/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "worker.h" /* * nvgpu_worker_ops functions */ static nvgpu_atomic_t pre_process_count; static void pre_process(struct nvgpu_worker *worker) { nvgpu_atomic_inc(&pre_process_count); } static bool force_early_exit = false; static nvgpu_atomic_t wakeup_early_exit_count; static bool wakeup_early_exit(struct nvgpu_worker *worker) { nvgpu_atomic_inc(&wakeup_early_exit_count); if (force_early_exit) { return true; } return nvgpu_worker_should_stop(worker); } static nvgpu_atomic_t wakeup_post_process_val; static void wakeup_post_process(struct nvgpu_worker *worker) { nvgpu_atomic_inc(&wakeup_post_process_val); } static void wakeup_post_process_stop_thread(struct nvgpu_worker *worker) { struct nvgpu_posix_fault_inj *thread_fi = nvgpu_thread_get_fault_injection(); nvgpu_posix_enable_fault_injection(thread_fi, true, 0); nvgpu_atomic_inc(&wakeup_post_process_val); } static bool stall_processing = false; static nvgpu_atomic_t item_count; static void wakeup_process_item(struct nvgpu_list_node *work_item) { bool stall = stall_processing; nvgpu_atomic_inc(&item_count); while (stall) { nvgpu_udelay(5); stall = stall_processing; } } static bool wakeup_condition_val = false; static bool wakeup_condition(struct nvgpu_worker *worker) { return wakeup_condition_val; } static u32 wakeup_timeout_val = 0U; static u32 wakeup_timeout(struct nvgpu_worker *worker) { return wakeup_timeout_val; } _Thread_local struct nvgpu_worker worker; _Thread_local struct nvgpu_worker worker_branch; _Thread_local struct nvgpu_worker_ops worker_ops = { /* pre_process is NULL for branch testing for NULL when thread starts. */ .pre_process = NULL, .wakeup_early_exit = wakeup_early_exit, .wakeup_post_process = wakeup_post_process, .wakeup_process_item = wakeup_process_item, .wakeup_condition = wakeup_condition, .wakeup_timeout = wakeup_timeout, }; int test_init(struct unit_module *m, struct gk20a *g, void *args) { int err; struct nvgpu_posix_fault_inj *thread_fi = nvgpu_thread_get_fault_injection(); char tmp[sizeof(worker.thread_name)+10]; memset(tmp, 'g', sizeof(tmp) - 1); tmp[sizeof(tmp) - 1] = '\0'; /* init with a long name to get branch coverage */ nvgpu_worker_init_name(&worker, tmp, "A long-named simulated unit test gpu"); /* init with a reasonable name */ nvgpu_worker_init_name(&worker, "testworker", "gpu"); /* enable fault injection to create error starting thread for worker */ nvgpu_posix_enable_fault_injection(thread_fi, true, 0); err = nvgpu_worker_init(g, &worker, &worker_ops); unit_assert(err != 0, return UNIT_FAIL); nvgpu_posix_enable_fault_injection(thread_fi, false, 0); /* normal init */ err = nvgpu_worker_init(g, &worker, &worker_ops); unit_assert(err == 0, return UNIT_FAIL); /* init when already running */ while (!nvgpu_thread_is_running(&worker.poll_task)) { nvgpu_udelay(5); } nvgpu_atomic_set(&worker_branch.poll_task.running, 1); err = nvgpu_worker_init(g, &worker_branch, &worker_ops); unit_assert(err == 0, return UNIT_FAIL); return UNIT_SUCCESS; } int test_enqueue(struct unit_module *m, struct gk20a *g, void *args) { int err; const unsigned int num_work_items = 3U; struct nvgpu_list_node work_items[num_work_items]; unsigned int i; for (i = 0U; i < num_work_items; i++) { nvgpu_init_list_node(&work_items[i]); } nvgpu_atomic_set(&item_count, 0); for (i = 0U; i < num_work_items; i++) { err = nvgpu_worker_enqueue(&worker, &work_items[i]); unit_assert(err == 0, return UNIT_FAIL); } /* wait until all items are processed */ while ((u32)nvgpu_atomic_read(&item_count) < num_work_items) { nvgpu_udelay(5); } /* * Test requeueing same item. To do this, we have to stall the worker * in the processing loop so we can make sure the item isn't removed. */ stall_processing = true; nvgpu_init_list_node(&work_items[0]); err = nvgpu_worker_enqueue(&worker, &work_items[0]); unit_assert(err == 0, return UNIT_FAIL); while ((u32)nvgpu_atomic_read(&item_count) < (num_work_items + 1)) { nvgpu_udelay(5); } err = nvgpu_worker_enqueue(&worker, &work_items[0]); unit_assert(err == 0, return UNIT_FAIL); err = nvgpu_worker_enqueue(&worker, &work_items[0]); unit_assert(err != 0, return UNIT_FAIL); stall_processing = false; while ((u32)nvgpu_atomic_read(&item_count) < (num_work_items + 2)) { nvgpu_udelay(5); } return UNIT_SUCCESS; } int test_branches(struct unit_module *m, struct gk20a *g, void *args) { int err; struct nvgpu_list_node work_item; int last_item_count; struct nvgpu_posix_fault_inj *thread_fi = nvgpu_thread_get_fault_injection(); struct nvgpu_posix_fault_inj *thread_running_fi = nvgpu_thread_running_true_get_fault_injection(); unsigned int i; /* * make timeout value short to get those branches, but have to * call enqueue to make it trigger */ wakeup_timeout_val = 1U; nvgpu_atomic_set(&wakeup_post_process_val, 0); nvgpu_init_list_node(&work_item); err = nvgpu_worker_enqueue(&worker, &work_item); unit_assert(err == 0, return UNIT_FAIL); while (nvgpu_atomic_read(&wakeup_post_process_val) < 10) { nvgpu_udelay(5); } wakeup_timeout_val = 0U; /* cover branches where these ops are NULL */ worker_ops.wakeup_condition = NULL; worker_ops.wakeup_timeout = NULL; worker_ops.wakeup_early_exit = NULL; worker_ops.wakeup_post_process = NULL; /* do this twice to make sure each is given a chance */ for (i = 0U; i < 2; i++) { last_item_count = nvgpu_atomic_read(&item_count); err = nvgpu_worker_enqueue(&worker, &work_item); unit_assert(err == 0, return UNIT_FAIL); while (last_item_count == nvgpu_atomic_read(&item_count)) { nvgpu_udelay(5); } } worker_ops.wakeup_condition = wakeup_condition; worker_ops.wakeup_timeout = wakeup_timeout; worker_ops.wakeup_early_exit = wakeup_early_exit; worker_ops.wakeup_post_process = wakeup_post_process; /* cover branch for the wakeup_condition op */ nvgpu_atomic_set(&wakeup_post_process_val, 0); wakeup_condition_val = true; last_item_count = nvgpu_atomic_read(&item_count); err = nvgpu_worker_enqueue(&worker, &work_item); unit_assert(err == 0, return UNIT_FAIL); while (nvgpu_atomic_read(&wakeup_post_process_val) < 1) { nvgpu_udelay(5); } wakeup_condition_val = false; /* * Cover branches for failsafe checks for empty work. This shouldn't * really happen, but there's logic to catch them just in case. So, we * can't make it happen directly, so we send the cond directly. */ nvgpu_atomic_set(&wakeup_post_process_val, 0); nvgpu_atomic_inc(&worker.put); nvgpu_cond_signal_interruptible(&worker.wq); while (nvgpu_atomic_read(&wakeup_post_process_val) < 1) { nvgpu_udelay(5); } /* Cover branch for early exit. This will exit the thread. */ nvgpu_atomic_set(&wakeup_early_exit_count, 0); force_early_exit = true; nvgpu_init_list_node(&work_item); err = nvgpu_worker_enqueue(&worker, &work_item); unit_assert(err == 0, return UNIT_FAIL); while (nvgpu_atomic_read(&wakeup_early_exit_count) < 1) { nvgpu_udelay(5); } force_early_exit = false; /* when the thread exists, we need sync some state */ nvgpu_thread_stop(&worker.poll_task); /* * While the thread is stopped, we can hit a branch in enqueue where * starting the thread fails. */ nvgpu_init_list_node(&work_item); nvgpu_posix_enable_fault_injection(thread_fi, true, 0); if (!EXPECT_BUG(nvgpu_worker_enqueue(&worker, &work_item))) { unit_return_fail(m, "should have failed to enqueue\n"); } nvgpu_posix_enable_fault_injection(thread_fi, false, 0); /* * While the thread is stopped, we can hit a branch in the worker start * function where the first check for thread running is false, then * second check is true. */ nvgpu_init_list_node(&work_item); nvgpu_posix_enable_fault_injection(thread_running_fi, true, 1); err = nvgpu_worker_enqueue(&worker, &work_item); unit_assert(err == 0, return UNIT_FAIL); nvgpu_posix_enable_fault_injection(thread_running_fi, false, 0); /* Re-init the worker to start the thread for next test. */ worker_ops.pre_process = pre_process; nvgpu_atomic_set(&pre_process_count, 0); nvgpu_worker_init(g, &worker, &worker_ops); unit_assert(err == 0, return UNIT_FAIL); /* make sure thread has started */ while (nvgpu_atomic_read(&pre_process_count) < 1) { nvgpu_udelay(5); } /* * Test for loop checking for thread_should_stop. The * wakeup_post_process callback will enable the thread fault inject * so nvgpu_thread_should_stop will return true. * This will exit the thread. */ worker_ops.wakeup_post_process = wakeup_post_process_stop_thread; nvgpu_atomic_set(&wakeup_post_process_val, 0); nvgpu_init_list_node(&work_item); err = nvgpu_worker_enqueue(&worker, &work_item); unit_assert(err == 0, return UNIT_FAIL); while (nvgpu_atomic_read(&wakeup_post_process_val) < 1) { nvgpu_udelay(5); } /* there's no way to know the thread has exited, so wait a little */ nvgpu_udelay(1000); worker_ops.wakeup_post_process = wakeup_post_process; nvgpu_posix_enable_fault_injection(thread_fi, false, 0); /* when the thread exists, we need sync some state */ nvgpu_thread_stop(&worker.poll_task); /* Re-init the worker to start the thread for de-init testing. */ worker_ops.pre_process = pre_process; nvgpu_atomic_set(&pre_process_count, 0); nvgpu_worker_init(g, &worker, &worker_ops); unit_assert(err == 0, return UNIT_FAIL); /* make sure thread has started */ while (nvgpu_atomic_read(&pre_process_count) < 1) { nvgpu_udelay(5); } return UNIT_SUCCESS; } int test_deinit(struct unit_module *m, struct gk20a *g, void *args) { nvgpu_worker_deinit(&worker); nvgpu_udelay(10); return UNIT_SUCCESS; } struct unit_module_test worker_tests[] = { UNIT_TEST(init, test_init, NULL, 0), UNIT_TEST(enqueue, test_enqueue, NULL, 2), UNIT_TEST(branches, test_branches, NULL, 2), UNIT_TEST(deinit, test_deinit, NULL, 0), }; UNIT_MODULE(worker, worker_tests, UNIT_PRIO_NVGPU_TEST);