIT_SUCCESS;
}
int test_minmax(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t i;
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t result;
a = 10;
b = 20;
c = 30;
for (i = 0; i < 10; i++) {
result = min(a, b);
if (result != a) {
unit_return_fail(m, "min failure %d\n", result);
}
result = min(b, a);
if (result != a) {
unit_return_fail(m, "min failure %d\n", result);
}
a += 5;
b += 5;
}
a = 100;
b = 200;
c = 300;
for (i = 0; i < 10; i++) {
result = min3(a, b, c);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(a, c, b);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(b, a, c);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(b, c, a);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(c, a, b);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(c, b, a);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
a += 5;
b += 5;
c += 5;
}
b = 2000;
c = 3000;
for (i = 0; i < 10; i++) {
result = min_t(uint32_t, b, c);
if (result != b) {
unit_return_fail(m, "min_t failure %d\n", result);
}
result = min_t(uint32_t, c, b);
if (result != b) {
unit_return_fail(m, "min_t failure %d\n", result);
}
b += 100;
c += 100;
}
a = 1000;
b = 2000;
for (i = 0; i < 10; i++) {
result = max(a, b);
if (result != b) {
unit_return_fail(m, "max failure %d\n", result);
}
result = max(b, a);
if (result != b) {
unit_return_fail(m, "max failure %d\n", result);
}
a += 100;
b += 100;
}
return UNIT_SUCCESS;
}
int test_arraysize(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result;
uint32_t array1[ARRAY1_SIZE] = {0};
uint64_t array2[ARRAY2_SIZE] = {0};
result = ARRAY_SIZE(array1);
if (result != ARRAY1_SIZE) {
unit_return_fail(m, "ARRAY SIZE failure %d\n", result);
}
result = ARRAY_SIZE(array2);
if (result != ARRAY2_SIZE) {
unit_return_fail(m, "ARRAY SIZE failure %d\n", result);
}
return UNIT_SUCCESS;
}
int test_typecheck(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result;
unsigned int test1;
unsigned long test2;
signed int test3;
signed long test4;
result = IS_UNSIGNED_TYPE(test1);
if (!result) {
unit_return_fail(m,
"IS_UNSIGNED_TYPE failure for uint %d\n", result);
}
result = IS_UNSIGNED_TYPE(test2);
if (!result) {
unit_return_fail(m,
"IS_UNSIGNED_TYPE failure for ulong %d\n", result);
}
result = IS_UNSIGNED_TYPE(test3);
if (result) {
unit_return_fail(m,
"IS_UNSIGNED_TYPE failure for int %d\n", result);
}
result = IS_UNSIGNED_LONG_TYPE(test2);
if (!result) {
unit_return_fail(m,
"IS_UNSIGNED_LONG_TYPE failure for ulong %d\n",
result);
}
result = IS_UNSIGNED_LONG_TYPE(test4);
if (result) {
unit_return_fail(m,
"IS_UNSIGNED_LONG_TYPE failure for long %d\n",
result);
}
result = IS_SIGNED_LONG_TYPE(test2);
if (result) {
unit_return_fail(m,
"IS_SIGNED_LONG_TYPE failure for ulong %d\n",
result);
}
result = IS_SIGNED_LONG_TYPE(test4);
if (!result) {
unit_return_fail(m,
"IS_SIGNED_LONG_TYPE failure for long %d\n",
result);
}
return UNIT_SUCCESS;
}
int test_align_macros(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result;
unsigned int test1;
test1 = ALIGN_TEST_VALUE;
result = ALIGN_WITH_VALUE;
test1 = ALIGN(test1, result);
if (test1 & (ALIGN_WITH_VALUE - 1)) {
unit_return_fail(m,
"ALIGN failure %x\n", test1);
}
test1 = ALIGN_TEST_VALUE;
result = ALIGN_WITH_MASK;
test1 = ALIGN_MASK(test1, result);
if (test1 & ALIGN_WITH_MASK) {
unit_return_fail(m,
"ALIGN_MASK failure %x\n", test1);
}
test1 = PAGE_ALIGN_TEST_VALUE;
result = PAGE_ALIGN(test1);
if (result & (PAGE_SIZE - 1)) {
unit_return_fail(m,
"PAGE_ALIGN failure %x\n", result);
}
return UNIT_SUCCESS;
}
int test_round_macros(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result, i, test1;
for (i = 1; i < 8; i++) {
result = 1U << i;
if (round_mask(test1, result) != (result - 1U)) {
unit_return_fail(m,
"round_mask failure %d\n", result);
}
}
result = ROUND_BY_VALUE;
for (i = 0; i < ROUND_BY_VALUE; i++) {
test1 = (ROUND_DOWN_RESULT + 1U) + i;
if (round_up(test1, result) != ROUND_UP_RESULT) {
unit_return_fail(m, "round_up failure %d %d\n", test1, i);
}
}
result = ROUND_BY_VALUE;
for (i = 0; i < ROUND_BY_VALUE; i++) {
test1 = (ROUND_UP_RESULT - 1U) - i;
if (round_down(test1, result) != ROUND_DOWN_RESULT) {
unit_return_fail(m, "round_down failure\n");
}
}
return UNIT_SUCCESS;
}
int test_write_once(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result, i, test1;
test1 = 20;
for (i = 0 ; i < 10; i++) {
test1 += 1;
WRITE_ONCE(result, test1);
if (result != test1) {
unit_return_fail(m,
"WRITE_ONCE failure %d\n", result);
}
}
return UNIT_SUCCESS;
}
int test_div_macros(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result, test1;
uint64_t test2, test5;
test1 = 199/20;
test2 = DIV_ROUND_UP_U64(199, 20);
if (test2 != (test1 + 1)) {
unit_return_fail(m,
"DIV_ROUND_UP_U64 failure %ld\n", test2);
}
test1 = 239/40;
result = DIV_ROUND_UP((uint32_t) 239, (uint32_t) 40);
if (result != (test1 + 1)) {
unit_return_fail(m,
"DIV_ROUND_UP failure %d\n", result);
}
test1 = 640;
result = 100;
do_div(test1, result);
if (test1 != 6) {
unit_return_fail(m,
"do_div failure %d\n", test1);
}
test2 = 800;
test5 = 200;
result = div64_u64(test2, test5);
if (result != (test2/test5)) {
unit_return_fail(m,
"div64_u64 failure %d\n", result);
}
return UNIT_SUCCESS;
}
int test_containerof(struct unit_module *m,
struct gk20a *g, void *args)
{
struct test_container *contptr;
struct test_container *contptr1;
struct test_container *contptr2;
uint32_t *varptr1;
uint32_t *varptr2;
contptr = &cont;
varptr1 = &cont.var1;
varptr2 = &cont.var2;
contptr1 = container_of(varptr1, struct test_container, var1);
contptr2 = container_of(varptr2, struct test_container, var2);
if ((contptr1 != contptr) || (contptr2 != contptr)) {
unit_return_fail(m, "container_of failure\n");
}
return UNIT_SUCCESS;
}
int test_hertzconversion(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t i, hz, khz, mhz;
uint64_t long_hz;
for (i = 1; i < 10; i++) {
hz = i * 1000U;
khz = HZ_TO_KHZ(hz);
if (khz != i) {
unit_return_fail(m, "HZ_TO_KHZ failure\n");
}
if (hz != KHZ_TO_HZ(i)) {
unit_return_fail(m, "KHZ_TO_HZ failure\n");
}
hz = i * 1000000U;
mhz = HZ_TO_MHZ(hz);
if (mhz != i) {
unit_return_fail(m, "HZ_TO_MHZ failure\n");
}
long_hz = i * 1000000U;
mhz = HZ_TO_MHZ_ULL(long_hz);
if (mhz != i) {
unit_return_fail(m, "HZ_TO_MHZ_ULL failure\n");
}
}
for (i = 0; i < 10; i++) {
khz = i * 1000U;
mhz = KHZ_TO_MHZ(khz);
if (mhz != i) {
unit_return_fail(m, "KHZ_TO_MHZ failure\n");
}
if (khz != MHZ_TO_KHZ(i)) {
unit_return_fail(m, "MHZ_TO_KHZ failure\n");
}
}
for (i = 0; i < 10; i++) {
hz = i * 1000000;
if (hz != MHZ_TO_HZ_ULL(i)) {
unit_return_fail(m, "MHZ_TO_HZ_ULL failure\n");
}
}
return UNIT_SUCCESS;
}
struct unit_module_test posix_utils_tests[] = {
UNIT_TEST(hweight_test, test_hamming_weight, NULL, 0),
UNIT_TEST(be32tocpu_test, test_be32tocpu, NULL, 0),
UNIT_TEST(minmax_test, test_minmax, NULL, 0),
UNIT_TEST(arraysize_test, test_arraysize, NULL, 0),
UNIT_TEST(typecheck_test, test_typecheck, NULL, 0),
UNIT_TEST(alignmacros_test, test_align_macros, NULL, 0),
UNIT_TEST(roundmacros_test, test_round_macros, NULL, 0),
UNIT_TEST(writeonce_test, test_write_once, NULL, 0),
UNIT_TEST(divmacros_test, test_div_macros, NULL, 0),
UNIT_TEST(containerof_test, test_containerof, NULL, 0),
UNIT_TEST(conversion_test, test_hertzconversion, NULL, 0),
};
UNIT_MODULE(posix_utils, posix_utils_tests, UNIT_PRIO_POSIX_TEST);