/* * Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void nvgpu_gr_fecs_trace_periodic_polling(void *arg); int nvgpu_gr_fecs_trace_add_context(struct gk20a *g, u32 context_ptr, pid_t pid, u32 vmid, struct nvgpu_list_node *list) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; struct nvgpu_fecs_trace_context_entry *entry; nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw, "adding hash entry context_ptr=%x -> pid=%d, vmid=%d", context_ptr, pid, vmid); entry = nvgpu_kzalloc(g, sizeof(*entry)); if (entry == NULL) { nvgpu_err(g, "can't alloc new entry for context_ptr=%x pid=%d vmid=%d", context_ptr, pid, vmid); return -ENOMEM; } nvgpu_init_list_node(&entry->entry); entry->context_ptr = context_ptr; entry->pid = pid; entry->vmid = vmid; nvgpu_mutex_acquire(&trace->list_lock); nvgpu_list_add_tail(&entry->entry, list); nvgpu_mutex_release(&trace->list_lock); return 0; } void nvgpu_gr_fecs_trace_remove_context(struct gk20a *g, u32 context_ptr, struct nvgpu_list_node *list) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; struct nvgpu_fecs_trace_context_entry *entry, *tmp; nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw, "freeing entry context_ptr=%x", context_ptr); nvgpu_mutex_acquire(&trace->list_lock); nvgpu_list_for_each_entry_safe(entry, tmp, list, nvgpu_fecs_trace_context_entry, entry) { if (entry->context_ptr == context_ptr) { nvgpu_list_del(&entry->entry); nvgpu_log(g, gpu_dbg_ctxsw, "freed entry=%p context_ptr=%x", entry, entry->context_ptr); nvgpu_kfree(g, entry); break; } } nvgpu_mutex_release(&trace->list_lock); } void nvgpu_gr_fecs_trace_remove_contexts(struct gk20a *g, struct nvgpu_list_node *list) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; struct nvgpu_fecs_trace_context_entry *entry, *tmp; nvgpu_mutex_acquire(&trace->list_lock); nvgpu_list_for_each_entry_safe(entry, tmp, list, nvgpu_fecs_trace_context_entry, entry) { nvgpu_list_del(&entry->entry); nvgpu_kfree(g, entry); } nvgpu_mutex_release(&trace->list_lock); } void nvgpu_gr_fecs_trace_find_pid(struct gk20a *g, u32 context_ptr, struct nvgpu_list_node *list, pid_t *pid, u32 *vmid) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; struct nvgpu_fecs_trace_context_entry *entry; nvgpu_mutex_acquire(&trace->list_lock); nvgpu_list_for_each_entry(entry, list, nvgpu_fecs_trace_context_entry, entry) { if (entry->context_ptr == context_ptr) { nvgpu_log(g, gpu_dbg_ctxsw, "found context_ptr=%x -> pid=%d, vmid=%d", entry->context_ptr, entry->pid, entry->vmid); *pid = entry->pid; *vmid = entry->vmid; nvgpu_mutex_release(&trace->list_lock); return; } } nvgpu_mutex_release(&trace->list_lock); *pid = 0; *vmid = 0xffffffffU; } int nvgpu_gr_fecs_trace_init(struct gk20a *g) { struct nvgpu_gr_fecs_trace *trace; int err; if (!is_power_of_2((u32)GK20A_FECS_TRACE_NUM_RECORDS)) { nvgpu_err(g, "invalid NUM_RECORDS chosen"); nvgpu_set_enabled(g, NVGPU_SUPPORT_FECS_CTXSW_TRACE, false); return -EINVAL; } trace = nvgpu_kzalloc(g, sizeof(struct nvgpu_gr_fecs_trace)); if (trace == NULL) { nvgpu_err(g, "failed to allocate fecs_trace"); nvgpu_set_enabled(g, NVGPU_SUPPORT_FECS_CTXSW_TRACE, false); return -ENOMEM; } g->fecs_trace = trace; nvgpu_mutex_init(&trace->poll_lock); nvgpu_mutex_init(&trace->list_lock); nvgpu_mutex_init(&trace->enable_lock); nvgpu_init_list_node(&trace->context_list); trace->enable_count = 0; err = nvgpu_periodic_timer_init(&trace->poll_timer, nvgpu_gr_fecs_trace_periodic_polling, g); if (err != 0) { nvgpu_err(g, "failed to create fecs_trace timer err=%d", err); } return err; } int nvgpu_gr_fecs_trace_deinit(struct gk20a *g) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; if (trace == NULL) { return 0; } /* * Check if tracer was enabled before attempting to stop the * tracer timer. */ if (trace->enable_count > 0) { nvgpu_periodic_timer_stop(&trace->poll_timer); } nvgpu_periodic_timer_destroy(&trace->poll_timer); nvgpu_gr_fecs_trace_remove_contexts(g, &trace->context_list); nvgpu_mutex_destroy(&g->fecs_trace->list_lock); nvgpu_mutex_destroy(&g->fecs_trace->poll_lock); nvgpu_mutex_destroy(&g->fecs_trace->enable_lock); nvgpu_kfree(g, g->fecs_trace); g->fecs_trace = NULL; return 0; } int nvgpu_gr_fecs_trace_num_ts(struct gk20a *g) { return (int)((g->ops.gr.ctxsw_prog.hw_get_ts_record_size_in_bytes() - sizeof(struct nvgpu_fecs_trace_record)) / sizeof(u64)); } struct nvgpu_fecs_trace_record *nvgpu_gr_fecs_trace_get_record( struct gk20a *g, int idx) { struct nvgpu_gr_global_ctx_buffer_desc *gr_global_ctx_buffer = nvgpu_gr_get_global_ctx_buffer_ptr(g); struct nvgpu_mem *mem = nvgpu_gr_global_ctx_buffer_get_mem( gr_global_ctx_buffer, NVGPU_GR_GLOBAL_CTX_FECS_TRACE_BUFFER); if (mem == NULL) { return NULL; } return (struct nvgpu_fecs_trace_record *) ((u8 *) mem->cpu_va + ((u32)idx * g->ops.gr.ctxsw_prog.hw_get_ts_record_size_in_bytes())); } bool nvgpu_gr_fecs_trace_is_valid_record(struct gk20a *g, struct nvgpu_fecs_trace_record *r) { /* * testing magic_hi should suffice. magic_lo is sometimes used * as a sequence number in experimental ucode. */ return g->ops.gr.ctxsw_prog.is_ts_valid_record(r->magic_hi); } size_t nvgpu_gr_fecs_trace_buffer_size(struct gk20a *g) { return GK20A_FECS_TRACE_NUM_RECORDS * g->ops.gr.ctxsw_prog.hw_get_ts_record_size_in_bytes(); } int nvgpu_gr_fecs_trace_max_entries(struct gk20a *g, struct nvgpu_gpu_ctxsw_trace_filter *filter) { int n; int tag; /* Compute number of entries per record, with given filter */ for (n = 0, tag = 0; tag < nvgpu_gr_fecs_trace_num_ts(g); tag++) n += (NVGPU_GPU_CTXSW_FILTER_ISSET(tag, filter) != 0); /* Return max number of entries generated for the whole ring */ return n * GK20A_FECS_TRACE_NUM_RECORDS; } int nvgpu_gr_fecs_trace_enable(struct gk20a *g) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; int write; int err = 0; nvgpu_mutex_acquire(&trace->enable_lock); trace->enable_count++; if (trace->enable_count == 1U) { /* drop data in hw buffer */ if (g->ops.gr.fecs_trace.flush) g->ops.gr.fecs_trace.flush(g); write = g->ops.gr.fecs_trace.get_write_index(g); if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) { /* * For enabling FECS trace support, MAILBOX1's MSB * (Bit 31:31) should be set to 1. Bits 30:0 represents * actual pointer value. */ write = (int)((u32)write | (BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT))); } g->ops.gr.fecs_trace.set_read_index(g, write); /* * FECS ucode does a priv holdoff around the assertion of * context reset. So, pri transactions (e.g. mailbox1 register * write) might fail due to this. Hence, do write with ack * i.e. write and read it back to make sure write happened for * mailbox1. */ while (g->ops.gr.fecs_trace.get_read_index(g) != write) { nvgpu_log(g, gpu_dbg_ctxsw, "mailbox1 update failed"); g->ops.gr.fecs_trace.set_read_index(g, write); } err = nvgpu_periodic_timer_start(&trace->poll_timer, GK20A_FECS_TRACE_FRAME_PERIOD_NS); if (err != 0) { nvgpu_warn(g, "failed to start FECS polling timer"); goto done; } } done: nvgpu_mutex_release(&trace->enable_lock); return err; } int nvgpu_gr_fecs_trace_disable(struct gk20a *g) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; int read = 0; if (trace == NULL) { return -EINVAL; } nvgpu_mutex_acquire(&trace->enable_lock); if (trace->enable_count <= 0U) { nvgpu_mutex_release(&trace->enable_lock); return 0; } trace->enable_count--; if (trace->enable_count == 0U) { if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) { /* * For disabling FECS trace support, MAILBOX1's MSB * (Bit 31:31) should be set to 0. */ read = (int)((u32)(g->ops.gr.fecs_trace.get_read_index(g)) & (~(BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT)))); g->ops.gr.fecs_trace.set_read_index(g, read); /* * FECS ucode does a priv holdoff around the assertion * of context reset. So, pri transactions (e.g. * mailbox1 register write) might fail due to this. * Hence, do write with ack i.e. write and read it back * to make sure write happened for mailbox1. */ while (g->ops.gr.fecs_trace.get_read_index(g) != read) { nvgpu_log(g, gpu_dbg_ctxsw, "mailbox1 update failed"); g->ops.gr.fecs_trace.set_read_index(g, read); } } nvgpu_periodic_timer_stop(&trace->poll_timer); } nvgpu_mutex_release(&trace->enable_lock); return 0; } bool nvgpu_gr_fecs_trace_is_enabled(struct gk20a *g) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; return (trace && (trace->enable_count > 0)); } void nvgpu_gr_fecs_trace_reset_buffer(struct gk20a *g) { nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw, " "); g->ops.gr.fecs_trace.set_read_index(g, g->ops.gr.fecs_trace.get_write_index(g)); } /* * Converts HW entry format to userspace-facing format and pushes it to the * queue. */ int nvgpu_gr_fecs_trace_ring_read(struct gk20a *g, int index, u32 *vm_update_mask) { int i; struct nvgpu_gpu_ctxsw_trace_entry entry = { }; struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; pid_t cur_pid = 0, new_pid = 0; u32 cur_vmid = 0U, new_vmid = 0U; u32 vmid = 0U; int count = 0; struct nvgpu_fecs_trace_record *r = nvgpu_gr_fecs_trace_get_record(g, index); if (r == NULL) { return -EINVAL; } nvgpu_log(g, gpu_dbg_fn | gpu_dbg_ctxsw, "consuming record trace=%p read=%d record=%p", trace, index, r); if (!nvgpu_gr_fecs_trace_is_valid_record(g, r)) { nvgpu_warn(g, "trace=%p read=%d record=%p magic_lo=%08x magic_hi=%08x (invalid)", trace, index, r, r->magic_lo, r->magic_hi); return -EINVAL; } /* Clear magic_hi to detect cases where CPU could read write index * before FECS record is actually written to DRAM. This should not * as we force FECS writes to SYSMEM by reading through PRAMIN. */ r->magic_hi = 0; if ((r->context_ptr != 0U) && (r->context_id != 0U)) { nvgpu_gr_fecs_trace_find_pid(g, r->context_ptr, &trace->context_list, &cur_pid, &cur_vmid); } else { cur_vmid = 0xffffffffU; cur_pid = 0; } if (r->new_context_ptr != 0U) { nvgpu_gr_fecs_trace_find_pid(g, r->new_context_ptr, &trace->context_list, &new_pid, &new_vmid); } else { new_vmid = 0xffffffffU; new_pid = 0; } nvgpu_log(g, gpu_dbg_ctxsw, "context_ptr=%x (vmid=%u pid=%d)", r->context_ptr, cur_vmid, cur_pid); nvgpu_log(g, gpu_dbg_ctxsw, "new_context_ptr=%x (vmid=%u pid=%d)", r->new_context_ptr, new_vmid, new_pid); entry.context_id = r->context_id; /* break out FECS record into trace events */ for (i = 0; i < nvgpu_gr_fecs_trace_num_ts(g); i++) { entry.tag = (u8)g->ops.gr.ctxsw_prog.hw_get_ts_tag(r->ts[i]); entry.timestamp = g->ops.gr.ctxsw_prog.hw_record_ts_timestamp(r->ts[i]); entry.timestamp <<= GK20A_FECS_TRACE_PTIMER_SHIFT; nvgpu_log(g, gpu_dbg_ctxsw, "tag=%x timestamp=%llx context_id=%08x new_context_id=%08x", entry.tag, entry.timestamp, r->context_id, r->new_context_id); switch (nvgpu_gpu_ctxsw_tags_to_common_tags(entry.tag)) { case NVGPU_GPU_CTXSW_TAG_RESTORE_START: case NVGPU_GPU_CTXSW_TAG_CONTEXT_START: entry.context_id = r->new_context_id; entry.pid = (u64)new_pid; entry.vmid = (u8)new_vmid; break; case NVGPU_GPU_CTXSW_TAG_CTXSW_REQ_BY_HOST: case NVGPU_GPU_CTXSW_TAG_FE_ACK: case NVGPU_GPU_CTXSW_TAG_FE_ACK_WFI: case NVGPU_GPU_CTXSW_TAG_FE_ACK_GFXP: case NVGPU_GPU_CTXSW_TAG_FE_ACK_CTAP: case NVGPU_GPU_CTXSW_TAG_FE_ACK_CILP: case NVGPU_GPU_CTXSW_TAG_SAVE_END: entry.context_id = r->context_id; entry.pid = (u64)cur_pid; entry.vmid = (u8)cur_vmid; break; default: /* tags are not guaranteed to start at the beginning */ if ((entry.tag != 0) && (entry.tag != NVGPU_GPU_CTXSW_TAG_INVALID_TIMESTAMP)) { nvgpu_warn(g, "TAG not found"); } continue; } nvgpu_log(g, gpu_dbg_ctxsw, "tag=%x context_id=%x pid=%lld", entry.tag, entry.context_id, entry.pid); if (!entry.context_id) continue; if (g->ops.gr.fecs_trace.vm_dev_write != NULL) { g->ops.gr.fecs_trace.vm_dev_write(g, entry.vmid, vm_update_mask, &entry); } else { nvgpu_gr_fecs_trace_write_entry(g, &entry); } count++; } nvgpu_gr_fecs_trace_wake_up(g, (int)vmid); return count; } int nvgpu_gr_fecs_trace_poll(struct gk20a *g) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; u32 vm_update_mask = 0U; int read = 0; int write = 0; int cnt; int err = 0; nvgpu_mutex_acquire(&trace->poll_lock); if (trace->enable_count == 0) { goto done_unlock; } err = gk20a_busy(g); if (err) { goto done_unlock; } write = g->ops.gr.fecs_trace.get_write_index(g); if ((write < 0) || (write >= GK20A_FECS_TRACE_NUM_RECORDS)) { nvgpu_err(g, "failed to acquire write index, write=%d", write); err = write; goto done; } read = g->ops.gr.fecs_trace.get_read_index(g); cnt = CIRC_CNT((u32)write, (u32)read, GK20A_FECS_TRACE_NUM_RECORDS); if (!cnt) goto done; nvgpu_log(g, gpu_dbg_ctxsw, "circular buffer: read=%d (mailbox=%d) write=%d cnt=%d", read, g->ops.gr.fecs_trace.get_read_index(g), write, cnt); /* Ensure all FECS writes have made it to SYSMEM */ err = g->ops.mm.cache.fb_flush(g); if (err != 0) { nvgpu_err(g, "mm.cache.fb_flush() failed err=%d", err); goto done; } if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) { /* Bits 30:0 of MAILBOX1 represents actual read pointer value */ read = ((u32)read) & (~(BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT))); } while (read != write) { cnt = nvgpu_gr_fecs_trace_ring_read(g, read, &vm_update_mask); if (cnt <= 0) { break; } /* Get to next record. */ read = (read + 1) & (GK20A_FECS_TRACE_NUM_RECORDS - 1); } if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_FEATURE_CONTROL)) { /* * In the next step, read pointer is going to be updated. * So, MSB of read pointer should be set back to 1. This will * keep FECS trace enabled. */ read = (int)(((u32)read) | (BIT32(NVGPU_FECS_TRACE_FEATURE_CONTROL_BIT))); } /* ensure FECS records has been updated before incrementing read index */ nvgpu_wmb(); g->ops.gr.fecs_trace.set_read_index(g, read); /* * FECS ucode does a priv holdoff around the assertion of context * reset. So, pri transactions (e.g. mailbox1 register write) might * fail due to this. Hence, do write with ack i.e. write and read * it back to make sure write happened for mailbox1. */ while (g->ops.gr.fecs_trace.get_read_index(g) != read) { nvgpu_log(g, gpu_dbg_ctxsw, "mailbox1 update failed"); g->ops.gr.fecs_trace.set_read_index(g, read); } if (g->ops.gr.fecs_trace.vm_dev_update) { g->ops.gr.fecs_trace.vm_dev_update(g, vm_update_mask); } done: gk20a_idle(g); done_unlock: nvgpu_mutex_release(&trace->poll_lock); return err; } static void nvgpu_gr_fecs_trace_periodic_polling(void *arg) { struct gk20a *g = (struct gk20a *)arg; struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; if (trace->enable_count > 0U) { nvgpu_gr_fecs_trace_poll(g); } } int nvgpu_gr_fecs_trace_reset(struct gk20a *g) { nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw, " "); if (!g->ops.gr.fecs_trace.is_enabled(g)) return 0; nvgpu_gr_fecs_trace_poll(g); return g->ops.gr.fecs_trace.set_read_index(g, 0); } /* * map global circ_buf to the context space and store the GPU VA * in the context header. */ int nvgpu_gr_fecs_trace_bind_channel(struct gk20a *g, struct nvgpu_mem *inst_block, struct nvgpu_gr_subctx *subctx, struct nvgpu_gr_ctx *gr_ctx, struct nvgpu_gr_ctx_mappings *mappings, pid_t pid, u32 vmid) { u64 addr = 0ULL; struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; struct nvgpu_mem *mem; struct nvgpu_gr_global_ctx_buffer_desc *gr_global_ctx_buffer = nvgpu_gr_get_global_ctx_buffer_ptr(g); u32 context_ptr; u32 aperture_mask; int ret; if (trace == NULL) { return -EINVAL; } context_ptr = nvgpu_inst_block_ptr(g, inst_block); nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw, "pid=%d context_ptr=%x inst_block=%llx", pid, context_ptr, nvgpu_inst_block_addr(g, inst_block)); mem = nvgpu_gr_global_ctx_buffer_get_mem(gr_global_ctx_buffer, NVGPU_GR_GLOBAL_CTX_FECS_TRACE_BUFFER); if (mem == NULL) { return -EINVAL; } if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_VA)) { addr = nvgpu_gr_ctx_mappings_get_global_ctx_va(mappings, NVGPU_GR_GLOBAL_CTX_FECS_TRACE_BUFFER_VA); nvgpu_log(g, gpu_dbg_ctxsw, "gpu_va=%llx", addr); aperture_mask = 0; } else { addr = nvgpu_inst_block_addr(g, mem); nvgpu_log(g, gpu_dbg_ctxsw, "pa=%llx", addr); aperture_mask = g->ops.gr.ctxsw_prog.get_ts_buffer_aperture_mask(g, mem); } if (addr == 0ULL) { return -ENOMEM; } mem = nvgpu_gr_ctx_get_ctx_mem(gr_ctx, NVGPU_GR_CTX_CTX); nvgpu_log(g, gpu_dbg_ctxsw, "addr=%llx count=%d", addr, GK20A_FECS_TRACE_NUM_RECORDS); g->ops.gr.ctxsw_prog.set_ts_num_records(g, mem, GK20A_FECS_TRACE_NUM_RECORDS); if (nvgpu_is_enabled(g, NVGPU_FECS_TRACE_VA) && subctx != NULL) { mem = nvgpu_gr_subctx_get_ctx_header(subctx); } g->ops.gr.ctxsw_prog.set_ts_buffer_ptr(g, mem, addr, aperture_mask); ret = nvgpu_gr_fecs_trace_add_context(g, context_ptr, pid, vmid, &trace->context_list); return ret; } int nvgpu_gr_fecs_trace_unbind_channel(struct gk20a *g, struct nvgpu_mem *inst_block) { struct nvgpu_gr_fecs_trace *trace = g->fecs_trace; u32 context_ptr; if (trace == NULL) { return -EINVAL; } context_ptr = nvgpu_inst_block_ptr(g, inst_block); nvgpu_log(g, gpu_dbg_fn|gpu_dbg_ctxsw, "context_ptr=%x", context_ptr); if (g->ops.gr.fecs_trace.is_enabled(g)) { if (g->ops.gr.fecs_trace.flush) { g->ops.gr.fecs_trace.flush(g); } nvgpu_gr_fecs_trace_poll(g); } nvgpu_gr_fecs_trace_remove_context(g, context_ptr, &trace->context_list); return 0; }