/* * TU104 Clocks Monitor * * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "clk_mon_tu104.h" /** * Mapping between the clk domain and the various clock monitor registers * The rows represent clock domains starting from index 0 and column represent * the various registers each domain has, non available domains are set to 0 * for easy accessing, refer nvgpu_clk_mon_init_domains() for valid domains. */ static u32 clock_mon_map_tu104[CLK_CLOCK_MON_DOMAIN_COUNT] [CLK_CLOCK_MON_REG_TYPE_COUNT] = { { trim_gpcclk_fault_threshold_high_r(), trim_gpcclk_fault_threshold_low_r(), trim_gpcclk_fault_status_r(), trim_gpcclk_fault_priv_level_mask_r(), }, { trim_xbarclk_fault_threshold_high_r(), trim_xbarclk_fault_threshold_low_r(), trim_xbarclk_fault_status_r(), trim_xbarclk_fault_priv_level_mask_r(), }, { trim_sysclk_fault_threshold_high_r(), trim_sysclk_fault_threshold_low_r(), trim_sysclk_fault_status_r(), trim_sysclk_fault_priv_level_mask_r(), }, { trim_hubclk_fault_threshold_high_r(), trim_hubclk_fault_threshold_low_r(), trim_hubclk_fault_status_r(), trim_hubclk_fault_priv_level_mask_r(), }, { trim_dramclk_fault_threshold_high_r(), trim_dramclk_fault_threshold_low_r(), trim_dramclk_fault_status_r(), trim_dramclk_fault_priv_level_mask_r(), }, { trim_hostclk_fault_threshold_high_r(), trim_hostclk_fault_threshold_low_r(), trim_hostclk_fault_status_r(), trim_hostclk_fault_priv_level_mask_r(), }, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, { trim_utilsclk_fault_threshold_high_r(), trim_utilsclk_fault_threshold_low_r(), trim_utilsclk_fault_status_r(), trim_utilsclk_fault_priv_level_mask_r(), }, { trim_pwrclk_fault_threshold_high_r(), trim_pwrclk_fault_threshold_low_r(), trim_pwrclk_fault_status_r(), trim_pwrclk_fault_priv_level_mask_r(), }, { trim_nvdclk_fault_threshold_high_r(), trim_nvdclk_fault_threshold_low_r(), trim_nvdclk_fault_status_r(), trim_nvdclk_fault_priv_level_mask_r(), }, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, { trim_xclk_fault_threshold_high_r(), trim_xclk_fault_threshold_low_r(), trim_xclk_fault_status_r(), trim_xclk_fault_priv_level_mask_r(), }, { trim_nvl_commonclk_fault_threshold_high_r(), trim_nvl_commonclk_fault_threshold_low_r(), trim_nvl_commonclk_fault_status_r(), trim_nvl_commonclk_fault_priv_level_mask_r(), }, { trim_pex_refclk_fault_threshold_high_r(), trim_pex_refclk_fault_threshold_low_r(), trim_pex_refclk_fault_status_r(), trim_pex_refclk_fault_priv_level_mask_r(), }, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0} }; static u32 nvgpu_check_for_dc_fault(u32 data) { return (trim_fault_status_dc_v(data) == trim_fault_status_dc_true_v()) ? trim_fault_status_dc_m() : 0U; } static u32 nvgpu_check_for_lower_threshold_fault(u32 data) { return (trim_fault_status_lower_threshold_v(data) == trim_fault_status_lower_threshold_true_v()) ? trim_fault_status_lower_threshold_m() : 0U; } static u32 nvgpu_check_for_higher_threshold_fault(u32 data) { return (trim_fault_status_higher_threshold_v(data) == trim_fault_status_higher_threshold_true_v()) ? trim_fault_status_higher_threshold_m() : 0U; } static u32 nvgpu_check_for_overflow_err(u32 data) { return (trim_fault_status_overflow_v(data) == trim_fault_status_overflow_true_v()) ? trim_fault_status_overflow_m() : 0U; } static int nvgpu_clk_mon_get_fault(struct gk20a *g, u32 i, u32 data, struct clk_domains_mon_status_params *clk_mon_status) { u32 reg_address; int status = 0; /* Fields for faults are same for all clock domains */ clk_mon_status->clk_mon_list[i].clk_domain_fault_status = ((nvgpu_check_for_dc_fault(data)) | (nvgpu_check_for_lower_threshold_fault(data)) | (nvgpu_check_for_higher_threshold_fault(data)) | (nvgpu_check_for_overflow_err(data))); nvgpu_err(g, "FMON faulted domain 0x%x value 0x%x", clk_mon_status->clk_mon_list[i].clk_api_domain, clk_mon_status->clk_mon_list[i]. clk_domain_fault_status); /* Get the low threshold limit */ reg_address = clock_mon_map_tu104[i][FMON_THRESHOLD_LOW]; data = nvgpu_readl(g, reg_address); clk_mon_status->clk_mon_list[i].low_threshold = trim_fault_threshold_low_count_v(data); /* Get the high threshold limit */ reg_address = clock_mon_map_tu104[i][FMON_THRESHOLD_HIGH]; data = nvgpu_readl(g, reg_address); clk_mon_status->clk_mon_list[i].high_threshold = trim_fault_threshold_high_count_v(data); return status; } bool tu104_clk_mon_check_master_fault_status(struct gk20a *g) { u32 fmon_master_status = nvgpu_readl(g, trim_fmon_master_status_r()); if (trim_fmon_master_status_fault_out_v(fmon_master_status) == trim_fmon_master_status_fault_out_true_v()) { return true; } return false; } int nvgpu_clk_mon_alloc_memory(struct gk20a *g) { struct clk_gk20a *clk = &g->clk; /* If already allocated, do not re-allocate */ if (clk->clk_mon_status != NULL) { return 0; } clk->clk_mon_status = nvgpu_kzalloc(g, sizeof(struct clk_domains_mon_status_params)); if (clk->clk_mon_status == NULL) { return -ENOMEM; } return 0; } int tu104_clk_mon_check_status(struct gk20a *g, u32 domain_mask) { u32 reg_address, bit_pos; u32 data; int status; struct clk_domains_mon_status_params *clk_mon_status; clk_mon_status = g->clk.clk_mon_status; clk_mon_status->clk_mon_domain_mask = domain_mask; /* * Parse through each domain and check for faults, each bit set * represents a domain here */ for (bit_pos = 0U; bit_pos < (sizeof(domain_mask) * BITS_PER_BYTE); bit_pos++) { if (nvgpu_test_bit(bit_pos, (void *)&domain_mask)) { clk_mon_status->clk_mon_list[bit_pos].clk_api_domain = BIT(bit_pos); reg_address = clock_mon_map_tu104[bit_pos] [FMON_FAULT_STATUS]; data = nvgpu_readl(g, reg_address); clk_mon_status->clk_mon_list[bit_pos]. clk_domain_fault_status = 0U; /* Check FMON fault status, field is same for all */ if (trim_fault_status_fault_out_v(data) == trim_fault_status_fault_out_true_v()) { status = nvgpu_clk_mon_get_fault(g, bit_pos, data, clk_mon_status); if (status != 0) { nvgpu_err(g, "Failed to get status"); return -EINVAL; } } } } return 0; } bool tu104_clk_mon_check_clk_good(struct gk20a *g) { u32 clk_status = nvgpu_readl(g, trim_xtal4x_cfg5_r()); if (trim_xtal4x_cfg5_curr_state_v(clk_status) != trim_xtal4x_cfg5_curr_state_good_v()) { return true; } return false; } bool tu104_clk_mon_check_pll_lock(struct gk20a *g) { u32 clk_status = nvgpu_readl(g, trim_xtal4x_cfg_r()); /* check xtal4 */ if (trim_xtal4x_cfg_pll_lock_v(clk_status) != trim_xtal4x_cfg_pll_lock_true_v()) { return true; } /* check mem pll */ clk_status = nvgpu_readl(g, trim_mem_pll_status_r()); if (trim_mem_pll_status_dram_curr_state_v(clk_status) != trim_mem_pll_status_dram_curr_state_good_v()) { return true; } if (trim_mem_pll_status_refm_curr_state_v(clk_status) != trim_mem_pll_status_refm_curr_state_good_v()) { return true; } /* check sppll0,1 */ clk_status = nvgpu_readl(g, trim_sppll0_cfg_r()); if (trim_sppll0_cfg_curr_state_v(clk_status) != trim_sppll0_cfg_curr_state_good_v()) { return true; } clk_status = nvgpu_readl(g, trim_sppll1_cfg_r()); if (trim_sppll1_cfg_curr_state_v(clk_status) != trim_sppll1_cfg_curr_state_good_v()) { return true; } return false; }