/* * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int nvgpu_mm_suspend(struct gk20a *g) { int err; nvgpu_log_info(g, "MM suspend running..."); #ifdef CONFIG_NVGPU_DGPU nvgpu_vidmem_thread_pause_sync(&g->mm); #endif #ifdef CONFIG_NVGPU_COMPRESSION g->ops.mm.cache.cbc_clean(g); #endif err = g->ops.mm.cache.l2_flush(g, false); if (err != 0) { nvgpu_err(g, "l2_flush failed"); return err; } if (g->ops.fb.intr.disable != NULL) { g->ops.fb.intr.disable(g); } if (g->ops.mm.mmu_fault.disable_hw != NULL) { g->ops.mm.mmu_fault.disable_hw(g); } nvgpu_log_info(g, "MM suspend done!"); return err; } u64 nvgpu_inst_block_addr(struct gk20a *g, struct nvgpu_mem *inst_block) { if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) { return nvgpu_mem_get_phys_addr(g, inst_block); } else { return nvgpu_mem_get_addr(g, inst_block); } } u32 nvgpu_inst_block_ptr(struct gk20a *g, struct nvgpu_mem *inst_block) { u64 addr = nvgpu_inst_block_addr(g, inst_block) >> g->ops.ramin.base_shift(); nvgpu_assert(u64_hi32(addr) == 0U); return u64_lo32(addr); } void nvgpu_free_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block) { if (nvgpu_mem_is_valid(inst_block)) { nvgpu_dma_free(g, inst_block); } } int nvgpu_alloc_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block) { int err; nvgpu_log_fn(g, " "); err = nvgpu_dma_alloc(g, g->ops.ramin.alloc_size(), inst_block); if (err != 0) { nvgpu_err(g, "%s: memory allocation failed", __func__); return err; } nvgpu_log_fn(g, "done"); return 0; } static int nvgpu_alloc_sysmem_flush(struct gk20a *g) { return nvgpu_dma_alloc_sys(g, SZ_4K, &g->mm.sysmem_flush); } #ifdef CONFIG_NVGPU_DGPU static void nvgpu_remove_mm_ce_support(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); if (mm->vidmem.ce_ctx_id != NVGPU_CE_INVAL_CTX_ID) { nvgpu_ce_app_delete_context(g, mm->vidmem.ce_ctx_id); } mm->vidmem.ce_ctx_id = NVGPU_CE_INVAL_CTX_ID; nvgpu_vm_put(mm->ce.vm); } #endif static void nvgpu_remove_mm_support(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); nvgpu_dma_free(g, &mm->mmu_wr_mem); nvgpu_dma_free(g, &mm->mmu_rd_mem); if (g->ops.mm.mmu_fault.info_mem_destroy != NULL) { g->ops.mm.mmu_fault.info_mem_destroy(g); } if (g->ops.mm.remove_bar2_vm != NULL) { g->ops.mm.remove_bar2_vm(g); } nvgpu_free_inst_block(g, &mm->bar1.inst_block); nvgpu_vm_put(mm->bar1.vm); nvgpu_free_inst_block(g, &mm->pmu.inst_block); nvgpu_free_inst_block(g, &mm->hwpm.inst_block); nvgpu_vm_put(mm->pmu.vm); if (nvgpu_is_enabled(g, NVGPU_SUPPORT_SEC2_VM)) { nvgpu_free_inst_block(g, &mm->sec2.inst_block); nvgpu_vm_put(mm->sec2.vm); } if (nvgpu_is_enabled(g, NVGPU_SUPPORT_GSP_VM)) { nvgpu_free_inst_block(g, &mm->gsp.inst_block); nvgpu_vm_put(mm->gsp.vm); } if (g->has_cde) { nvgpu_vm_put(mm->cde.vm); } #ifdef CONFIG_NVGPU_SW_SEMAPHORE nvgpu_semaphore_sea_destroy(g); #endif #ifdef CONFIG_NVGPU_DGPU nvgpu_vidmem_destroy(g); if (g->ops.ramin.deinit_pdb_cache_war != NULL) { g->ops.ramin.deinit_pdb_cache_war(g); } #endif nvgpu_pd_cache_fini(g); } /* pmu vm, share channel_vm interfaces */ static int nvgpu_init_system_vm(struct mm_gk20a *mm) { int err; struct gk20a *g = gk20a_from_mm(mm); struct nvgpu_mem *inst_block = &mm->pmu.inst_block; u32 big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); u64 low_hole, aperture_size; /* * For some reason the maxwell PMU code is dependent on the large page * size. No reason AFAICT for this. Probably a bug somewhere. */ if (nvgpu_is_enabled(g, NVGPU_MM_FORCE_128K_PMU_VM)) { big_page_size = nvgpu_safe_cast_u64_to_u32(SZ_128K); } /* * No user region - so we will pass that as zero sized. */ low_hole = SZ_4K * 16UL; aperture_size = GK20A_PMU_VA_SIZE; mm->pmu.aperture_size = GK20A_PMU_VA_SIZE; nvgpu_log_info(g, "pmu vm size = 0x%x", mm->pmu.aperture_size); mm->pmu.vm = nvgpu_vm_init(g, big_page_size, low_hole, nvgpu_safe_sub_u64(aperture_size, low_hole), aperture_size, true, false, false, "system"); if (mm->pmu.vm == NULL) { return -ENOMEM; } err = nvgpu_alloc_inst_block(g, inst_block); if (err != 0) { goto clean_up_vm; } g->ops.mm.init_inst_block(inst_block, mm->pmu.vm, big_page_size); return 0; clean_up_vm: nvgpu_vm_put(mm->pmu.vm); return err; } static int nvgpu_init_hwpm(struct mm_gk20a *mm) { int err; struct gk20a *g = gk20a_from_mm(mm); struct nvgpu_mem *inst_block = &mm->hwpm.inst_block; err = nvgpu_alloc_inst_block(g, inst_block); if (err != 0) { return err; } g->ops.mm.init_inst_block(inst_block, mm->pmu.vm, 0); return 0; } static int nvgpu_init_cde_vm(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); u32 big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); mm->cde.vm = nvgpu_vm_init(g, big_page_size, U64(big_page_size) << U64(10), NV_MM_DEFAULT_KERNEL_SIZE, NV_MM_DEFAULT_KERNEL_SIZE + NV_MM_DEFAULT_USER_SIZE, false, false, false, "cde"); if (mm->cde.vm == NULL) { return -ENOMEM; } return 0; } static int nvgpu_init_ce_vm(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); u32 big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); mm->ce.vm = nvgpu_vm_init(g, big_page_size, U64(big_page_size) << U64(10), NV_MM_DEFAULT_KERNEL_SIZE, NV_MM_DEFAULT_KERNEL_SIZE + NV_MM_DEFAULT_USER_SIZE, false, false, false, "ce"); if (mm->ce.vm == NULL) { return -ENOMEM; } return 0; } static int nvgpu_init_mmu_debug(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); int err; if (!nvgpu_mem_is_valid(&mm->mmu_wr_mem)) { err = nvgpu_dma_alloc_sys(g, SZ_4K, &mm->mmu_wr_mem); if (err != 0) { goto err; } } if (!nvgpu_mem_is_valid(&mm->mmu_rd_mem)) { err = nvgpu_dma_alloc_sys(g, SZ_4K, &mm->mmu_rd_mem); if (err != 0) { goto err_free_wr_mem; } } return 0; err_free_wr_mem: nvgpu_dma_free(g, &mm->mmu_wr_mem); err: return -ENOMEM; } #if defined(CONFIG_NVGPU_DGPU) void nvgpu_init_mm_ce_context(struct gk20a *g) { if (g->mm.vidmem.size > 0U && (g->mm.vidmem.ce_ctx_id == NVGPU_CE_INVAL_CTX_ID)) { g->mm.vidmem.ce_ctx_id = nvgpu_ce_app_create_context(g, nvgpu_engine_get_fast_ce_runlist_id(g), -1, -1); if (g->mm.vidmem.ce_ctx_id == NVGPU_CE_INVAL_CTX_ID) { nvgpu_err(g, "Failed to allocate CE context for vidmem page clearing support"); } } } #endif static int nvgpu_init_bar1_vm(struct mm_gk20a *mm) { int err; struct gk20a *g = gk20a_from_mm(mm); struct nvgpu_mem *inst_block = &mm->bar1.inst_block; u32 big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); mm->bar1.aperture_size = bar1_aperture_size_mb_gk20a() << 20; nvgpu_log_info(g, "bar1 vm size = 0x%x", mm->bar1.aperture_size); mm->bar1.vm = nvgpu_vm_init(g, big_page_size, SZ_64K, nvgpu_safe_sub_u64(mm->bar1.aperture_size, SZ_64K), mm->bar1.aperture_size, true, false, false, "bar1"); if (mm->bar1.vm == NULL) { return -ENOMEM; } err = nvgpu_alloc_inst_block(g, inst_block); if (err != 0) { goto clean_up_vm; } g->ops.mm.init_inst_block(inst_block, mm->bar1.vm, big_page_size); return 0; clean_up_vm: nvgpu_vm_put(mm->bar1.vm); return err; } static int nvgpu_init_engine_ucode_vm(struct gk20a *g, struct engine_ucode *ucode, const char *address_space_name) { int err; struct nvgpu_mem *inst_block = &ucode->inst_block; u32 big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); /* ucode aperture size is 32MB */ ucode->aperture_size = U32(32) << 20U; nvgpu_log_info(g, "%s vm size = 0x%x", address_space_name, ucode->aperture_size); ucode->vm = nvgpu_vm_init(g, big_page_size, SZ_4K, nvgpu_safe_sub_u64(ucode->aperture_size, SZ_4K), ucode->aperture_size, false, false, false, address_space_name); if (ucode->vm == NULL) { return -ENOMEM; } /* allocate instance mem for engine ucode */ err = nvgpu_alloc_inst_block(g, inst_block); if (err != 0) { goto clean_up_va; } g->ops.mm.init_inst_block(inst_block, ucode->vm, big_page_size); return 0; clean_up_va: nvgpu_vm_put(ucode->vm); return err; } static int nvgpu_init_mm_setup_bar(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; int err; err = nvgpu_init_bar1_vm(mm); if (err != 0) { return err; } if (g->ops.mm.init_bar2_vm != NULL) { err = g->ops.mm.init_bar2_vm(g); if (err != 0) { return err; } } err = nvgpu_init_system_vm(mm); if (err != 0) { return err; } err = nvgpu_init_hwpm(mm); if (err != 0) { return err; } return err; } static int nvgpu_init_mm_setup_vm(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; int err; if (nvgpu_is_enabled(g, NVGPU_SUPPORT_SEC2_VM)) { err = nvgpu_init_engine_ucode_vm(g, &mm->sec2, "sec2"); if (err != 0) { return err; } } if (nvgpu_is_enabled(g, NVGPU_SUPPORT_GSP_VM)) { err = nvgpu_init_engine_ucode_vm(g, &mm->gsp, "gsp"); if (err != 0) { return err; } } if (g->has_cde) { err = nvgpu_init_cde_vm(mm); if (err != 0) { return err; } } err = nvgpu_init_ce_vm(mm); if (err != 0) { return err; } return err; } static int nvgpu_init_mm_components(struct gk20a *g) { int err = 0; struct mm_gk20a *mm = &g->mm; err = nvgpu_alloc_sysmem_flush(g); if (err != 0) { return err; } err = nvgpu_init_mm_setup_bar(g); if (err != 0) { return err; } err = nvgpu_init_mm_setup_vm(g); if (err != 0) { return err; } err = nvgpu_init_mmu_debug(mm); if (err != 0) { return err; } /* * Some chips support replayable MMU faults. For such chips make sure * SW is initialized. */ if (g->ops.mm.mmu_fault.setup_sw != NULL) { err = g->ops.mm.mmu_fault.setup_sw(g); if (err != 0) { return err; } } return 0; } static int nvgpu_init_mm_setup_sw(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; int err = 0; if (mm->sw_ready) { nvgpu_log_info(g, "skip init"); return 0; } mm->g = g; nvgpu_mutex_init(&mm->l2_op_lock); /*TBD: make channel vm size configurable */ mm->channel.user_size = NV_MM_DEFAULT_USER_SIZE - NV_MM_DEFAULT_KERNEL_SIZE; mm->channel.kernel_size = NV_MM_DEFAULT_KERNEL_SIZE; nvgpu_log_info(g, "channel vm size: user %uMB kernel %uMB", nvgpu_safe_cast_u64_to_u32(mm->channel.user_size >> U64(20)), nvgpu_safe_cast_u64_to_u32(mm->channel.kernel_size >> U64(20))); #ifdef CONFIG_NVGPU_DGPU mm->vidmem.ce_ctx_id = NVGPU_CE_INVAL_CTX_ID; nvgpu_init_pramin(mm); err = nvgpu_vidmem_init(mm); if (err != 0) { return err; } /* * this requires fixed allocations in vidmem which must be * allocated before all other buffers */ if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFIED_MEMORY) && nvgpu_is_enabled(g, NVGPU_SEC_PRIVSECURITY)) { err = nvgpu_acr_alloc_blob_prerequisite(g, g->acr, 0); if (err != 0) { return err; } } #endif err = nvgpu_init_mm_components(g); if (err != 0) { return err; } if ((g->ops.fb.ecc.init != NULL) && !g->ecc.initialized) { err = g->ops.fb.ecc.init(g); if (err != 0) { return err; } } mm->remove_support = nvgpu_remove_mm_support; #ifdef CONFIG_NVGPU_DGPU mm->remove_ce_support = nvgpu_remove_mm_ce_support; #endif mm->sw_ready = true; return 0; } #ifdef CONFIG_NVGPU_DGPU static int nvgpu_init_mm_pdb_cache_war(struct gk20a *g) { int err; if (g->ops.ramin.init_pdb_cache_war != NULL) { err = g->ops.ramin.init_pdb_cache_war(g); if (err != 0) { return err; } } if (g->ops.fb.apply_pdb_cache_war != NULL) { err = g->ops.fb.apply_pdb_cache_war(g); if (err != 0) { return err; } } return 0; } #endif /* * Called through the HAL to handle vGPU: the vGPU doesn't have HW to initialize * here. */ int nvgpu_mm_setup_hw(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; int err; nvgpu_log_fn(g, " "); if (g->ops.fb.set_mmu_page_size != NULL) { g->ops.fb.set_mmu_page_size(g); } #ifdef CONFIG_NVGPU_COMPRESSION if (g->ops.fb.set_use_full_comp_tag_line != NULL) { mm->use_full_comp_tag_line = g->ops.fb.set_use_full_comp_tag_line(g); } #endif g->ops.fb.init_hw(g); if (g->ops.bus.bar1_bind != NULL) { err = g->ops.bus.bar1_bind(g, &mm->bar1.inst_block); if (err != 0) { return err; } } if (g->ops.bus.bar2_bind != NULL) { err = g->ops.bus.bar2_bind(g, &mm->bar2.inst_block); if (err != 0) { return err; } } if ((g->ops.mm.cache.fb_flush(g) != 0) || (g->ops.mm.cache.fb_flush(g) != 0)) { return -EBUSY; } if (g->ops.mm.mmu_fault.setup_hw != NULL) { g->ops.mm.mmu_fault.setup_hw(g); } nvgpu_log_fn(g, "done"); return 0; } int nvgpu_init_mm_support(struct gk20a *g) { int err; #ifdef CONFIG_NVGPU_DGPU err = nvgpu_init_mm_pdb_cache_war(g); if (err != 0) { return err; } #endif err = nvgpu_init_mm_setup_sw(g); if (err != 0) { return err; } if (g->ops.mm.setup_hw != NULL) { err = g->ops.mm.setup_hw(g); } return err; } u32 nvgpu_mm_get_default_big_page_size(struct gk20a *g) { u32 big_page_size; big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); if (g->mm.disable_bigpage) { big_page_size = 0; } return big_page_size; } u32 nvgpu_mm_get_available_big_page_sizes(struct gk20a *g) { u32 available_big_page_sizes = 0; if (g->mm.disable_bigpage) { return available_big_page_sizes; } available_big_page_sizes = g->ops.mm.gmmu.get_default_big_page_size(); if (g->ops.mm.gmmu.get_big_page_sizes != NULL) { available_big_page_sizes |= g->ops.mm.gmmu.get_big_page_sizes(); } return available_big_page_sizes; }