/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "hal/cic/cic_gv11b.h" #include #include #include #include #include #include "nvgpu-priv_ring.h" u32 read_cmd_reg = 3U; /* * Write callback. */ static void writel_access_reg_fn(struct gk20a *g, struct nvgpu_reg_access *access) { nvgpu_posix_io_writel_reg_space(g, access->addr, access->value); } /* * Read callback. */ static void readl_access_reg_fn(struct gk20a *g, struct nvgpu_reg_access *access) { /* Completion of clear_interrupts is indicated by value of * pri_ringmaster_command_r() changing from * pri_ringmaster_command_cmd_ack_interrupt_f() to * pri_ringmaster_command_cmd_no_cmd_v(). * * During ISR, the pri_ringmaster_command_r() register is polled to * check if its value changed to no_cmd. * To get complete branch coverage in priv_ring.isr(), after * "read_cmd_reg" read attempts, the value of pri_ringmaster_command_r() * is read as pri_ringmaster_command_cmd_no_cmd_v(). * This maps to clearing interrupts after "read_cmd_reg" polling * attempts. */ if (access->addr == pri_ringmaster_command_r()) { if (read_cmd_reg == 0U) { access->value = pri_ringmaster_command_cmd_no_cmd_v(); return; } read_cmd_reg = nvgpu_safe_sub_u32(read_cmd_reg, 1U); } access->value = nvgpu_posix_io_readl_reg_space(g, access->addr); } static struct nvgpu_posix_io_callbacks test_reg_callbacks = { /* Write APIs all can use the same accessor. */ .writel = writel_access_reg_fn, .writel_check = writel_access_reg_fn, .bar1_writel = writel_access_reg_fn, .usermode_writel = writel_access_reg_fn, /* Likewise for the read APIs. */ .__readl = readl_access_reg_fn, .readl = readl_access_reg_fn, .bar1_readl = readl_access_reg_fn, }; /* NV_PRIV_MASTER register space */ #define NV_PRIV_MASTER_START 0x00120000U #define NV_PRIV_MASTER_SIZE 0x000003FFU /* NV_PRIV_SYS register space */ #define NV_PRIV_SYS_START 0x00122000U #define NV_PRIV_SYS_SIZE 0x000007FFU /* NV_PRIV_GPC register space */ #define NV_PRIV_GPC_START 0x00128000U #define NV_PRIV_GPC_SIZE 0x000007FFU /* NV_PRIV_GPC register space */ #define NV_PMC_START 0x00000000U #define NV_PMC_SIZE 0x00000FFFU int test_priv_ring_setup(struct unit_module *m, struct gk20a *g, void *args) { /* Init HAL */ g->ops.priv_ring.enable_priv_ring = gm20b_priv_ring_enable; g->ops.priv_ring.isr = gp10b_priv_ring_isr; g->ops.priv_ring.isr_handle_0 = gp10b_priv_ring_isr_handle_0; g->ops.priv_ring.isr_handle_1 = gp10b_priv_ring_isr_handle_1; g->ops.priv_ring.decode_error_code = gp10b_priv_ring_decode_error_code; g->ops.priv_ring.set_ppriv_timeout_settings = gm20b_priv_set_timeout_settings; g->ops.priv_ring.enum_ltc = gm20b_priv_ring_enum_ltc; g->ops.priv_ring.get_gpc_count = gm20b_priv_ring_get_gpc_count; g->ops.priv_ring.get_fbp_count = gm20b_priv_ring_get_fbp_count; g->ops.get_litter_value = gv11b_get_litter_value; g->ops.mc.intr_stall_unit_config = mc_gp10b_intr_stall_unit_config; g->ops.cic.init = gv11b_cic_init; g->ops.cic.report_err = nvgpu_cic_report_err_safety_services; /* Map register space NV_PRIV_MASTER */ if (nvgpu_posix_io_add_reg_space(g, NV_PRIV_MASTER_START, NV_PRIV_MASTER_SIZE) != 0) { unit_err(m, "%s: failed to register space: NV_PRIV_MASTER\n", __func__); return UNIT_FAIL; } /* Map register space NV_PRIV_SYS */ if (nvgpu_posix_io_add_reg_space(g, NV_PRIV_SYS_START, NV_PRIV_SYS_SIZE) != 0) { unit_err(m, "%s: failed to register space: NV_PRIV_SYS\n", __func__); return UNIT_FAIL; } /* Map register space NV_PRIV_GPC */ if (nvgpu_posix_io_add_reg_space(g, NV_PRIV_GPC_START, NV_PRIV_GPC_SIZE) != 0) { unit_err(m, "%s: failed to register space: NV_PRIV_GPC\n", __func__); return UNIT_FAIL; } /* Map register space NV_PMC */ if (nvgpu_posix_io_add_reg_space(g, NV_PMC_START, NV_PMC_SIZE) != 0) { unit_err(m, "%s: failed to register space: NV_PMC\n", __func__); return UNIT_FAIL; } (void)nvgpu_posix_register_io(g, &test_reg_callbacks); if (nvgpu_cic_init_common(g) != 0) { unit_err(m, "%s: Failed to initialize CIC\n", __func__); return UNIT_FAIL; } return UNIT_SUCCESS; } int test_priv_ring_free_reg_space(struct unit_module *m, struct gk20a *g, void *args) { /* Free register space */ nvgpu_posix_io_delete_reg_space(g, NV_PRIV_MASTER_START); nvgpu_posix_io_delete_reg_space(g, NV_PRIV_SYS_START); nvgpu_posix_io_delete_reg_space(g, NV_PRIV_GPC_START); nvgpu_posix_io_delete_reg_space(g, NV_PMC_START); return UNIT_SUCCESS; } int test_enable_priv_ring(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; int err = 0; /* * Case 1: enable_priv_ring passes * * 1) Configure "read_cmd_reg"=1U, this ensures that ring enumerations * completes before max_retry attempts. * 2) Write pri_ringmaster_start_results_r=0x1 * 3) Call g->ops.priv_ring.enable_priv_ring(g) */ read_cmd_reg = 1U; nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_start_results_r(), 0x1); err = g->ops.priv_ring.enable_priv_ring(g); if (err != 0) { unit_err(m, "priv_ring.enable_priv_ring HAL failed.\n"); ret = UNIT_FAIL; goto end; } /* * Case 2: enable_priv_ring times out. * * 1) Configure "read_cmd_reg"=U32_MAX, this ensures that * ring enumerations times out after max_retry attempts. * 2) Call g->ops.priv_ring.enable_priv_ring(g) */ read_cmd_reg = U32_MAX; err = g->ops.priv_ring.enable_priv_ring(g); if (err != -ETIMEDOUT) { unit_err(m, "priv_ring.enable_priv_ring HAL timeout failed.\n"); ret = UNIT_FAIL; goto end; } /* * Case 3: enable_priv_ring enumeration fails * * 1) Configure "read_cmd_reg"=1U, this ensures that ring enumerations * completes before max_retry attempts. * 3) Write pri_ringmaster_start_results_r=0x0 * 2) Call g->ops.priv_ring.enable_priv_ring(g) */ read_cmd_reg = 1U; nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_start_results_r(), 0x0); err = g->ops.priv_ring.enable_priv_ring(g); if (err != -1) { unit_err(m, "priv_ring.enable_priv_ring HAL failed" " to detect enumeration fault.\n"); ret = UNIT_FAIL; goto end; } end: read_cmd_reg = 3U; // Restore to default return ret; } int test_set_ppriv_timeout_settings(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; u32 val_sys; u32 val_gpc; /* Call set_ppriv_timeout_settings HAL to set the timeout values * to 0x800. */ g->ops.priv_ring.set_ppriv_timeout_settings(g); /* Read back the registers to make sure the timeouts are set to 0x800 */ val_sys = nvgpu_posix_io_readl_reg_space(g, pri_ringstation_sys_master_config_r(0x15)); val_gpc = nvgpu_posix_io_readl_reg_space(g, pri_ringstation_gpc_master_config_r(0xa)); if ((val_sys != 0x800) || (val_gpc != 0x800)) { unit_err(m, "Timeout setting failed.\n"); ret = UNIT_FAIL; } return ret; } int test_enum_ltc(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; u32 val; /* Set pri_ringmaster_enum_ltc_r to 0x1D */ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_ltc_r(), 0x1DU); val = g->ops.priv_ring.enum_ltc(g); if (val != 0x1DU) { unit_err(m, "enum LTC parsing incorrect.\n"); ret = UNIT_FAIL; } return ret; } int test_get_gpc_count(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; u32 val; /* Set Count field in pri_ringmaster_enum_gpc_r to 0x1D */ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_gpc_r(), 0x1DU); val = g->ops.priv_ring.get_gpc_count(g); if (val != 0x1DU) { unit_err(m, "enum GPC count parsing incorrect.\n"); ret = UNIT_FAIL; } return ret; } int test_get_fbp_count(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; u32 val; /* Set Count field in pri_ringmaster_enum_fbp_r to 0x1D */ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_fbp_r(), 0x1DU); val = g->ops.priv_ring.get_fbp_count(g); if (val != 0x1DU) { unit_err(m, "enum FBP count parsing incorrect.\n"); ret = UNIT_FAIL; } return ret; } int test_priv_ring_isr(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; /* Set status0 such that: * 1. start_conn_fault (Bit 0:0) = 1. * 2. disconnect_fault (Bit 1:1) = 1. * 3. overflow_fault (Bit 2:2) = 1. * 4. gbl_write_error (Bit 8:8) = 1. * So status0 = 0x00000107*/ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status0_r(), 0x00000107U); /* Set status1 such that: * 1. gbl_write_error (Bit 31:0) = 0x14. */ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status1_r(), 0x00000014U); /* Set Count field in pri_ringmaster_enum_gpc_r to 0x1D. */ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_gpc_r(), 0x1DU); /* Call priv_ring ISR and clear the interrupts using readl callback. */ g->ops.priv_ring.isr(g); /* For better branch coveage, call ISR with: * g->ops.priv_ring.decode_error_code = NULL. */ g->ops.priv_ring.decode_error_code = NULL; g->ops.priv_ring.isr(g); /* To cover negative case in for loop, call ISR with * g->ops.priv_ring.get_gpc_count(g) = 0. */ nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_enum_gpc_r(), 0x0U); g->ops.priv_ring.isr(g); /* Call the ISR again without clearing the interrupts and setting * status0 and status1 to 0 to cover additional branches. */ read_cmd_reg = U32_MAX; nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status0_r(), 0U); nvgpu_posix_io_writel_reg_space(g, pri_ringmaster_intr_status1_r(), 0U); g->ops.priv_ring.isr(g); return ret; } u32 error_codes[] = { 0xBADF1100U, 0xBADF1800U, 0xBADF1A00U, 0xBADF2000U, 0xBADF2100U, 0xBADF3000U, 0xBADF3100U, 0xBADF4100U, 0xBADF4200U, 0xBADF5100U, 0xBADF5500U, 0xBADF5600U, }; int test_decode_error_code(struct unit_module *m, struct gk20a *g, void *args) { int ret = UNIT_SUCCESS; u32 i; /* Call priv_ring ISR and clear the interrupts using readl callback. */ for (i = 0; i < sizeof(error_codes)/sizeof(u32); i++) { g->ops.priv_ring.decode_error_code(g, error_codes[i]); } return ret; } struct unit_module_test priv_ring_tests[] = { UNIT_TEST(priv_ring_setup, test_priv_ring_setup, NULL, 0), UNIT_TEST(priv_ring_enable_priv_ring, test_enable_priv_ring, NULL, 0), UNIT_TEST(priv_ring_set_ppriv_timeout_settings, test_set_ppriv_timeout_settings, NULL, 0), UNIT_TEST(priv_ring_enum_ltc, test_enum_ltc, NULL, 0), UNIT_TEST(priv_ring_get_gpc_count, test_get_gpc_count, NULL, 0), UNIT_TEST(priv_ring_get_fbp_count, test_get_fbp_count, NULL, 0), UNIT_TEST(priv_ring_decode_error_code, test_decode_error_code, NULL, 0), UNIT_TEST(priv_ring_isr, test_priv_ring_isr, NULL, 0), UNIT_TEST(priv_ring_free_reg_space, test_priv_ring_free_reg_space, NULL, 0), }; UNIT_MODULE(priv_ring, priv_ring_tests, UNIT_PRIO_NVGPU_TEST);