gpu: nvgpu: posix: Multithreading for unit tests

Add a -j argument to enable running unit tests on several
threads. Also adds signal handling to prevent a fatal
error in one thread from killing the whole unit test
framework.

JIRA NVGPU-1043

Change-Id: I891a547640cd005a50ffa5c06367ed46c54de012
Signed-off-by: Nicolas Benech <nbenech@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1847740
Reviewed-by: svc-misra-checker <svc-misra-checker@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
This commit is contained in:
Nicolas Benech
2018-09-25 14:37:16 -04:00
committed by Abdul Salam
parent c2cf2252a9
commit ac87a707b3
6 changed files with 173 additions and 21 deletions

View File

@@ -21,6 +21,10 @@
*/
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <unit/io.h>
#include <unit/core.h>
@@ -30,20 +34,40 @@
#include <nvgpu/posix/probe.h>
/*
* Sempaphore to limit the number of threads
*/
sem_t unit_thread_semaphore;
/*
* C11 thread local storage, used to access test context when a signal is
* received (ex: SIGSEGV) in a thread.
*/
_Thread_local struct unit_module *thread_local_module;
_Thread_local struct unit_module_test *thread_local_test;
/*
* Execute a module and all its subtests. This function builds a gk20a for the
* test to use by executing nvgpu_posix_probe() and nvgpu_posix_cleanup();
*/
static int core_exec_module(struct unit_fw *fw,
struct unit_module *module)
static void *core_exec_module(void *module_param)
{
unsigned int i;
struct gk20a *g = fw->nvgpu.nvgpu_posix_probe();
struct unit_module *module = (struct unit_module *) module_param;
struct gk20a *g;
if (!g)
return -1;
g = module->fw->nvgpu.nvgpu_posix_probe();
core_vbs(fw, 1, "Execing module: %s\n", module->name);
if (!g) {
core_msg_color(module->fw, C_RED,
" nvgpu_posix_probe failed: Module %s\n",
module->name);
goto thread_exit;
}
core_vbs(module->fw, 1, "Execing module: %s\n", module->name);
thread_local_module = module;
/*
* Execute each test within the module. No reinit is done between tests.
@@ -53,21 +77,86 @@ static int core_exec_module(struct unit_fw *fw,
for (i = 0; i < module->nr_tests; i++) {
struct unit_module_test *t = module->tests + i;
int test_status;
thread_local_test = t;
core_msg(fw, "Running %s.%s\n", module->name, t->name);
core_msg(module->fw, "Running %s.%s\n", module->name,
t->name);
test_status = t->fn(module, g, t->args);
if (test_status != UNIT_SUCCESS)
core_msg_color(fw, C_RED,
core_msg_color(module->fw, C_RED,
" Unit error! Test %s.%s FAILED!\n",
module->name, t->name);
core_add_test_record(fw, module, t,
core_add_test_record(module->fw, module, t,
test_status == UNIT_SUCCESS);
}
fw->nvgpu.nvgpu_posix_cleanup(g);
module->fw->nvgpu.nvgpu_posix_cleanup(g);
core_vbs(module->fw, 1, "Module completed: %s\n", module->name);
thread_exit:
sem_post(&unit_thread_semaphore);
return NULL;
}
/*
* According to POSIX, "Signals which are generated by some action attributable
* to a particular thread, such as a hardware fault, shall be generated for the
* thread that caused the signal to be generated."
* This custom signal handler will be run from within the thread that caused the
* exception. Thanks to the context being saved in local thread storage, it is
* then trivial to report which test case failed, and then terminate the thread.
*/
static void thread_error_handler(int sig, siginfo_t *siginfo, void *context)
{
core_msg_color(thread_local_module->fw, C_RED,
" Signal %d in Test: %s.%s!\n", sig,
thread_local_module->name, thread_local_test->name);
core_add_test_record(thread_local_module->fw, thread_local_module,
thread_local_test, false);
sem_post(&unit_thread_semaphore);
pthread_exit(NULL);
}
/*
* Install a custom signal handler for several signals to be used when running
* in multithreaded environment.
*/
static int install_thread_error_handler(void)
{
struct sigaction action;
int err;
memset(&action, 0, sizeof(action));
action.sa_sigaction = &thread_error_handler;
action.sa_flags = SA_SIGINFO;
/* SIGSEGV: Invalid memory reference */
err = sigaction(SIGSEGV, &action, NULL);
if (err < 0) {
return err;
}
/* SIGILL: Illegal Instruction */
err = sigaction(SIGILL, &action, NULL);
if (err < 0) {
return err;
}
/* SIGFPE: Floating-point exception */
err = sigaction(SIGFPE, &action, NULL);
if (err < 0) {
return err;
}
/* SIGBUS: Bus error */
err = sigaction(SIGBUS, &action, NULL);
if (err < 0) {
return err;
}
/* SIGSYS: Bad system call */
err = sigaction(SIGSYS, &action, NULL);
if (err < 0) {
return err;
}
return 0;
}
@@ -76,14 +165,39 @@ static int core_exec_module(struct unit_fw *fw,
*/
int core_exec(struct unit_fw *fw)
{
int ret;
struct unit_module **modules;
int err = 0;
core_vbs(fw, 1, "Using %d threads\n", fw->args->thread_count);
sem_init(&unit_thread_semaphore, 0, fw->args->thread_count);
/*
* If running single threaded, keep the default SIGSEGV handler to make
* interactive debugging easier, otherwise install the custom one.
*/
if (fw->args->thread_count > 1) {
err = install_thread_error_handler();
if (err != 0) {
core_msg_color(fw, C_RED,
" Failed to install signal handler!\n");
return err;
}
}
for (modules = fw->modules; *modules != NULL; modules++) {
ret = core_exec_module(fw, *modules);
if (fw->args->thread_count == 1) {
core_exec_module(*modules);
} else {
sem_wait(&unit_thread_semaphore);
pthread_create(&((*modules)->thread), NULL,
core_exec_module, (void *) *modules);
}
}
if (ret != 0)
return ret;
if (fw->args->thread_count > 1) {
for (modules = fw->modules; *modules != NULL; modules++) {
pthread_join((*modules)->thread, NULL);
}
}
return 0;