gpu: nvgpu: add more tests for utils

Add more tests as part of utils UT.

Jira NVGPU-4478

Change-Id: Iaf8f29cd78b03a6a62a15dab11b67f91197eadce
Signed-off-by: ajesh <akv@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2284342
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
GVS: Gerrit_Virtual_Submit
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
This commit is contained in:
ajesh
2020-01-23 15:53:24 +05:30
committed by Alex Waterman
parent 8aac90ce53
commit 9f021d2658
2 changed files with 686 additions and 3 deletions

View File

@@ -30,6 +30,29 @@
#include "posix-utils.h" #include "posix-utils.h"
#define KHZ (1000U)
#define MHZ (1000000U)
#define ARRAY1_SIZE 4
#define ARRAY2_SIZE 10
#define PAGE_ALIGN_TEST_VALUE 0x3fffffff
#define ALIGN_TEST_VALUE 0xffff
#define ALIGN_WITH_VALUE 0x10
#define ALIGN_WITH_MASK 0x3
#define TO_ROUND_VALUE 11U
#define ROUND_BY_VALUE 4U
#define ROUND_UP_RESULT 12U
#define ROUND_DOWN_RESULT 8U
struct test_container {
uint32_t var1;
uint32_t var2;
};
struct test_container cont = {20, 30};
/* /*
* Test to ensure the EXPECT_BUG construct works as intended by making sure it * Test to ensure the EXPECT_BUG construct works as intended by making sure it
* behaves properly when BUG is called or not. * behaves properly when BUG is called or not.
@@ -73,6 +96,15 @@ int test_hamming_weight(struct unit_module *m,
} }
} }
for (i = 0; i < 32; i++) {
hwt_32bit = (unsigned int) 1 << i;
result = hweight32(hwt_32bit);
if (result != 1) {
unit_return_fail(m,
"hweight32 failed for %d\n", hwt_32bit);
}
}
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
hwt_64bit = (unsigned long) 1 << i; hwt_64bit = (unsigned long) 1 << i;
result = nvgpu_posix_hweight64(hwt_64bit); result = nvgpu_posix_hweight64(hwt_64bit);
@@ -82,6 +114,15 @@ int test_hamming_weight(struct unit_module *m,
} }
} }
for (i = 0; i < 64; i++) {
hwt_64bit = (unsigned long) 1 << i;
result = hweight_long(hwt_64bit);
if (result != 1) {
unit_return_fail(m,
"hweight_long failed for %lx\n", hwt_64bit);
}
}
hwt_8bit = 0x0; hwt_8bit = 0x0;
result = nvgpu_posix_hweight8(hwt_8bit); result = nvgpu_posix_hweight8(hwt_8bit);
if (result != 0) { if (result != 0) {
@@ -124,6 +165,20 @@ int test_hamming_weight(struct unit_module *m,
"32 bit hwt failed for %d\n", hwt_32bit); "32 bit hwt failed for %d\n", hwt_32bit);
} }
hwt_32bit = 0x0;
result = hweight32(hwt_32bit);
if (result != 0) {
unit_return_fail(m,
"hweight32 failed for %d\n", hwt_32bit);
}
hwt_32bit = 0xffffffff;
result = hweight32(hwt_32bit);
if (result != 32) {
unit_return_fail(m,
"hweight32 failed for %d\n", hwt_32bit);
}
hwt_64bit = 0x0; hwt_64bit = 0x0;
result = nvgpu_posix_hweight64(hwt_64bit); result = nvgpu_posix_hweight64(hwt_64bit);
if (result != 0) { if (result != 0) {
@@ -138,6 +193,20 @@ int test_hamming_weight(struct unit_module *m,
"64 bit hwt failed for %ld\n", hwt_64bit); "64 bit hwt failed for %ld\n", hwt_64bit);
} }
hwt_64bit = 0x0;
result = hweight_long(hwt_64bit);
if (result != 0) {
unit_return_fail(m,
"hweight_long failed for %ld\n", hwt_64bit);
}
hwt_64bit = 0xffffffffffffffff;
result = hweight_long(hwt_64bit);
if (result != 64) {
unit_return_fail(m,
"hweight_long failed for %ld\n", hwt_64bit);
}
return UNIT_SUCCESS; return UNIT_SUCCESS;
} }
@@ -164,9 +233,395 @@ int test_be32tocpu(struct unit_module *m,
return UNIT_SUCCESS; return UNIT_SUCCESS;
} }
int test_minmax(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t i;
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t result;
a = 10;
b = 20;
c = 30;
for (i = 0; i < 10; i++) {
result = min(a, b);
if (result != a) {
unit_return_fail(m, "min failure %d\n", result);
}
result = min(b, a);
if (result != a) {
unit_return_fail(m, "min failure %d\n", result);
}
a += 5;
b += 5;
}
a = 100;
b = 200;
c = 300;
for (i = 0; i < 10; i++) {
result = min3(a, b, c);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(a, c, b);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(b, a, c);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(b, c, a);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(c, a, b);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
result = min3(c, b, a);
if (result != a) {
unit_return_fail(m, "min3 failure %d\n", result);
}
a += 5;
b += 5;
c += 5;
}
b = 2000;
c = 3000;
for (i = 0; i < 10; i++) {
result = min_t(uint32_t, b, c);
if (result != b) {
unit_return_fail(m, "min_t failure %d\n", result);
}
result = min_t(uint32_t, c, b);
if (result != b) {
unit_return_fail(m, "min_t failure %d\n", result);
}
b += 100;
c += 100;
}
a = 1000;
b = 2000;
for (i = 0; i < 10; i++) {
result = max(a, b);
if (result != b) {
unit_return_fail(m, "max failure %d\n", result);
}
result = max(b, a);
if (result != b) {
unit_return_fail(m, "max failure %d\n", result);
}
a += 100;
b += 100;
}
return UNIT_SUCCESS;
}
int test_arraysize(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result;
uint32_t array1[ARRAY1_SIZE] = {0};
uint64_t array2[ARRAY2_SIZE] = {0};
result = ARRAY_SIZE(array1);
if (result != ARRAY1_SIZE) {
unit_return_fail(m, "ARRAY SIZE failure %d\n", result);
}
result = ARRAY_SIZE(array2);
if (result != ARRAY2_SIZE) {
unit_return_fail(m, "ARRAY SIZE failure %d\n", result);
}
return UNIT_SUCCESS;
}
int test_typecheck(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result;
unsigned int test1;
unsigned long test2;
signed int test3;
signed long test4;
result = IS_UNSIGNED_TYPE(test1);
if (!result) {
unit_return_fail(m,
"IS_UNSIGNED_TYPE failure for uint %d\n", result);
}
result = IS_UNSIGNED_TYPE(test2);
if (!result) {
unit_return_fail(m,
"IS_UNSIGNED_TYPE failure for ulong %d\n", result);
}
result = IS_UNSIGNED_TYPE(test3);
if (result) {
unit_return_fail(m,
"IS_UNSIGNED_TYPE failure for int %d\n", result);
}
result = IS_UNSIGNED_LONG_TYPE(test2);
if (!result) {
unit_return_fail(m,
"IS_UNSIGNED_LONG_TYPE failure for ulong %d\n",
result);
}
result = IS_UNSIGNED_LONG_TYPE(test4);
if (result) {
unit_return_fail(m,
"IS_UNSIGNED_LONG_TYPE failure for long %d\n",
result);
}
result = IS_SIGNED_LONG_TYPE(test2);
if (result) {
unit_return_fail(m,
"IS_SIGNED_LONG_TYPE failure for ulong %d\n",
result);
}
result = IS_SIGNED_LONG_TYPE(test4);
if (!result) {
unit_return_fail(m,
"IS_SIGNED_LONG_TYPE failure for long %d\n",
result);
}
return UNIT_SUCCESS;
}
int test_align_macros(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result;
unsigned int test1;
test1 = ALIGN_TEST_VALUE;
result = ALIGN_WITH_VALUE;
test1 = ALIGN(test1, result);
if (test1 & (ALIGN_WITH_VALUE - 1)) {
unit_return_fail(m,
"ALIGN failure %x\n", test1);
}
test1 = ALIGN_TEST_VALUE;
result = ALIGN_WITH_MASK;
test1 = ALIGN_MASK(test1, result);
if (test1 & ALIGN_WITH_MASK) {
unit_return_fail(m,
"ALIGN_MASK failure %x\n", test1);
}
test1 = PAGE_ALIGN_TEST_VALUE;
result = PAGE_ALIGN(test1);
if (result & (PAGE_SIZE - 1)) {
unit_return_fail(m,
"PAGE_ALIGN failure %x\n", result);
}
return UNIT_SUCCESS;
}
int test_round_macros(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result, i, test1;
for (i = 1; i < 8; i++) {
result = 1U << i;
if (round_mask(test1, result) != (result - 1U)) {
unit_return_fail(m,
"round_mask failure %d\n", result);
}
}
result = ROUND_BY_VALUE;
for (i = 0; i < ROUND_BY_VALUE; i++) {
test1 = (ROUND_DOWN_RESULT + 1U) + i;
if (round_up(test1, result) != ROUND_UP_RESULT) {
unit_return_fail(m, "round_up failure %d %d\n", test1, i);
}
}
result = ROUND_BY_VALUE;
for (i = 0; i < ROUND_BY_VALUE; i++) {
test1 = (ROUND_UP_RESULT - 1U) - i;
if (round_down(test1, result) != ROUND_DOWN_RESULT) {
unit_return_fail(m, "round_down failure\n");
}
}
return UNIT_SUCCESS;
}
int test_write_once(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result, i, test1;
test1 = 20;
for (i = 0 ; i < 10; i++) {
test1 += 1;
WRITE_ONCE(result, test1);
if (result != test1) {
unit_return_fail(m,
"WRITE_ONCE failure %d\n", result);
}
}
return UNIT_SUCCESS;
}
int test_div_macros(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t result, test1;
uint64_t test2, test5;
test1 = 199/20;
test2 = DIV_ROUND_UP_U64(199, 20);
if (test2 != (test1 + 1)) {
unit_return_fail(m,
"DIV_ROUND_UP_U64 failure %ld\n", test2);
}
test1 = 239/40;
result = DIV_ROUND_UP((uint32_t) 239, (uint32_t) 40);
if (result != (test1 + 1)) {
unit_return_fail(m,
"DIV_ROUND_UP failure %d\n", result);
}
test1 = 640;
result = 100;
do_div(test1, result);
if (test1 != 6) {
unit_return_fail(m,
"do_div failure %d\n", test1);
}
test2 = 800;
test5 = 200;
result = div64_u64(test2, test5);
if (result != (test2/test5)) {
unit_return_fail(m,
"div64_u64 failure %d\n", result);
}
return UNIT_SUCCESS;
}
int test_containerof(struct unit_module *m,
struct gk20a *g, void *args)
{
struct test_container *contptr;
struct test_container *contptr1;
struct test_container *contptr2;
uint32_t *varptr1;
uint32_t *varptr2;
contptr = &cont;
varptr1 = &cont.var1;
varptr2 = &cont.var2;
contptr1 = container_of(varptr1, struct test_container, var1);
contptr2 = container_of(varptr2, struct test_container, var2);
if ((contptr1 != contptr) || (contptr2 != contptr)) {
unit_return_fail(m, "container_of failure\n");
}
return UNIT_SUCCESS;
}
int test_hertzconversion(struct unit_module *m,
struct gk20a *g, void *args)
{
uint32_t i, hz, khz, mhz;
uint64_t long_hz;
for (i = 1; i < 10; i++) {
hz = i * 1000U;
khz = HZ_TO_KHZ(hz);
if (khz != i) {
unit_return_fail(m, "HZ_TO_KHZ failure\n");
}
if (hz != KHZ_TO_HZ(i)) {
unit_return_fail(m, "KHZ_TO_HZ failure\n");
}
hz = i * 1000000U;
mhz = HZ_TO_MHZ(hz);
if (mhz != i) {
unit_return_fail(m, "HZ_TO_MHZ failure\n");
}
long_hz = i * 1000000U;
mhz = HZ_TO_MHZ_ULL(long_hz);
if (mhz != i) {
unit_return_fail(m, "HZ_TO_MHZ_ULL failure\n");
}
}
for (i = 0; i < 10; i++) {
khz = i * 1000U;
mhz = KHZ_TO_MHZ(khz);
if (mhz != i) {
unit_return_fail(m, "KHZ_TO_MHZ failure\n");
}
if (khz != MHZ_TO_KHZ(i)) {
unit_return_fail(m, "MHZ_TO_KHZ failure\n");
}
}
for (i = 0; i < 10; i++) {
hz = i * 1000000;
if (hz != MHZ_TO_HZ_ULL(i)) {
unit_return_fail(m, "MHZ_TO_HZ_ULL failure\n");
}
}
return UNIT_SUCCESS;
}
struct unit_module_test posix_utils_tests[] = { struct unit_module_test posix_utils_tests[] = {
UNIT_TEST(hweight_test, test_hamming_weight, NULL, 0), UNIT_TEST(hweight_test, test_hamming_weight, NULL, 0),
UNIT_TEST(be32tocpu_test, test_be32tocpu, NULL, 0), UNIT_TEST(be32tocpu_test, test_be32tocpu, NULL, 0),
UNIT_TEST(minmax_test, test_minmax, NULL, 0),
UNIT_TEST(arraysize_test, test_arraysize, NULL, 0),
UNIT_TEST(typecheck_test, test_typecheck, NULL, 0),
UNIT_TEST(alignmacros_test, test_align_macros, NULL, 0),
UNIT_TEST(roundmacros_test, test_round_macros, NULL, 0),
UNIT_TEST(writeonce_test, test_write_once, NULL, 0),
UNIT_TEST(divmacros_test, test_div_macros, NULL, 0),
UNIT_TEST(containerof_test, test_containerof, NULL, 0),
UNIT_TEST(conversion_test, test_hertzconversion, NULL, 0),
}; };
UNIT_MODULE(posix_utils, posix_utils_tests, UNIT_PRIO_POSIX_TEST); UNIT_MODULE(posix_utils, posix_utils_tests, UNIT_PRIO_POSIX_TEST);

View File

@@ -38,7 +38,8 @@
* Test Type: Feature * Test Type: Feature
* *
* Targets: nvgpu_posix_hweight8, nvgpu_posix_hweight16, * Targets: nvgpu_posix_hweight8, nvgpu_posix_hweight16,
* nvgpu_posix_hweight32, nvgpu_posix_hweight64 * nvgpu_posix_hweight32, nvgpu_posix_hweight64,
* hweight32, hweight_long
* *
* Inputs: None * Inputs: None
* *
@@ -48,7 +49,7 @@
* 2) Return FAIL if the return value from nvgpu_posix_hweight8 is not equal * 2) Return FAIL if the return value from nvgpu_posix_hweight8 is not equal
* to 1 in any of the iterations. * to 1 in any of the iterations.
* 3) Repeat steps 1 and 2 for nvgpu_posix_hweight16, nvgpu_posix_hweight32 * 3) Repeat steps 1 and 2 for nvgpu_posix_hweight16, nvgpu_posix_hweight32
* and nvgpu_posix_hweight64. * nvgpu_posix_hweight64, hweight32 and hweight_long.
* 4) Call nvgpu_posix_hweight8 with input parameter set as 0. * 4) Call nvgpu_posix_hweight8 with input parameter set as 0.
* 5) Return FAIL if the return value from nvgpu_posix_hweight8 is not equal * 5) Return FAIL if the return value from nvgpu_posix_hweight8 is not equal
* to 0. * to 0.
@@ -56,7 +57,7 @@
* 7) Return FAIL if the return value from nvgpu_posix_hweight8 is not equal * 7) Return FAIL if the return value from nvgpu_posix_hweight8 is not equal
* to the number of bits in the input parameter. * to the number of bits in the input parameter.
* 8) Repeat steps 4,5,6 and 7 for nvgpu_posix_hweight16, nvgpu_posix_hweight32 * 8) Repeat steps 4,5,6 and 7 for nvgpu_posix_hweight16, nvgpu_posix_hweight32
* and nvgpu_posix_hweight64. * nvgpu_posix_hweight64, hweight32 and hweight_long.
* *
* Output: * Output:
* The test returns PASS if all the hamming weight function invocations return * The test returns PASS if all the hamming weight function invocations return
@@ -95,4 +96,231 @@ int test_hamming_weight(struct unit_module *m, struct gk20a *g, void *args);
*/ */
int test_be32tocpu(struct unit_module *m, struct gk20a *g, void *args); int test_be32tocpu(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_minmax
*
* Description: Test the min and max implementations.
*
* Test Type: Feature
*
* Targets: min_t, min, min3, max
*
* Inputs: None
*
* Steps:
* 1) Invoke function min in loop with different input parameter values.
* 2) Check if the return value is the minimum value among the parameters
* passed. Else return FAIL.
* 3) Invoke function min3 in loop with different input parameter values.
* 4) Check if the return value is the minimum value among the parameters
* passed. Else return FAIL.
* 5) Invoke function min_t in loop with type and values as input parameters.
* 6) Check if the return value is the minimum value among the parameters
* passed for every iteration. Else return FAIL.
* 7) Invoke function max in loop.
* 8) Check if the return value is the maximum value among the parameters
* passed for every iteration. Else return FAIL.
* 9) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of min and max implementations
* returns the expected value. Otherwise, test returns FAIL.
*
*/
int test_minmax(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_arraysize
*
* Description: Test ARRAY_SIZE macro implementation.
*
* Test Type: Feature
*
* Targets: ARRAY_SIZE
*
* Inputs: None
*
* Steps:
* 1) Invoke macro ARRAY_SIZE with multiple arrays and confirm
* that the results are as expected. Otherwise, return FAIL.
* 4) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of ARRAY_SIZE macro returns
* the results as expected. Otherwise, the test returns FAIL.
*
*/
int test_arraysize(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_typecheck
*
* Description: Test type checking macros.
*
* Test Type: Feature
*
* Targets: IS_UNSIGNED_TYPE, IS_UNSIGNED_LONG_TYPE,
* IS_SIGNED_LONG_TYPE
*
* Inputs: None
*
* Steps:
* 1) Invoke macros IS_UNSIGNED_TYPE, IS_UNSIGNED_LONG_TYPE,
* IS_SIGNED_LONG_TYPE ARRAY_SIZE with multiple data types and confirm
* that the results are as expected. Otherwise, return FAIL.
* 2) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of type checking macros returns
* the results as expected. Otherwise, the test returns FAIL.
*
*/
int test_typecheck(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_align_macros
*
* Description: Test align macro implementations.
*
* Test Type: Feature
*
* Targets: ALIGN, ALIGN_MASK, PAGE_ALIGN
*
* Inputs: None
*
* Steps:
* 1) Invoke macros ALIGN, ALIGN_MASK and PAGE_ALIGN and confirm that the
* results are masked as expected. Otherwise, return FAIL.
* 2) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of various align macros
* returns the results as expected. Otherwise, the test returns FAIL.
*
*/
int test_align_macros(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_round_macros
*
* Description: Test rounding macro implementation.
*
* Test Type: Feature
*
* Targets: round_mask, round_up, round_down
*
* Inputs: None
*
* Steps:
* 1) Invoke macro round_mask in loop and confirm that the mask generated is
* as expected. Otherwise, return FAIL.
* 2) Invoke macros round_up and round_up in loop for various input values and
* confirm that the values are rounded off as expected. Otherwise, return
* FAIL.
* 3) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of round macros returns the
* results as expected. Otherwise, the test returns FAIL.
*
*/
int test_round_macros(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_write_once
*
* Description: Test WRITE_ONCE macro implementation.
*
* Test Type: Feature
*
* Targets: WRITE_ONCE
*
* Inputs: None
*
* Steps:
* 1) Invoke macro WRITE_ONCE in loop and confirm that the value is written
* into the variable as expected. Otherwise, return FAIL.
* 2) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of WRITE_ONCE macro writes the
* value into the variable. Otherwise, the test returns FAIL.
*
*/
int test_write_once(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_div_macros
*
* Description: Test various division macro implementations.
*
* Test Type: Feature
*
* Targets: DIV_ROUND_UP_U64, DIV_ROUND_UP, do_div, div64_u64
*
* Inputs: None
*
* Steps:
* 1) Invoke macros DIV_ROUND_UP_U64, DIV_ROUND_UP, do_div and div64_u64 and
* confirm that the results are as expected. Otherwise, return FAIL.
* 2) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of various division macros
* returns the results as expected. Otherwise, the test returns FAIL.
*
*/
int test_div_macros(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_containerof
*
* Description: Test container_of implementation.
*
* Test Type: Feature
*
* Targets: container_of
*
* Inputs: Global struct instance cont.
*
* Steps:
* 1) Invoke container_of with the first variable ptr in cont.
* 2) Invoke container_of with the second variable ptr in cont.
* 3) Confirm if both the invocation of container_of macro returns the address
* of the global struct instance cont. Otherwise, return FAIL.
* 4) Return PASS.
*
* Output:
* The test returns PASS if both the invocation of container_of returns the
* same address as that of the global struct instance cont. Otherwise, the test
* returns FAIL.
*
*/
int test_containerof(struct unit_module *m, struct gk20a *g, void *args);
/**
* Test specification for test_hertzconversion
*
* Description: Test hertz conversion macro implementation.
*
* Test Type: Feature
*
* Targets: HZ_TO_KHZ, HZ_TO_MHZ, HZ_TO_MHZ_ULL,
* KHZ_TO_HZ, MHZ_TO_KHZ, KHZ_TO_MHZ, MHZ_TO_HZ_ULL
*
* Inputs: None
*
* Steps:
* 1) Invoke various hertz conversion macros with different input values.
* 2) Check and confirm if the conversion macro results in expected value.
* Otherwise, return FAIL.
* 4) Return PASS.
*
* Output:
* The test returns PASS if all the invocations of various hertz conversion
* functions returns the results as expected. Otherwise, the test returns FAIL.
*
*/
int test_hertzconversion(struct unit_module *m, struct gk20a *g, void *args);
#endif /* __UNIT_POSIX_UTILS_H__ */ #endif /* __UNIT_POSIX_UTILS_H__ */