/* * Copyright (c) 2016-2020, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "ucode_perf_vfe_inf.h" #include "vfe_equ.h" #include "vfe_var.h" #include "perf.h" static int vfe_equ_node_depending_mask_combine(struct gk20a *g, struct boardobjgrp *pboardobjgrp, u8 equ_idx, struct boardobjgrpmask *pmask_dst) { int status; struct vfe_equ *tmp_vfe_equ; while (equ_idx != CTRL_BOARDOBJ_IDX_INVALID) { tmp_vfe_equ = (struct vfe_equ *)(void *) BOARDOBJGRP_OBJ_GET_BY_IDX( pboardobjgrp, equ_idx); status = tmp_vfe_equ->mask_depending_build(g, pboardobjgrp , tmp_vfe_equ); if (status != 0) { nvgpu_err(g, " Failed calling vfeequ[%d].mskdpningbld", equ_idx); return status; } status = nvgpu_boardobjmask_or(pmask_dst, pmask_dst, &(tmp_vfe_equ->mask_depending_vars.super)); if (status != 0) { nvgpu_err(g, " Failed calling vfeequ boardobjmask_or"); return status; } equ_idx = tmp_vfe_equ->equ_idx_next; } return status; } static int vfe_equ_build_depending_mask_minmax(struct gk20a *g, struct boardobjgrp *pboardobjgrp, struct vfe_equ *pvfe_equ) { struct vfe_equ_minmax *pequ_mm = (struct vfe_equ_minmax *)(void *)pvfe_equ; int status; status = vfe_equ_node_depending_mask_combine(g, pboardobjgrp, pequ_mm->equ_idx0, &pvfe_equ->mask_depending_vars.super); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_combine for idx0"); return status; } status = vfe_equ_node_depending_mask_combine(g, pboardobjgrp, pequ_mm->equ_idx1, &pvfe_equ->mask_depending_vars.super); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_combine for idx1"); return status; } return status; } static int vfe_equ_build_depending_mask_super(struct gk20a *g, struct vfe_equ *pvfe_equ) { struct vfe_var *tmp_vfe_var; struct boardobjgrp *pboardobjgrp = &g->pmu->perf_pmu->vfe_varobjs.super.super; tmp_vfe_var = (struct vfe_var *)(void *)BOARDOBJGRP_OBJ_GET_BY_IDX( pboardobjgrp, pvfe_equ->var_idx); pvfe_equ->mask_depending_vars = tmp_vfe_var->mask_depending_vars; return 0; } static int vfe_equ_build_depending_mask_compare(struct gk20a *g, struct boardobjgrp *pboardobjgrp, struct vfe_equ *pvfe_equ) { struct vfe_equ_compare *pequ_cmp = (struct vfe_equ_compare *)(void *)pvfe_equ; int status; status = vfe_equ_build_depending_mask_super(g, pvfe_equ); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_super"); return status; } status = vfe_equ_node_depending_mask_combine(g, pboardobjgrp, pequ_cmp->equ_idx_true, &pvfe_equ->mask_depending_vars.super); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_combine for idx1"); return status; } status = vfe_equ_node_depending_mask_combine(g, pboardobjgrp, pequ_cmp->equ_idx_false, &pvfe_equ->mask_depending_vars.super); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_combine for idx1"); return status; } return status; } static int vfe_equ_build_depending_mask_quad(struct gk20a *g, struct boardobjgrp *pboardobjgrp, struct vfe_equ *pvfe_equ) { return vfe_equ_build_depending_mask_super(g, pvfe_equ); } static int vfe_equ_build_depending_mask_equ_scalar(struct gk20a *g, struct boardobjgrp *pboardobjgrp, struct vfe_equ *pvfe_equ) { struct vfe_equ_scalar *pequ_escalar = (struct vfe_equ_scalar *)(void *)pvfe_equ; int status; status = vfe_equ_build_depending_mask_super(g, pvfe_equ); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_super"); return status; } status = vfe_equ_node_depending_mask_combine(g, pboardobjgrp, pequ_escalar->equ_idx_to_scale, &pvfe_equ->mask_depending_vars.super); if (status != 0) { nvgpu_err(g, " Failed calling depending_mask_combine for idx1"); return status; } return status; } static int vfe_equ_dependency_mask_build(struct gk20a *g, struct vfe_equs *pvfe_equs, struct vfe_vars *pvfe_vars) { int status; struct vfe_equ *tmp_vfe_equ; struct vfe_var *tmp_vfe_var; u8 index_1, index_2; struct boardobj *pboardobj_1 = NULL, *pboardobj_2 = NULL; struct boardobjgrp *pboardobjgrp_equ = &(pvfe_equs->super.super); struct boardobjgrp *pboardobjgrp_var = &(pvfe_vars->super.super); /* Initialize mask_depending_vars */ BOARDOBJGRP_FOR_EACH(pboardobjgrp_equ, struct boardobj*, pboardobj_1, index_1) { tmp_vfe_equ = (struct vfe_equ *)(void *)pboardobj_1; status = tmp_vfe_equ->mask_depending_build(g, pboardobjgrp_equ, tmp_vfe_equ); if (status != 0) { nvgpu_err(g, "failure in calling vfeequ[%d].depmskbld", index_1); return status; } } /* Initialize mask_dependent_vars */ BOARDOBJGRP_FOR_EACH(pboardobjgrp_equ, struct boardobj*, pboardobj_1, index_1) { tmp_vfe_equ = (struct vfe_equ *)(void *)pboardobj_1; BOARDOBJGRP_ITERATOR(pboardobjgrp_var, struct boardobj*, pboardobj_2, index_2, &tmp_vfe_equ->mask_depending_vars.super) { tmp_vfe_var = (struct vfe_var *)(void *)pboardobj_2; status = nvgpu_boardobjgrpmask_bit_set( &tmp_vfe_var->mask_dependent_equs.super, index_1); if (status != 0) { nvgpu_err(g, "failing boardobjgrpmask_bit_set"); return status; } } } return status; } static int vfe_equs_pmudatainit(struct gk20a *g, struct boardobjgrp *pboardobjgrp, struct nv_pmu_boardobjgrp_super *pboardobjgrppmu) { int status = 0; status = boardobjgrp_pmu_data_init_e255(g, pboardobjgrp, pboardobjgrppmu); if (status != 0) { nvgpu_err(g, "error updating pmu boardobjgrp for vfe equ 0x%x", status); goto done; } done: return status; } static int vfe_equs_pmudata_instget(struct gk20a *g, struct nv_pmu_boardobjgrp *pmuboardobjgrp, struct nv_pmu_boardobj **ppboardobjpmudata, u8 idx) { struct nv_pmu_perf_vfe_equ_boardobj_grp_set *pgrp_set = (struct nv_pmu_perf_vfe_equ_boardobj_grp_set *)(void *)pmuboardobjgrp; /* check whether pmuboardobjgrp has a valid boardobj in index */ if (idx >= CTRL_BOARDOBJGRP_E255_MAX_OBJECTS) { return -EINVAL; } *ppboardobjpmudata = (struct nv_pmu_boardobj *) &pgrp_set->objects[idx].data.board_obj; nvgpu_log_info(g, " Done"); return 0; } static int vfe_equ_pmudatainit_super(struct gk20a *g, struct boardobj *board_obj_ptr, struct nv_pmu_boardobj *ppmudata) { int status = 0; struct vfe_equ *pvfe_equ; struct nv_pmu_vfe_equ *pset; status = nvgpu_boardobj_pmu_data_init_super(g, board_obj_ptr, ppmudata); if (status != 0) { return status; } pvfe_equ = (struct vfe_equ *)(void *)board_obj_ptr; pset = (struct nv_pmu_vfe_equ *)(void *) ppmudata; pset->var_idx = pvfe_equ->var_idx; pset->equ_idx_next = pvfe_equ->equ_idx_next; pset->output_type = pvfe_equ->output_type; pset->out_range_min = pvfe_equ->out_range_min; pset->out_range_max = pvfe_equ->out_range_max; return status; } static int vfe_equ_construct_super(struct gk20a *g, struct boardobj **ppboardobj, size_t size, void *pargs) { struct vfe_equ *pvfeequ; struct vfe_equ *ptmpequ = (struct vfe_equ *)pargs; int status = 0; pvfeequ = nvgpu_kzalloc(g, size); if (pvfeequ == NULL) { return -ENOMEM; } status = pmu_boardobj_construct_super(g, (struct boardobj *)(void *)pvfeequ, pargs); if (status != 0) { return -EINVAL; } *ppboardobj = (struct boardobj *)(void *)pvfeequ; status = boardobjgrpmask_e32_init(&pvfeequ->mask_depending_vars, NULL); pvfeequ->super.pmudatainit = vfe_equ_pmudatainit_super; pvfeequ->var_idx = ptmpequ->var_idx; pvfeequ->equ_idx_next = ptmpequ->equ_idx_next; pvfeequ->output_type = ptmpequ->output_type; pvfeequ->out_range_min = ptmpequ->out_range_min; pvfeequ->out_range_max = ptmpequ->out_range_max; return status; } static int vfe_equ_pmudatainit_compare(struct gk20a *g, struct boardobj *board_obj_ptr, struct nv_pmu_boardobj *ppmudata) { int status = 0; struct vfe_equ_compare *pvfe_equ_compare; struct nv_pmu_vfe_equ_compare *pset; status = vfe_equ_pmudatainit_super(g, board_obj_ptr, ppmudata); if (status != 0) { return status; } pvfe_equ_compare = (struct vfe_equ_compare *)(void *)board_obj_ptr; pset = (struct nv_pmu_vfe_equ_compare *)(void *)ppmudata; pset->func_id = pvfe_equ_compare->func_id; pset->equ_idx_true = pvfe_equ_compare->equ_idx_true; pset->equ_idx_false = pvfe_equ_compare->equ_idx_false; pset->criteria = pvfe_equ_compare->criteria; return status; } static int vfe_equ_construct_compare(struct gk20a *g, struct boardobj **ppboardobj, size_t size, void *pargs) { struct boardobj *ptmpobj = (struct boardobj *)pargs; struct vfe_equ_compare *pvfeequ; struct vfe_equ_compare *ptmpequ = (struct vfe_equ_compare *)pargs; int status = 0; if (BOARDOBJ_GET_TYPE(pargs) != CTRL_PERF_VFE_EQU_TYPE_COMPARE) { return -EINVAL; } ptmpobj->type_mask |= (u32)BIT(CTRL_PERF_VFE_EQU_TYPE_COMPARE); status = vfe_equ_construct_super(g, ppboardobj, size, pargs); if (status != 0) { return -EINVAL; } pvfeequ = (struct vfe_equ_compare *)(void *)*ppboardobj; pvfeequ->super.mask_depending_build = vfe_equ_build_depending_mask_compare; pvfeequ->super.super.pmudatainit = vfe_equ_pmudatainit_compare; pvfeequ->func_id = ptmpequ->func_id; pvfeequ->equ_idx_true = ptmpequ->equ_idx_true; pvfeequ->equ_idx_false = ptmpequ->equ_idx_false; pvfeequ->criteria = ptmpequ->criteria; return status; } static int vfe_equ_pmudatainit_minmax(struct gk20a *g, struct boardobj *board_obj_ptr, struct nv_pmu_boardobj *ppmudata) { int status = 0; struct vfe_equ_minmax *pvfe_equ_minmax; struct nv_pmu_vfe_equ_minmax *pset; status = vfe_equ_pmudatainit_super(g, board_obj_ptr, ppmudata); if (status != 0) { return status; } pvfe_equ_minmax = (struct vfe_equ_minmax *)(void *)board_obj_ptr; pset = (struct nv_pmu_vfe_equ_minmax *)(void *) ppmudata; pset->b_max = pvfe_equ_minmax->b_max; pset->equ_idx0 = pvfe_equ_minmax->equ_idx0; pset->equ_idx1 = pvfe_equ_minmax->equ_idx1; return status; } static int vfe_equ_construct_minmax(struct gk20a *g, struct boardobj **ppboardobj, size_t size, void *pargs) { struct boardobj *ptmpobj = (struct boardobj *)pargs; struct vfe_equ_minmax *pvfeequ; struct vfe_equ_minmax *ptmpequ = (struct vfe_equ_minmax *)pargs; int status = 0; if (BOARDOBJ_GET_TYPE(pargs) != CTRL_PERF_VFE_EQU_TYPE_MINMAX) { return -EINVAL; } ptmpobj->type_mask |= (u32)BIT(CTRL_PERF_VFE_EQU_TYPE_MINMAX); status = vfe_equ_construct_super(g, ppboardobj, size, pargs); if (status != 0) { return -EINVAL; } pvfeequ = (struct vfe_equ_minmax *)(void *)*ppboardobj; pvfeequ->super.mask_depending_build = vfe_equ_build_depending_mask_minmax; pvfeequ->super.super.pmudatainit = vfe_equ_pmudatainit_minmax; pvfeequ->b_max = ptmpequ->b_max; pvfeequ->equ_idx0 = ptmpequ->equ_idx0; pvfeequ->equ_idx1 = ptmpequ->equ_idx1; return status; } static int vfe_equ_pmudatainit_quadratic(struct gk20a *g, struct boardobj *board_obj_ptr, struct nv_pmu_boardobj *ppmudata) { int status = 0; struct vfe_equ_quadratic *pvfe_equ_quadratic; struct nv_pmu_vfe_equ_quadratic *pset; u32 i; status = vfe_equ_pmudatainit_super(g, board_obj_ptr, ppmudata); if (status != 0) { return status; } pvfe_equ_quadratic = (struct vfe_equ_quadratic *)(void *)board_obj_ptr; pset = (struct nv_pmu_vfe_equ_quadratic *)(void *)ppmudata; for (i = 0; i < CTRL_PERF_VFE_EQU_QUADRATIC_COEFF_COUNT; i++) { pset->coeffs[i] = pvfe_equ_quadratic->coeffs[i]; } return status; } static int vfe_equ_construct_quadratic(struct gk20a *g, struct boardobj **ppboardobj, size_t size, void *pargs) { struct boardobj *ptmpobj = (struct boardobj *)pargs; struct vfe_equ_quadratic *pvfeequ; struct vfe_equ_quadratic *ptmpequ = (struct vfe_equ_quadratic *)pargs; int status = 0; u32 i; if (BOARDOBJ_GET_TYPE(pargs) != CTRL_PERF_VFE_EQU_TYPE_QUADRATIC) { return -EINVAL; } ptmpobj->type_mask |= (u32)BIT(CTRL_PERF_VFE_EQU_TYPE_QUADRATIC); status = vfe_equ_construct_super(g, ppboardobj, size, pargs); if (status != 0) { return -EINVAL; } pvfeequ = (struct vfe_equ_quadratic *)(void *)*ppboardobj; pvfeequ->super.mask_depending_build = vfe_equ_build_depending_mask_quad; pvfeequ->super.super.pmudatainit = vfe_equ_pmudatainit_quadratic; for (i = 0; i < CTRL_PERF_VFE_EQU_QUADRATIC_COEFF_COUNT; i++) { pvfeequ->coeffs[i] = ptmpequ->coeffs[i]; } return status; } static int vfe_equ_pmudatainit_scalar(struct gk20a *g, struct boardobj *board_obj_ptr, struct nv_pmu_boardobj *ppmudata) { int status = 0; struct vfe_equ_scalar *pvfe_equ_scalar; struct nv_pmu_vfe_equ_scalar *pset; status = vfe_equ_pmudatainit_super(g, board_obj_ptr, ppmudata); if (status != 0) { return status; } pvfe_equ_scalar = (struct vfe_equ_scalar *)(void *)board_obj_ptr; pset = (struct nv_pmu_vfe_equ_scalar *)(void *) ppmudata; pset->equ_idx_to_scale = pvfe_equ_scalar->equ_idx_to_scale; return status; } static int vfe_equ_construct_scalar(struct gk20a *g, struct boardobj **ppboardobj, size_t size, void *pargs) { struct boardobj *ptmpobj = (struct boardobj *)pargs; struct vfe_equ_scalar *pvfeequ; struct vfe_equ_scalar *ptmpequ = (struct vfe_equ_scalar *)pargs; int status = 0; if (BOARDOBJ_GET_TYPE(pargs) != CTRL_PERF_VFE_EQU_TYPE_SCALAR) { return -EINVAL; } ptmpobj->type_mask |= (u32)BIT(CTRL_PERF_VFE_EQU_TYPE_SCALAR); status = vfe_equ_construct_super(g, ppboardobj, size, pargs); if (status != 0) { return -EINVAL; } pvfeequ = (struct vfe_equ_scalar *)(void *)*ppboardobj; pvfeequ->super.mask_depending_build = vfe_equ_build_depending_mask_equ_scalar; pvfeequ->super.super.pmudatainit = vfe_equ_pmudatainit_scalar; pvfeequ->equ_idx_to_scale = ptmpequ->equ_idx_to_scale; return status; } static struct vfe_equ *construct_vfe_equ(struct gk20a *g, void *pargs) { struct boardobj *board_obj_ptr = NULL; int status; switch (BOARDOBJ_GET_TYPE(pargs)) { case CTRL_PERF_VFE_EQU_TYPE_COMPARE: status = vfe_equ_construct_compare(g, &board_obj_ptr, sizeof(struct vfe_equ_compare), pargs); break; case CTRL_PERF_VFE_EQU_TYPE_MINMAX: status = vfe_equ_construct_minmax(g, &board_obj_ptr, sizeof(struct vfe_equ_minmax), pargs); break; case CTRL_PERF_VFE_EQU_TYPE_QUADRATIC: status = vfe_equ_construct_quadratic(g, &board_obj_ptr, sizeof(struct vfe_equ_quadratic), pargs); break; case CTRL_PERF_VFE_EQU_TYPE_SCALAR: status = vfe_equ_construct_scalar(g, &board_obj_ptr, sizeof(struct vfe_equ_scalar), pargs); break; default: status = -EINVAL; break; } if (status != 0) { return NULL; } nvgpu_log_info(g, " Done"); return (struct vfe_equ *)board_obj_ptr; } static int devinit_get_vfe_equ_table(struct gk20a *g, struct vfe_equs *pvfeequobjs) { int status = 0; u8 *vfeequs_tbl_ptr = NULL; struct vbios_vfe_3x_header_struct vfeequs_tbl_header = { 0 }; struct vbios_vfe_3x_equ_entry_struct equ = { 0 }; u8 *vfeequs_tbl_entry_ptr = NULL; u8 *rd_offset_ptr = NULL; u32 index = 0; struct vfe_equ *pequ; u8 equ_type = 0; u32 szfmt; bool done = false; u32 hdrszfmt = 0; union { struct boardobj board_obj; struct vfe_equ super; struct vfe_equ_compare compare; struct vfe_equ_minmax minmax; struct vfe_equ_quadratic quadratic; struct vfe_equ_scalar scalar; } equ_data; vfeequs_tbl_ptr = (u8 *)nvgpu_bios_get_perf_table_ptrs(g, nvgpu_bios_get_bit_token(g, NVGPU_BIOS_PERF_TOKEN), CONTINUOUS_VIRTUAL_BINNING_TABLE); if (vfeequs_tbl_ptr == NULL) { status = -EINVAL; goto done; } nvgpu_memcpy((u8 *)&vfeequs_tbl_header, vfeequs_tbl_ptr, VBIOS_VFE_3X_HEADER_SIZE_09); if (vfeequs_tbl_header.header_size == VBIOS_VFE_3X_HEADER_SIZE_09) { hdrszfmt = VBIOS_VFE_3X_HEADER_SIZE_09; nvgpu_memcpy((u8 *)&vfeequs_tbl_header, vfeequs_tbl_ptr, hdrszfmt); } else { nvgpu_err(g, "Invalid VFE Table Header size\n"); status = -EINVAL; goto done; } if (vfeequs_tbl_header.vfe_equ_entry_size == VBIOS_VFE_3X_EQU_ENTRY_SIZE_18) { szfmt = VBIOS_VFE_3X_EQU_ENTRY_SIZE_18; } else { nvgpu_err(g, "Invalid VFE EQU entry size\n"); status = -EINVAL; goto done; } vfeequs_tbl_entry_ptr = vfeequs_tbl_ptr + hdrszfmt + (vfeequs_tbl_header.vfe_var_entry_count * vfeequs_tbl_header.vfe_var_entry_size); for (index = 0; index < vfeequs_tbl_header.vfe_equ_entry_count; index++) { (void) memset(&equ, 0, sizeof(struct vbios_vfe_3x_equ_entry_struct)); rd_offset_ptr = vfeequs_tbl_entry_ptr + (index * vfeequs_tbl_header.vfe_equ_entry_size); nvgpu_memcpy((u8 *)&equ, rd_offset_ptr, szfmt); equ_data.super.var_idx = (u8)equ.var_idx; equ_data.super.equ_idx_next = (equ.equ_idx_next == VBIOS_VFE_3X_EQU_ENTRY_IDX_INVALID) ? CTRL_BOARDOBJ_IDX_INVALID : (u8)equ.equ_idx_next; equ_data.super.out_range_min = equ.out_range_min; equ_data.super.out_range_max = equ.out_range_max; switch (BIOS_GET_FIELD(u32, equ.param3, VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE)) { case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_UNITLESS: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_UNITLESS; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_FREQ_MHZ: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_FREQ_MHZ; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_VOLT_UV: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_VOLT_UV; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_VF_GAIN: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_VF_GAIN; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_VOLT_DELTA_UV: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_VOLT_DELTA_UV; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_WORK_TYPE: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_WORK_TYPE; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_UTIL_RATIO: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_UTIL_RATIO; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_WORK_FB_NORM: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_WORK_FB_NORM; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_POWER_MW: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_POWER_MW; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_PWR_OVER_UTIL_SLOPE: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_PWR_OVER_UTIL_SLOPE; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_VIN_CODE: equ_data.super.output_type = (u8)CTRL_PERF_VFE_EQU_OUTPUT_TYPE_VIN_CODE; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_THRESHOLD: equ_data.super.output_type = (u8)VBIOS_VFE_3X_EQU_ENTRY_PAR3_OUTPUT_TYPE_THRESHOLD; break; default: nvgpu_err(g, "unrecognized output id @vfeequ index %d", index); done = true; break; } /* * Previously we were doing "goto done" from the default case of * the switch-case block above. MISRA however, gets upset about * this because it wants a break statement in the default case. * That's why we had to move the goto statement outside of the * switch-case block. */ if (done) { goto done; } switch ((u8)equ.type) { case VBIOS_VFE_3X_EQU_ENTRY_TYPE_DISABLED: case VBIOS_VFE_3X_EQU_ENTRY_TYPE_QUADRATIC_FXP: case VBIOS_VFE_3X_EQU_ENTRY_TYPE_MINMAX_FXP: continue; break; case VBIOS_VFE_3X_EQU_ENTRY_TYPE_QUADRATIC: equ_type = (u8)CTRL_PERF_VFE_EQU_TYPE_QUADRATIC; equ_data.quadratic.coeffs[0] = equ.param0; equ_data.quadratic.coeffs[1] = equ.param1; equ_data.quadratic.coeffs[2] = equ.param2; break; case VBIOS_VFE_3X_EQU_ENTRY_TYPE_MINMAX: equ_type = (u8)CTRL_PERF_VFE_EQU_TYPE_MINMAX; equ_data.minmax.b_max = BIOS_GET_FIELD(bool, equ.param0, VBIOS_VFE_3X_EQU_ENTRY_PAR0_MINMAX_CRIT) && (VBIOS_VFE_3X_EQU_ENTRY_PAR0_MINMAX_CRIT_MAX != 0U); equ_data.minmax.equ_idx0 = BIOS_GET_FIELD(u8, equ.param0, VBIOS_VFE_3X_EQU_ENTRY_PAR0_MINMAX_VFE_EQU_IDX_0); equ_data.minmax.equ_idx1 = BIOS_GET_FIELD(u8, equ.param0, VBIOS_VFE_3X_EQU_ENTRY_PAR0_MINMAX_VFE_EQU_IDX_1); break; case VBIOS_VFE_3X_EQU_ENTRY_TYPE_COMPARE: { u8 cmp_func = BIOS_GET_FIELD(u8, equ.param1, VBIOS_VFE_3X_EQU_ENTRY_PAR1_COMPARE_FUNCTION); equ_type = (u8)CTRL_PERF_VFE_EQU_TYPE_COMPARE; switch (cmp_func) { case VBIOS_VFE_3X_EQU_ENTRY_PAR1_COMPARE_FUNCTION_EQUAL: equ_data.compare.func_id = (u8)CTRL_PERF_VFE_EQU_COMPARE_FUNCTION_EQUAL; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR1_COMPARE_FUNCTION_GREATER_EQ: equ_data.compare.func_id = (u8)CTRL_PERF_VFE_EQU_COMPARE_FUNCTION_GREATER_EQ; break; case VBIOS_VFE_3X_EQU_ENTRY_PAR1_COMPARE_FUNCTION_GREATER: equ_data.compare.func_id = (u8)CTRL_PERF_VFE_EQU_COMPARE_FUNCTION_GREATER; break; default: nvgpu_err(g, "invalid vfe compare index %x type %x ", index, cmp_func); status = -EINVAL; break; } if (status != 0) { goto done; } equ_data.compare.equ_idx_true = BIOS_GET_FIELD(u8, equ.param1, VBIOS_VFE_3X_EQU_ENTRY_PAR1_COMPARE_VFE_EQU_IDX_TRUE); equ_data.compare.equ_idx_false = BIOS_GET_FIELD(u8, equ.param1, VBIOS_VFE_3X_EQU_ENTRY_PAR1_COMPARE_VFE_EQU_IDX_FALSE); equ_data.compare.criteria = equ.param0; break; } case VBIOS_VFE_3X_EQU_ENTRY_TYPE_EQUATION_SCALAR: { equ_type = (u8)CTRL_PERF_VFE_EQU_TYPE_SCALAR; equ_data.scalar.equ_idx_to_scale = BIOS_GET_FIELD(u8, equ.param0, VBIOS_VFE_3X_EQU_ENTRY_PAR0_EQUATION_SCALAR_IDX_TO_SCALE); break; } default: status = -EINVAL; nvgpu_err(g, "Invalid equ[%d].type = 0x%x.", index, (u8)equ.type); break; } if (status != 0) { goto done; } equ_data.board_obj.type = equ_type; pequ = construct_vfe_equ(g, (void *)&equ_data); if (pequ == NULL) { nvgpu_err(g, "error constructing vfe_equ boardobj %d", index); status = -EINVAL; goto done; } status = boardobjgrp_objinsert(&pvfeequobjs->super.super, (struct boardobj *)pequ, index); if (status != 0) { nvgpu_err(g, "error adding vfe_equ boardobj %d", index); status = -EINVAL; goto done; } } done: nvgpu_log_info(g, " done status %x", status); return status; } int perf_vfe_equ_sw_setup(struct gk20a *g) { int status; struct boardobjgrp *pboardobjgrp = NULL; struct vfe_equs *pvfeequobjs; struct vfe_vars *pvfevarobjs; status = nvgpu_boardobjgrp_construct_e255(g, &g->pmu->perf_pmu->vfe_equobjs.super); if (status != 0) { nvgpu_err(g, "error creating boardobjgrp for clk domain, " "status - 0x%x", status); goto done; } pboardobjgrp = &g->pmu->perf_pmu->vfe_equobjs.super.super; pvfeequobjs = &(g->pmu->perf_pmu->vfe_equobjs); pvfevarobjs = &(g->pmu->perf_pmu->vfe_varobjs); BOARDOBJGRP_PMU_CONSTRUCT(pboardobjgrp, PERF, VFE_EQU); status = BOARDOBJGRP_PMU_CMD_GRP_SET_CONSTRUCT(g, pboardobjgrp, perf, PERF, vfe_equ, VFE_EQU); if (status != 0) { nvgpu_err(g, "error constructing PMU_BOARDOBJ_CMD_GRP_SET interface - 0x%x", status); goto done; } pboardobjgrp->pmudatainit = vfe_equs_pmudatainit; pboardobjgrp->pmudatainstget = vfe_equs_pmudata_instget; status = devinit_get_vfe_equ_table(g, pvfeequobjs); if (status != 0) { goto done; } status = vfe_equ_dependency_mask_build(g, pvfeequobjs, pvfevarobjs); if (status != 0) { goto done; } done: nvgpu_log_info(g, " done status %x", status); return status; } int perf_vfe_equ_pmu_setup(struct gk20a *g) { int status; struct boardobjgrp *pboardobjgrp = NULL; pboardobjgrp = &g->pmu->perf_pmu->vfe_equobjs.super.super; if (!pboardobjgrp->bconstructed) { return -EINVAL; } status = pboardobjgrp->pmuinithandle(g, pboardobjgrp); nvgpu_log_info(g, "Done"); return status; } int nvgpu_pmu_perf_vfe_get_volt_margin(struct gk20a *g, u32 *vmargin_uv) { struct nvgpu_pmu *pmu = g->pmu; struct nv_pmu_rpc_struct_perf_vfe_eval rpc; int status = 0; u8 vmargin_idx; vmargin_idx = nvgpu_pmu_volt_get_vmargin_ps35(g); if (vmargin_idx == 0U) { return 0; } (void) memset(&rpc, 0, sizeof(rpc)); rpc.data.equ_idx = vmargin_idx; rpc.data.output_type = CTRL_PERF_VFE_EQU_OUTPUT_TYPE_VOLT_DELTA_UV; rpc.data.var_count = 0U; PMU_RPC_EXECUTE_CPB(status, pmu, PERF, VFE_EQU_EVAL, &rpc, 0); if (status != 0) { nvgpu_err(g, "Failed to execute RPC status=0x%x", status); return status; } *vmargin_uv = rpc.data.result.voltu_v; return status; } int nvgpu_pmu_perf_vfe_get_freq_margin(struct gk20a *g, u32 *fmargin_mhz) { struct nvgpu_pmu *pmu = g->pmu; struct nv_pmu_rpc_struct_perf_vfe_eval rpc; int status = 0; u8 fmargin_idx; fmargin_idx = nvgpu_pmu_clk_fll_get_fmargin_idx(g); if (fmargin_idx == 0U) { return 0; } (void) memset(&rpc, 0, sizeof(rpc)); rpc.data.equ_idx = fmargin_idx; rpc.data.output_type = CTRL_PERF_VFE_EQU_OUTPUT_TYPE_FREQ_MHZ; rpc.data.var_count = 0U; PMU_RPC_EXECUTE_CPB(status, pmu, PERF, VFE_EQU_EVAL, &rpc, 0); if (status != 0) { nvgpu_err(g, "Failed to execute RPC status=0x%x", status); return status; } *fmargin_mhz = rpc.data.result.voltu_v; return status; }