Open source GPL/LGPL release

This commit is contained in:
svcmobrel-release
2025-12-19 15:25:44 -08:00
commit 9fc87a7ec7
2261 changed files with 576825 additions and 0 deletions

View File

@@ -0,0 +1,960 @@
/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/log.h>
#include <nvgpu/errno.h>
#include <nvgpu/timers.h>
#include <nvgpu/bitops.h>
#ifdef CONFIG_NVGPU_LS_PMU
#include <nvgpu/pmu.h>
#include <nvgpu/pmu/mutex.h>
#endif
#include <nvgpu/runlist.h>
#include <nvgpu/engines.h>
#include <nvgpu/engine_status.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/pbdma_status.h>
#include <nvgpu/power_features/pg.h>
#include <nvgpu/channel.h>
#include <nvgpu/soc.h>
#include <nvgpu/device.h>
#include <nvgpu/gr/gr_falcon.h>
#include <nvgpu/gr/gr.h>
#include <nvgpu/gr/gr_instances.h>
#include <nvgpu/fifo.h>
#include <nvgpu/static_analysis.h>
#include <nvgpu/swprofile.h>
#include <nvgpu/fifo/swprofile.h>
#define FECS_METHOD_WFI_RESTORE 0x80000U
enum nvgpu_fifo_engine nvgpu_engine_enum_from_dev(struct gk20a *g,
const struct nvgpu_device *dev)
{
enum nvgpu_fifo_engine ret = NVGPU_ENGINE_INVAL;
if (nvgpu_device_is_graphics(g, dev)) {
ret = NVGPU_ENGINE_GR;
} else if (nvgpu_device_is_ce(g, dev)) {
/* For now, all CE engines have separate runlists. We can
* identify the NVGPU_ENGINE_GRCE type CE using runlist_id
* comparsion logic with GR runlist_id in init_info()
*/
ret = NVGPU_ENGINE_ASYNC_CE;
} else {
ret = NVGPU_ENGINE_INVAL;
}
return ret;
}
const struct nvgpu_device *nvgpu_engine_get_active_eng_info(
struct gk20a *g, u32 engine_id)
{
struct nvgpu_fifo *f = &g->fifo;
if (engine_id >= f->max_engines) {
return NULL;
}
return f->host_engines[engine_id];
}
bool nvgpu_engine_check_valid_id(struct gk20a *g, u32 engine_id)
{
struct nvgpu_fifo *f = &g->fifo;
if (engine_id >= f->max_engines) {
return false;
}
return f->host_engines[engine_id] != NULL;
}
u32 nvgpu_engine_get_gr_id_for_inst(struct gk20a *g, u32 inst_id)
{
const struct nvgpu_device *dev;
dev = nvgpu_device_get(g, NVGPU_DEVTYPE_GRAPHICS, inst_id);
if (dev == NULL) {
nvgpu_warn(g, "No GR devices on this GPU for inst[%u]?!",
inst_id);
return NVGPU_INVALID_ENG_ID;
}
return dev->engine_id;
}
u32 nvgpu_engine_get_gr_id(struct gk20a *g)
{
/* Consider 1st available GR engine */
return nvgpu_engine_get_gr_id_for_inst(g, 0U);
}
u32 nvgpu_engine_act_interrupt_mask(struct gk20a *g, u32 engine_id)
{
const struct nvgpu_device *dev = NULL;
dev = nvgpu_engine_get_active_eng_info(g, engine_id);
if (dev == NULL) {
return 0;
}
return BIT32(dev->intr_id);
}
u32 nvgpu_gr_engine_interrupt_mask(struct gk20a *g)
{
const struct nvgpu_device *dev;
u32 intr_mask = 0U;
u32 i;
for (i = 0U; i < g->num_gr_instances; i++) {
dev = nvgpu_device_get(g, NVGPU_DEVTYPE_GRAPHICS,
nvgpu_gr_get_syspipe_id(g, i));
if (dev == NULL) {
continue;
}
intr_mask |= BIT32(dev->intr_id);
}
return intr_mask;
}
u32 nvgpu_ce_engine_interrupt_mask(struct gk20a *g)
{
const struct nvgpu_device *dev;
u32 i;
u32 mask = 0U;
/*
* For old chips - pre-Pascal - we have COPY[0-2], for new chips we
* have some number of LCE instances. For the purpose of this code we
* imagine a system that could have both; in reality that'll never be
* the case.
*
* This can be cleaned up in the future by defining a SW type for CE and
* hiding this ugliness in the device management code.
*/
for (i = NVGPU_DEVTYPE_COPY0; i <= NVGPU_DEVTYPE_COPY2; i++) {
dev = nvgpu_device_get(g, i, i - NVGPU_DEVTYPE_COPY0);
if (dev == NULL) {
continue;
}
mask |= BIT32(dev->intr_id);
}
/*
* Now take care of LCEs.
*/
for (i = 0U; i < nvgpu_device_count(g, NVGPU_DEVTYPE_LCE); i++) {
dev = nvgpu_device_get(g, NVGPU_DEVTYPE_LCE, i);
nvgpu_assert(dev != NULL);
mask |= BIT32(dev->intr_id);
}
return mask;
}
#ifdef CONFIG_NVGPU_FIFO_ENGINE_ACTIVITY
static void nvgpu_engine_enable_activity(struct gk20a *g,
const struct nvgpu_device *dev)
{
nvgpu_runlist_set_state(g, BIT32(dev->runlist_id), RUNLIST_ENABLED);
}
void nvgpu_engine_enable_activity_all(struct gk20a *g)
{
u32 i;
for (i = 0; i < g->fifo.num_engines; i++) {
nvgpu_engine_enable_activity(g, g->fifo.active_engines[i]);
}
}
int nvgpu_engine_disable_activity(struct gk20a *g,
const struct nvgpu_device *dev,
bool wait_for_idle)
{
u32 pbdma_chid = NVGPU_INVALID_CHANNEL_ID;
u32 engine_chid = NVGPU_INVALID_CHANNEL_ID;
#ifdef CONFIG_NVGPU_LS_PMU
u32 token = PMU_INVALID_MUTEX_OWNER_ID;
int mutex_ret = -EINVAL;
#endif
int err = 0;
struct nvgpu_channel *ch = NULL;
struct nvgpu_engine_status_info engine_status;
struct nvgpu_pbdma_status_info pbdma_status;
unsigned long runlist_served_pbdmas;
unsigned long bit;
u32 pbdma_id;
struct nvgpu_fifo *f = &g->fifo;
nvgpu_log_fn(g, " ");
g->ops.engine_status.read_engine_status_info(g, dev->engine_id,
&engine_status);
if (engine_status.is_busy && !wait_for_idle) {
return -EBUSY;
}
#ifdef CONFIG_NVGPU_LS_PMU
if (g->ops.pmu.is_pmu_supported(g)) {
mutex_ret = nvgpu_pmu_lock_acquire(g, g->pmu,
PMU_MUTEX_ID_FIFO, &token);
}
#endif
nvgpu_runlist_set_state(g, BIT32(dev->runlist_id),
RUNLIST_DISABLED);
runlist_served_pbdmas = f->runlists[dev->runlist_id]->pbdma_bitmask;
for_each_set_bit(bit, &runlist_served_pbdmas,
nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_PBDMA)) {
pbdma_id = U32(bit);
/* chid from pbdma status */
g->ops.pbdma_status.read_pbdma_status_info(g,
pbdma_id,
&pbdma_status);
if (nvgpu_pbdma_status_is_chsw_valid(&pbdma_status) ||
nvgpu_pbdma_status_is_chsw_save(&pbdma_status)) {
pbdma_chid = pbdma_status.id;
} else if (nvgpu_pbdma_status_is_chsw_load(&pbdma_status) ||
nvgpu_pbdma_status_is_chsw_switch(&pbdma_status)) {
pbdma_chid = pbdma_status.next_id;
} else {
/* Nothing to do here */
}
if (pbdma_chid != NVGPU_INVALID_CHANNEL_ID) {
ch = nvgpu_channel_from_id(g, pbdma_chid);
if (ch != NULL) {
err = g->ops.fifo.preempt_channel(g, ch);
nvgpu_channel_put(ch);
}
if (err != 0) {
goto clean_up;
}
}
}
/* chid from engine status */
g->ops.engine_status.read_engine_status_info(g, dev->engine_id,
&engine_status);
if (nvgpu_engine_status_is_ctxsw_valid(&engine_status) ||
nvgpu_engine_status_is_ctxsw_save(&engine_status)) {
engine_chid = engine_status.ctx_id;
} else if (nvgpu_engine_status_is_ctxsw_switch(&engine_status) ||
nvgpu_engine_status_is_ctxsw_load(&engine_status)) {
engine_chid = engine_status.ctx_next_id;
} else {
/* Nothing to do here */
}
if (engine_chid != NVGPU_INVALID_ENG_ID && engine_chid != pbdma_chid) {
ch = nvgpu_channel_from_id(g, engine_chid);
if (ch != NULL) {
err = g->ops.fifo.preempt_channel(g, ch);
nvgpu_channel_put(ch);
}
if (err != 0) {
goto clean_up;
}
}
clean_up:
#ifdef CONFIG_NVGPU_LS_PMU
if (mutex_ret == 0) {
if (nvgpu_pmu_lock_release(g, g->pmu,
PMU_MUTEX_ID_FIFO, &token) != 0){
nvgpu_err(g, "failed to release PMU lock");
}
}
#endif
if (err != 0) {
nvgpu_log_fn(g, "failed");
nvgpu_engine_enable_activity(g, dev);
} else {
nvgpu_log_fn(g, "done");
}
return err;
}
int nvgpu_engine_disable_activity_all(struct gk20a *g,
bool wait_for_idle)
{
unsigned int i;
int err = 0, ret = 0;
for (i = 0; i < g->fifo.num_engines; i++) {
err = nvgpu_engine_disable_activity(g,
g->fifo.active_engines[i],
wait_for_idle);
if (err != 0) {
nvgpu_err(g, "failed to disable engine %d activity",
g->fifo.active_engines[i]->engine_id);
ret = err;
break;
}
}
if (err != 0) {
while (i-- != 0U) {
nvgpu_engine_enable_activity(g,
g->fifo.active_engines[i]);
}
}
return ret;
}
int nvgpu_engine_wait_for_idle(struct gk20a *g)
{
struct nvgpu_timeout timeout;
u32 delay = POLL_DELAY_MIN_US;
int ret = 0, err = 0;
u32 i, host_num_engines;
struct nvgpu_engine_status_info engine_status;
nvgpu_log_fn(g, " ");
host_num_engines =
nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_ENGINES);
err = nvgpu_timeout_init(g, &timeout, nvgpu_get_poll_timeout(g),
NVGPU_TIMER_CPU_TIMER);
if (err != 0) {
return -EINVAL;
}
for (i = 0; i < host_num_engines; i++) {
if (!nvgpu_engine_check_valid_id(g, i)) {
continue;
}
ret = -ETIMEDOUT;
do {
g->ops.engine_status.read_engine_status_info(g, i,
&engine_status);
if (!engine_status.is_busy) {
ret = 0;
break;
}
nvgpu_usleep_range(delay, delay * 2U);
delay = min_t(u32,
delay << 1U, POLL_DELAY_MAX_US);
} while (nvgpu_timeout_expired(&timeout) == 0);
if (ret != 0) {
/* possible causes:
* check register settings programmed in hal set by
* elcg_init_idle_filters and init_therm_setup_hw
*/
nvgpu_err(g, "cannot idle engine: %u "
"engine_status: 0x%08x", i,
engine_status.reg_data);
break;
}
}
nvgpu_log_fn(g, "done");
return ret;
}
#endif /* CONFIG_NVGPU_FIFO_ENGINE_ACTIVITY */
int nvgpu_engine_setup_sw(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
int err = 0;
size_t size;
f->max_engines = nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_ENGINES);
size = nvgpu_safe_mult_u64(f->max_engines,
sizeof(struct nvgpu_device *));
/*
* Allocate the two device lists for host devices.
*/
f->host_engines = nvgpu_kzalloc(g, size);
if (f->host_engines == NULL) {
nvgpu_err(g, "OOM allocating host engine list");
return -ENOMEM;
}
f->active_engines = nvgpu_kzalloc(g, size);
if (f->active_engines == NULL) {
nvgpu_err(g, "no mem for active engine list");
err = -ENOMEM;
goto clean_up_engine_info;
}
err = nvgpu_engine_init_info(f);
if (err != 0) {
nvgpu_err(g, "init engine info failed");
goto clean_up;
}
return 0;
clean_up:
nvgpu_kfree(g, f->active_engines);
f->active_engines = NULL;
clean_up_engine_info:
nvgpu_kfree(g, f->host_engines);
f->host_engines = NULL;
return err;
}
void nvgpu_engine_cleanup_sw(struct gk20a *g)
{
struct nvgpu_fifo *f = &g->fifo;
f->num_engines = 0;
nvgpu_kfree(g, f->host_engines);
f->host_engines = NULL;
nvgpu_kfree(g, f->active_engines);
f->active_engines = NULL;
}
#ifdef CONFIG_NVGPU_ENGINE_RESET
static void nvgpu_engine_gr_reset(struct gk20a *g)
{
struct nvgpu_swprofiler *prof = &g->fifo.eng_reset_profiler;
int err = 0;
nvgpu_swprofile_snapshot(prof, PROF_ENG_RESET_PREAMBLE);
#ifdef CONFIG_NVGPU_POWER_PG
if (nvgpu_pg_elpg_disable(g) != 0 ) {
nvgpu_err(g, "failed to set disable elpg");
}
#endif
nvgpu_swprofile_snapshot(prof, PROF_ENG_RESET_ELPG_DISABLE);
#ifdef CONFIG_NVGPU_FECS_TRACE
/*
* Resetting engine will alter read/write index. Need to flush
* circular buffer before re-enabling FECS.
*/
if (g->ops.gr.fecs_trace.reset != NULL) {
if (g->ops.gr.fecs_trace.reset(g) != 0) {
nvgpu_warn(g, "failed to reset fecs traces");
}
}
#endif
nvgpu_swprofile_snapshot(prof, PROF_ENG_RESET_FECS_TRACE_RESET);
/*
* HALT_PIPELINE method and gr reset during recovery is supported
* starting nvgpu-next simulation.
*/
err = g->ops.gr.falcon.ctrl_ctxsw(g,
NVGPU_GR_FALCON_METHOD_HALT_PIPELINE, 0U, NULL);
if (err != 0) {
nvgpu_err(g, "failed to halt gr pipe");
}
nvgpu_swprofile_snapshot(prof, PROF_ENG_RESET_HALT_PIPELINE);
/*
* resetting only engine is not
* enough, we do full init sequence
*/
nvgpu_log(g, gpu_dbg_rec, "resetting gr engine");
err = nvgpu_gr_reset(g);
if (err != 0) {
nvgpu_err(g, "failed to reset gr engine");
}
#ifdef CONFIG_NVGPU_POWER_PG
if (nvgpu_pg_elpg_enable(g) != 0) {
nvgpu_err(g, "failed to set enable elpg");
}
nvgpu_swprofile_snapshot(prof, PROF_ENG_RESET_ELPG_REENABLE);
#endif
}
void nvgpu_engine_reset(struct gk20a *g, u32 engine_id)
{
struct nvgpu_swprofiler *prof = &g->fifo.eng_reset_profiler;
const struct nvgpu_device *dev;
int err = 0;
u32 gr_instance_id;
nvgpu_log_fn(g, " ");
if (g == NULL) {
return;
}
nvgpu_swprofile_begin_sample(prof);
dev = nvgpu_engine_get_active_eng_info(g, engine_id);
if (dev == NULL) {
nvgpu_err(g, "unsupported engine_id %d", engine_id);
return;
}
if (!nvgpu_device_is_ce(g, dev) &&
!nvgpu_device_is_graphics(g, dev)) {
nvgpu_warn(g, "Ignoring reset for non-host engine.");
return;
}
/*
* Simple case first: reset a copy engine.
*/
if (nvgpu_device_is_ce(g, dev)) {
err = nvgpu_mc_reset_dev(g, dev);
if (err != 0) {
nvgpu_log_info(g, "CE engine [id:%u] reset failed",
dev->engine_id);
}
return;
}
/*
* Now reset a GR engine.
*/
gr_instance_id =
nvgpu_grmgr_get_gr_instance_id_for_syspipe(
g, dev->inst_id);
nvgpu_gr_exec_for_instance(g,
gr_instance_id, nvgpu_engine_gr_reset(g));
}
#endif
u32 nvgpu_engine_get_fast_ce_runlist_id(struct gk20a *g)
{
const struct nvgpu_device *dev;
u32 nr_lces;
u32 i;
/*
* Obtain a runlist ID for the fastest available CE. The priority order
* is:
*
* 1. Last available LCE
* 2. Last available COPY[0-2]
* 3. GRAPHICS runlist as a last resort.
*/
nr_lces = nvgpu_device_count(g, NVGPU_DEVTYPE_LCE);
if (nr_lces > 0U) {
dev = nvgpu_device_get(g,
NVGPU_DEVTYPE_LCE,
nr_lces - 1U);
nvgpu_assert(dev != NULL);
return dev->runlist_id;
}
/*
* Note: this only works since NVGPU_DEVTYPE_GRAPHICS is 0 and the COPYx
* are all > 0.
*/
for (i = NVGPU_DEVTYPE_COPY2; i >= NVGPU_DEVTYPE_COPY0; i--) {
dev = nvgpu_device_get(g, i, i - NVGPU_DEVTYPE_COPY0);
if (dev != NULL) {
return dev->runlist_id;
}
}
/*
* Fall back to GR.
*/
dev = nvgpu_device_get(g, NVGPU_DEVTYPE_GRAPHICS, 0);
nvgpu_assert(dev != NULL);
return dev->runlist_id;
}
u32 nvgpu_engine_get_gr_runlist_id(struct gk20a *g)
{
const struct nvgpu_device *dev;
dev = nvgpu_device_get(g, NVGPU_DEVTYPE_GRAPHICS, 0);
if (dev == NULL) {
nvgpu_warn(g, "No GR device on this GPU?!");
return NVGPU_INVALID_RUNLIST_ID;
}
return dev->runlist_id;
}
bool nvgpu_engine_is_valid_runlist_id(struct gk20a *g, u32 runlist_id)
{
u32 i;
struct nvgpu_fifo *f = &g->fifo;
for (i = 0U; i < f->num_engines; i++) {
const struct nvgpu_device *dev = f->active_engines[i];
if (dev->runlist_id == runlist_id) {
return true;
}
}
return false;
}
/*
* Link engine IDs to MMU IDs and vice versa.
*/
u32 nvgpu_engine_id_to_mmu_fault_id(struct gk20a *g, u32 engine_id)
{
const struct nvgpu_device *dev;
dev = nvgpu_engine_get_active_eng_info(g, engine_id);
if (dev == NULL) {
nvgpu_err(g,
"engine_id: %u is not in active list",
engine_id);
return NVGPU_INVALID_ENG_ID;
}
return dev->fault_id;
}
u32 nvgpu_engine_mmu_fault_id_to_engine_id(struct gk20a *g, u32 fault_id)
{
u32 i;
const struct nvgpu_device *dev;
struct nvgpu_fifo *f = &g->fifo;
for (i = 0U; i < f->num_engines; i++) {
dev = f->active_engines[i];
if (dev->fault_id == fault_id) {
return dev->engine_id;
}
}
return NVGPU_INVALID_ENG_ID;
}
u32 nvgpu_engine_get_mask_on_id(struct gk20a *g, u32 id, bool is_tsg)
{
unsigned int i;
u32 engines = 0;
struct nvgpu_engine_status_info engine_status;
u32 ctx_id;
u32 type;
bool busy;
for (i = 0; i < g->fifo.num_engines; i++) {
const struct nvgpu_device *dev = g->fifo.active_engines[i];
g->ops.engine_status.read_engine_status_info(g,
dev->engine_id, &engine_status);
if (nvgpu_engine_status_is_ctxsw_load(
&engine_status)) {
nvgpu_engine_status_get_next_ctx_id_type(
&engine_status, &ctx_id, &type);
} else {
nvgpu_engine_status_get_ctx_id_type(
&engine_status, &ctx_id, &type);
}
busy = engine_status.is_busy;
if (!busy || !(ctx_id == id)) {
continue;
}
if ((is_tsg && (type == ENGINE_STATUS_CTX_ID_TYPE_TSGID)) ||
(!is_tsg && (type == ENGINE_STATUS_CTX_ID_TYPE_CHID))) {
engines |= BIT32(dev->engine_id);
}
}
return engines;
}
static int nvgpu_engine_init_one_dev(struct nvgpu_fifo *f,
const struct nvgpu_device *dev)
{
bool found;
struct nvgpu_device *dev_rw;
struct gk20a *g = f->g;
dev_rw = (struct nvgpu_device *)dev;
/*
* Populate the PBDMA info for this device; ideally it'd be done
* during device init, but the FIFO unit is not out of reset that
* early in the nvgpu_finalize_poweron() sequence.
*
* We only need to do this for native; vGPU already has pbdma_id
* populated during device initialization.
*/
if (g->ops.fifo.find_pbdma_for_runlist != NULL) {
found = g->ops.fifo.find_pbdma_for_runlist(g,
dev->runlist_id,
&dev_rw->pbdma_id);
if (!found) {
nvgpu_err(g, "busted pbdma map");
return -EINVAL;
}
}
#if defined(CONFIG_NVGPU_NEXT)
{
int err = nvgpu_next_engine_init_one_dev(g, dev);
if (err != 0) {
return err;
}
}
#endif
f->host_engines[dev->engine_id] = dev;
f->active_engines[f->num_engines] = dev;
++f->num_engines;
return 0;
}
int nvgpu_engine_init_info(struct nvgpu_fifo *f)
{
int err;
struct gk20a *g = f->g;
const struct nvgpu_device *dev;
f->num_engines = 0;
nvgpu_log(g, gpu_dbg_device, "Loading host engines from device list");
nvgpu_log(g, gpu_dbg_device, " GFX devices: %u",
nvgpu_device_count(g, NVGPU_DEVTYPE_GRAPHICS));
nvgpu_device_for_each(g, dev, NVGPU_DEVTYPE_GRAPHICS) {
err = nvgpu_engine_init_one_dev(f, dev);
if (err != 0) {
return err;
}
}
return g->ops.engine.init_ce_info(f);
}
void nvgpu_engine_get_id_and_type(struct gk20a *g, u32 engine_id,
u32 *id, u32 *type)
{
struct nvgpu_engine_status_info engine_status;
g->ops.engine_status.read_engine_status_info(g, engine_id,
&engine_status);
/* use next_id if context load is failing */
if (nvgpu_engine_status_is_ctxsw_load(
&engine_status)) {
nvgpu_engine_status_get_next_ctx_id_type(
&engine_status, id, type);
} else {
nvgpu_engine_status_get_ctx_id_type(
&engine_status, id, type);
}
}
u32 nvgpu_engine_find_busy_doing_ctxsw(struct gk20a *g,
u32 *id_ptr, bool *is_tsg_ptr)
{
u32 i;
u32 id = U32_MAX;
bool is_tsg = false;
u32 mailbox2;
struct nvgpu_engine_status_info engine_status;
const struct nvgpu_device *dev = NULL;
for (i = 0U; i < g->fifo.num_engines; i++) {
dev = g->fifo.active_engines[i];
g->ops.engine_status.read_engine_status_info(g, dev->engine_id,
&engine_status);
/*
* we are interested in busy engines that
* are doing context switch
*/
if (!engine_status.is_busy ||
!nvgpu_engine_status_is_ctxsw(&engine_status)) {
continue;
}
if (nvgpu_engine_status_is_ctxsw_load(&engine_status)) {
id = engine_status.ctx_next_id;
is_tsg = nvgpu_engine_status_is_next_ctx_type_tsg(
&engine_status);
} else if (nvgpu_engine_status_is_ctxsw_switch(&engine_status)) {
mailbox2 = g->ops.gr.falcon.read_fecs_ctxsw_mailbox(g,
NVGPU_GR_FALCON_FECS_CTXSW_MAILBOX2);
if ((mailbox2 & FECS_METHOD_WFI_RESTORE) != 0U) {
id = engine_status.ctx_next_id;
is_tsg = nvgpu_engine_status_is_next_ctx_type_tsg(
&engine_status);
} else {
id = engine_status.ctx_id;
is_tsg = nvgpu_engine_status_is_ctx_type_tsg(
&engine_status);
}
} else {
id = engine_status.ctx_id;
is_tsg = nvgpu_engine_status_is_ctx_type_tsg(
&engine_status);
}
break;
}
*id_ptr = id;
*is_tsg_ptr = is_tsg;
return dev->engine_id;
}
u32 nvgpu_engine_get_runlist_busy_engines(struct gk20a *g, u32 runlist_id)
{
struct nvgpu_fifo *f = &g->fifo;
u32 i, eng_bitmask = 0U;
struct nvgpu_engine_status_info engine_status;
for (i = 0U; i < f->num_engines; i++) {
const struct nvgpu_device *dev = f->active_engines[i];
g->ops.engine_status.read_engine_status_info(g, dev->engine_id,
&engine_status);
if (engine_status.is_busy && (dev->runlist_id == runlist_id)) {
eng_bitmask |= BIT32(dev->engine_id);
}
}
return eng_bitmask;
}
#ifdef CONFIG_NVGPU_DEBUGGER
bool nvgpu_engine_should_defer_reset(struct gk20a *g, u32 engine_id,
u32 engine_subid, bool fake_fault)
{
const struct nvgpu_device *dev;
dev = nvgpu_engine_get_active_eng_info(g, engine_id);
if (dev == NULL) {
return false;
}
/*
* channel recovery is only deferred if an sm debugger
* is attached and has MMU debug mode is enabled
*/
if (!g->ops.gr.sm_debugger_attached(g) ||
!g->ops.fb.is_debug_mode_enabled(g)) {
return false;
}
/* if this fault is fake (due to RC recovery), don't defer recovery */
if (fake_fault) {
return false;
}
if (dev->type != NVGPU_DEVTYPE_GRAPHICS) {
return false;
}
return g->ops.engine.is_fault_engine_subid_gpc(g, engine_subid);
}
#endif
u32 nvgpu_engine_mmu_fault_id_to_veid(struct gk20a *g, u32 mmu_fault_id,
u32 gr_eng_fault_id)
{
struct nvgpu_fifo *f = &g->fifo;
u32 num_subctx;
u32 veid = INVAL_ID;
num_subctx = f->max_subctx_count;
if ((mmu_fault_id >= gr_eng_fault_id) &&
(mmu_fault_id < nvgpu_safe_add_u32(gr_eng_fault_id,
num_subctx))) {
veid = mmu_fault_id - gr_eng_fault_id;
}
return veid;
}
static u32 nvgpu_engine_mmu_fault_id_to_eng_id_and_veid(struct gk20a *g,
u32 mmu_fault_id, u32 *veid)
{
u32 i;
u32 engine_id = INVAL_ID;
const struct nvgpu_device *dev;
struct nvgpu_fifo *f = &g->fifo;
for (i = 0U; i < f->num_engines; i++) {
dev = f->active_engines[i];
if (dev->type == NVGPU_DEVTYPE_GRAPHICS) {
*veid = nvgpu_engine_mmu_fault_id_to_veid(g,
mmu_fault_id, dev->fault_id);
if (*veid != INVAL_ID) {
engine_id = dev->engine_id;
break;
}
} else {
if (dev->fault_id == mmu_fault_id) {
engine_id = dev->engine_id;
*veid = INVAL_ID;
break;
}
}
}
return engine_id;
}
void nvgpu_engine_mmu_fault_id_to_eng_ve_pbdma_id(struct gk20a *g,
u32 mmu_fault_id, u32 *engine_id, u32 *veid, u32 *pbdma_id)
{
*engine_id = nvgpu_engine_mmu_fault_id_to_eng_id_and_veid(g,
mmu_fault_id, veid);
if (*engine_id == INVAL_ID) {
*pbdma_id = g->ops.fifo.mmu_fault_id_to_pbdma_id(g,
mmu_fault_id);
} else {
*pbdma_id = INVAL_ID;
}
}