Open source GPL/LGPL release

This commit is contained in:
svcmobrel-release
2025-12-19 15:25:44 -08:00
commit 9fc87a7ec7
2261 changed files with 576825 additions and 0 deletions

View File

@@ -0,0 +1,517 @@
/*
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/swprofile.h>
#include <nvgpu/lock.h>
#include <nvgpu/kref.h>
#include <nvgpu/debug.h>
#include <nvgpu/kmem.h>
#include <nvgpu/timers.h>
#include <nvgpu/sort.h>
#include <nvgpu/log.h>
/*
* A simple profiler, capable of generating simple stats for a set of samples.
*/
/*
* The sample array is a 1d array comprised of repeating rows of data. To
* index the array as though it were a row-major matrix, we need to do some
* simple math.
*/
static inline u32 matrix_to_linear_index(struct nvgpu_swprofiler *p,
u32 row, u32 col)
{
return (row * p->psample_len) + col;
}
/*
* Just check the samples field; it'll be allocated for an enabled profiler.
* This is an intrisically racy call; don't rely on it to determine whether the
* underlying pointers/fields really are initialized or not.
*
* However, since this doesn't take the profiler lock, if you use it under the
* profiler lock, you can be sure the state won't change while you hold the
* lock.
*/
bool nvgpu_swprofile_is_enabled(struct nvgpu_swprofiler *p)
{
return p->samples != NULL;
}
void nvgpu_swprofile_initialize(struct gk20a *g,
struct nvgpu_swprofiler *p,
const char *col_names[])
{
if (p->col_names != NULL) {
/*
* Profiler is already initialized.
*/
return;
}
nvgpu_mutex_init(&p->lock);
p->g = g;
p->col_names = col_names;
p->psample_len = 0U;
while (col_names[p->psample_len] != NULL) {
p->psample_len++;
}
}
int nvgpu_swprofile_open(struct gk20a *g, struct nvgpu_swprofiler *p)
{
int ret = 0;
nvgpu_mutex_acquire(&p->lock);
/*
* If this profiler is already opened, just take a ref and return.
*/
if (p->samples != NULL) {
nvgpu_ref_get(&p->ref);
nvgpu_mutex_release(&p->lock);
return 0;
}
/*
* Otherwise allocate the necessary data structures, etc.
*/
p->samples = nvgpu_vzalloc(g,
PROFILE_ENTRIES * p->psample_len *
sizeof(*p->samples));
if (p->samples == NULL) {
ret = -ENOMEM;
goto fail;
}
p->samples_start = nvgpu_vzalloc(g,
PROFILE_ENTRIES * sizeof(*p->samples_start));
if (p->samples_start == NULL) {
ret = -ENOMEM;
goto fail;
}
nvgpu_ref_init(&p->ref);
nvgpu_mutex_release(&p->lock);
return 0;
fail:
if (p->samples != NULL) {
nvgpu_vfree(g, p->samples);
p->samples = NULL;
}
nvgpu_mutex_release(&p->lock);
return ret;
}
static void nvgpu_swprofile_free(struct nvgpu_ref *ref)
{
struct nvgpu_swprofiler *p = container_of(ref, struct nvgpu_swprofiler, ref);
nvgpu_vfree(p->g, p->samples);
nvgpu_vfree(p->g, p->samples_start);
p->samples = NULL;
p->samples_start = NULL;
}
void nvgpu_swprofile_close(struct nvgpu_swprofiler *p)
{
nvgpu_ref_put(&p->ref, nvgpu_swprofile_free);
}
static void nvgpu_profile_print_col_header(struct nvgpu_swprofiler *p,
struct nvgpu_debug_context *o)
{
u32 i;
for (i = 0U; i < p->psample_len; i++) {
gk20a_debug_output(o, " %15s", p->col_names[i]);
}
gk20a_debug_output(o, "\n");
}
/*
* Note: this does _not_ lock the profiler. This is a conscious choice. If we
* do lock the profiler then there's the possibility that you get bad data due
* to the snapshot blocking on some other user printing the contents of the
* profiler.
*
* Instead, this way, it's possible that someone printing the data in the
* profiler gets a sample that's a mix of old and new. That's not great, but
* IMO worse than a completely bogus sample.
*
* Also it's really quite unlikely for this race to happen in practice as the
* print function is executed as a result of a debugfs call.
*/
void nvgpu_swprofile_snapshot(struct nvgpu_swprofiler *p, u32 idx)
{
u32 index;
/*
* Handle two cases: the first allows calling code to simply skip
* any profiling by passing in a NULL profiler; see the CDE code
* for this. The second case is if a profiler is not "opened".
*/
if (p == NULL || p->samples == NULL) {
return;
}
/*
* p->sample_index is the current row, aka sample, we are writing to.
* idx is the column - i.e the sub-sample.
*/
index = matrix_to_linear_index(p, p->sample_index, idx);
p->samples[index] = nvgpu_current_time_ns();
}
void nvgpu_swprofile_begin_sample(struct nvgpu_swprofiler *p)
{
nvgpu_mutex_acquire(&p->lock);
if (p == NULL || p->samples == NULL) {
nvgpu_mutex_release(&p->lock);
return;
}
p->sample_index++;
/* Handle wrap. */
if (p->sample_index >= PROFILE_ENTRIES) {
p->sample_index = 0U;
}
/*
* Reference time for subsequent subsamples in this sample.
*/
p->samples_start[p->sample_index] = nvgpu_current_time_ns();
nvgpu_mutex_release(&p->lock);
}
static int profile_cmp(const void *a, const void *b)
{
return *((const u64 *) a) - *((const u64 *) b);
}
#define PERCENTILE_WIDTH 5
#define PERCENTILE_RANGES (100/PERCENTILE_WIDTH)
static u32 nvgpu_swprofile_build_ranges(struct nvgpu_swprofiler *p,
u64 *storage,
u64 *percentiles,
u32 index_end,
u32 index_start)
{
u32 i;
u32 nelem = 0U;
/*
* Iterate through a column and build a temporary slice array of samples
* so that we can sort them without corrupting the current data.
*
* Note that we have to first convert the row/column indexes into linear
* indexes to access the underlying sample array.
*/
for (i = 0; i < PROFILE_ENTRIES; i++) {
u32 linear_idx_start = matrix_to_linear_index(p, i, index_start);
u32 linear_idx_end = matrix_to_linear_index(p, i, index_end);
if (p->samples[linear_idx_end] <=
p->samples[linear_idx_start]) {
/* This is an invalid element */
continue;
}
storage[nelem] = p->samples[linear_idx_end] -
p->samples[linear_idx_start];
nelem++;
}
/* sort it */
sort(storage, nelem, sizeof(u64), profile_cmp, NULL);
/* build ranges */
for (i = 0; i < PERCENTILE_RANGES; i++) {
percentiles[i] = nelem < PERCENTILE_RANGES ? 0 :
storage[(PERCENTILE_WIDTH * (i + 1) * nelem)/100 - 1];
}
return nelem;
}
/*
* Print a list of percentiles spaced by 5%. Note that the debug_context needs
* to be special here. _Most_ print functions in NvGPU automatically add a new
* line to the end of each print statement. This function _specifically_
* requires that your debug print function does _NOT_ do this.
*/
void nvgpu_swprofile_print_ranges(struct gk20a *g,
struct nvgpu_swprofiler *p,
struct nvgpu_debug_context *o)
{
u32 nelem = 0U, i, j;
u64 *sorted_data = NULL;
u64 *percentiles = NULL;
nvgpu_mutex_acquire(&p->lock);
if (p->samples == NULL) {
gk20a_debug_output(o, "Profiler not enabled.\n");
goto done;
}
sorted_data = nvgpu_vzalloc(g,
PROFILE_ENTRIES * p->psample_len *
sizeof(u64));
percentiles = nvgpu_vzalloc(g,
PERCENTILE_RANGES * p->psample_len *
sizeof(u64));
if (!sorted_data || !percentiles) {
nvgpu_err(g, "vzalloc: OOM!");
goto done;
}
/*
* Loop over each column; sort the column's data and then build
* percentile ranges based on that sorted data.
*/
for (i = 0U; i < p->psample_len; i++) {
nelem = nvgpu_swprofile_build_ranges(p,
&sorted_data[i * PROFILE_ENTRIES],
&percentiles[i * PERCENTILE_RANGES],
i, 0U);
}
gk20a_debug_output(o, "Samples: %u\n", nelem);
gk20a_debug_output(o, "%6s", "Perc");
nvgpu_profile_print_col_header(p, o);
gk20a_debug_output(o, "%6s", "----");
for (i = 0U; i < p->psample_len; i++) {
gk20a_debug_output(o, " %15s", "---------------");
}
gk20a_debug_output(o, "\n");
/*
* percentiles is another matrix, but this time it's using column major indexing.
*/
for (i = 0U; i < PERCENTILE_RANGES; i++) {
gk20a_debug_output(o, "%3upc ", PERCENTILE_WIDTH * (i + 1));
for (j = 0U; j < p->psample_len; j++) {
gk20a_debug_output(o, " %15llu",
percentiles[(j * PERCENTILE_RANGES) + i]);
}
gk20a_debug_output(o, "\n");
}
gk20a_debug_output(o, "\n");
done:
nvgpu_vfree(g, sorted_data);
nvgpu_vfree(g, percentiles);
nvgpu_mutex_release(&p->lock);
}
/*
* Print raw data for the profiler. Can be useful if you want to do more sophisticated
* analysis in python or something like that.
*
* Note this requires a debug context that does not automatically add newlines.
*/
void nvgpu_swprofile_print_raw_data(struct gk20a *g,
struct nvgpu_swprofiler *p,
struct nvgpu_debug_context *o)
{
u32 i, j;
nvgpu_mutex_acquire(&p->lock);
if (p->samples == NULL) {
gk20a_debug_output(o, "Profiler not enabled.\n");
goto done;
}
gk20a_debug_output(o, "max samples: %u, sample len: %u\n",
PROFILE_ENTRIES, p->psample_len);
nvgpu_profile_print_col_header(p, o);
for (i = 0U; i < PROFILE_ENTRIES; i++) {
for (j = 0U; j < p->psample_len; j++) {
u32 index = matrix_to_linear_index(p, i, j);
gk20a_debug_output(o, " %15llu",
p->samples[index] - p->samples_start[i]);
}
gk20a_debug_output(o, "\n");
}
done:
nvgpu_mutex_release(&p->lock);
}
/*
* Print stats for a single column. This covers:
*
* Min
* Max
* Mean
* Median
* Sigma ^ 2
*
* Note that the results array has to be at least 5 entries long. Storage should be
* an array that is at least PROFILE_ENTRIES long. This is used for working out the
* median - we need a sorted sample set for that.
*
* Note: this skips empty samples.
*
* Note: there's a limit to the sensitivity of these profiling stats. For things that
* happen faster than the granularity of the underlying timer, you'll need to use
* something more sophisticated. It's ok to have some zeros, but too many and you
* won't get a very interesting picture of the data.
*/
static u32 nvgpu_swprofile_subsample_basic_stats(struct gk20a *g,
struct nvgpu_swprofiler *p,
u32 subsample,
u64 *results,
u64 *storage)
{
u64 sum = 0U, samples = 0U;
u64 min = U64_MAX, max = 0U;
u64 mean, median;
u64 sigma_2 = 0U;
u32 i;
/*
* First, let's work out min, max, sum, and number of samples of data. With this we
* can then get the mean, median, and sigma^2.
*/
for (i = 0U; i < PROFILE_ENTRIES; i++) {
u32 ss = matrix_to_linear_index(p, i, subsample);
u64 sample = p->samples[ss] - p->samples_start[i];
if (p->samples_start[i] == 0U) {
continue;
}
if (sample < min) {
min = sample;
}
if (sample > max) {
max = sample;
}
storage[samples] = sample;
sum += sample;
samples += 1U;
}
/*
* If min is still U64_MAX it means that we almost certainly did not actually
* get a single valid sample.
*/
if (min == U64_MAX) {
min = 0U;
}
/* With the sorted list of samples we can easily compute the median. */
sort(storage, samples, sizeof(u64), profile_cmp, NULL);
mean = sum / samples;
median = storage[samples / 2];
/* Compute the sample variance (i.e sigma squared). */
for (i = 0U; i < samples; i++) {
sigma_2 += storage[i] * storage[i];
}
/* Remember: _sample_ variance. */
sigma_2 /= (samples - 1U);
sigma_2 -= (mean * mean);
results[0] = min;
results[1] = max;
results[2] = mean;
results[3] = median;
results[4] = sigma_2;
return samples;
}
/*
* Print the following stats for each column:
*
* Min, Max, Mean, Median, Sigma^2
*/
void nvgpu_swprofile_print_basic_stats(struct gk20a *g,
struct nvgpu_swprofiler *p,
struct nvgpu_debug_context *o)
{
u32 i;
const char *fmt_header = "%-18s %15s %15s %15s %15s %15s\n";
const char *fmt_output = "%-18s %15llu %15llu %15llu %15llu %15llu\n";
u64 *storage;
u32 samples = 0U;
if (p->samples == NULL) {
gk20a_debug_output(o, "Profiler not enabled.\n");
return;
}
storage = nvgpu_kzalloc(g, sizeof(u64) * PROFILE_ENTRIES);
if (storage == NULL) {
gk20a_debug_output(o, "OOM!");
return;
}
nvgpu_mutex_acquire(&p->lock);
gk20a_debug_output(o, fmt_header,
"SubSample", "Min", "Max",
"Mean", "Median", "Sigma^2");
gk20a_debug_output(o, fmt_header,
"---------", "---", "---",
"----", "------", "-------");
for (i = 0U; i < p->psample_len; i++) {
u64 results[5];
samples = nvgpu_swprofile_subsample_basic_stats(g, p, i,
results, storage);
gk20a_debug_output(o, fmt_output, p->col_names[i],
results[0], results[1],
results[2], results[3], results[4]);
}
gk20a_debug_output(o, "Number of samples: %u\n", samples);
nvgpu_mutex_release(&p->lock);
nvgpu_kfree(g, storage);
}