/* * Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TEST_PA_ADDRESS 0xEFAD80000000 #define TEST_COMP_TAG 0xEF #define TEST_INVALID_ADDRESS 0xAAC0000000 /* Size of the buffer to map. It must be a multiple of 4KB */ #define TEST_SIZE (1 * SZ_1M) #define TEST_SIZE_64KB_PAGES 16 struct test_parameters { enum nvgpu_aperture aperture; bool is_iommuable; enum gk20a_mem_rw_flag rw_flag; u32 flags; bool priv; u32 page_size; u32 offset_pages; bool sparse; u32 ctag_offset; /* Below are flags for special cases, default to disabled */ bool special_2_sgl; bool special_null_phys; }; static struct test_parameters test_iommu_sysmem = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, }; static struct test_parameters test_iommu_sysmem_ro = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_read_only, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, }; static struct test_parameters test_iommu_sysmem_coh = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE | NVGPU_VM_MAP_IO_COHERENT, .priv = false, }; static struct test_parameters test_no_iommu_sysmem = { .aperture = APERTURE_SYSMEM, .is_iommuable = false, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, }; static struct test_parameters test_iommu_sysmem_adv = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, .page_size = GMMU_PAGE_SIZE_KERNEL, .offset_pages = 0, .sparse = false, }; static struct test_parameters test_iommu_sysmem_adv_ctag = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, .page_size = GMMU_PAGE_SIZE_KERNEL, .offset_pages = 10, .sparse = false, .ctag_offset = TEST_COMP_TAG, }; static struct test_parameters test_iommu_sysmem_adv_big = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, .page_size = GMMU_PAGE_SIZE_BIG, .offset_pages = 0, .sparse = false, }; static struct test_parameters test_iommu_sysmem_adv_big_offset = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, .page_size = GMMU_PAGE_SIZE_BIG, .offset_pages = 10, .sparse = false, }; static struct test_parameters test_no_iommu_sysmem_adv_big_offset_large = { .aperture = APERTURE_SYSMEM, .is_iommuable = false, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, .page_size = GMMU_PAGE_SIZE_BIG, .offset_pages = TEST_SIZE_64KB_PAGES+1, .sparse = false, }; static struct test_parameters test_iommu_sysmem_adv_small_sparse = { .aperture = APERTURE_SYSMEM, .is_iommuable = true, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = true, .page_size = GMMU_PAGE_SIZE_SMALL, .offset_pages = 0, .sparse = true, .special_null_phys = true, }; static struct test_parameters test_no_iommu_vidmem = { .aperture = APERTURE_VIDMEM, .is_iommuable = false, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_CACHEABLE, .priv = false, }; static struct test_parameters test_no_iommu_sysmem_noncacheable = { .aperture = APERTURE_SYSMEM, .is_iommuable = false, .rw_flag = gk20a_mem_flag_none, .flags = 0, .priv = false, }; static struct test_parameters test_no_iommu_unmapped = { .aperture = APERTURE_SYSMEM, .is_iommuable = false, .rw_flag = gk20a_mem_flag_none, .flags = NVGPU_VM_MAP_UNMAPPED_PTE, .priv = false, }; static void init_platform(struct unit_module *m, struct gk20a *g, bool is_iGPU) { if (is_iGPU) { __nvgpu_set_enabled(g, NVGPU_MM_UNIFIED_MEMORY, true); } else { __nvgpu_set_enabled(g, NVGPU_MM_UNIFIED_MEMORY, false); } } /* * Init the minimum set of HALs to run GMMU tests, then call the init_mm * base function. */ static int init_mm(struct unit_module *m, struct gk20a *g) { u64 low_hole, aperture_size; struct nvgpu_os_posix *p = nvgpu_os_posix_from_gk20a(g); struct mm_gk20a *mm = &g->mm; p->mm_is_iommuable = true; g->ops.mm.get_default_big_page_size = gp10b_mm_get_default_big_page_size; g->ops.mm.get_mmu_levels = gp10b_mm_get_mmu_levels; g->ops.mm.alloc_inst_block = gk20a_alloc_inst_block; g->ops.mm.init_inst_block = gv11b_init_inst_block; g->ops.mm.init_pdb = gp10b_mm_init_pdb; g->ops.mm.gmmu_map = gk20a_locked_gmmu_map; g->ops.mm.gmmu_unmap = gk20a_locked_gmmu_unmap; g->ops.mm.gpu_phys_addr = gv11b_gpu_phys_addr; g->ops.mm.is_bar1_supported = gv11b_mm_is_bar1_supported; g->ops.fb.compression_page_size = gp10b_fb_compression_page_size; g->ops.fb.tlb_invalidate = gm20b_fb_tlb_invalidate; if (g->ops.mm.is_bar1_supported(g)) { unit_return_fail(m, "BAR1 is not supported on Volta+\n"); } /* * Initialize one VM space for system memory to be used throughout this * unit module. * Values below are similar to those used in nvgpu_init_system_vm() */ low_hole = SZ_4K * 16UL; aperture_size = GK20A_PMU_VA_SIZE; mm->pmu.aperture_size = GK20A_PMU_VA_SIZE; mm->pmu.vm = nvgpu_vm_init(g, g->ops.mm.get_default_big_page_size(), low_hole, aperture_size - low_hole, aperture_size, true, false, "system"); if (mm->pmu.vm == NULL) { unit_return_fail(m, "nvgpu_vm_init failed\n"); } return UNIT_SUCCESS; } /* * Test: test_nvgpu_gmmu_init * This test must be run once and be the first oneas it initializes the MM * subsystem. */ static int test_nvgpu_gmmu_init(struct unit_module *m, struct gk20a *g, void *args) { u64 debug_level = (u64) args; g->log_mask = 0; if (debug_level >= 1) { g->log_mask = gpu_dbg_map; } if (debug_level >= 2) { g->log_mask |= gpu_dbg_map_v; } if (debug_level >= 3) { g->log_mask |= gpu_dbg_pte; } init_platform(m, g, true); if (init_mm(m, g) != 0) { unit_return_fail(m, "nvgpu_init_mm_support failed\n"); } return UNIT_SUCCESS; } /* * Test: test_nvgpu_gmmu_clean * This test should be the last one to run as it de-initializes components. */ static int test_nvgpu_gmmu_clean(struct unit_module *m, struct gk20a *g, void *args) { g->log_mask = 0; nvgpu_vm_put(g->mm.pmu.vm); return UNIT_SUCCESS; } /* * Define a few helper functions to decode PTEs. * These function rely on functions imported from hw_gmmu_* header files. As a * result, when updating this unit test, you must ensure that the HAL functions * used to write PTEs are for the same chip as the gmmu_new_pte* functions used * below. */ static bool pte_is_valid(u32 *pte) { return (pte[0] & gmmu_new_pte_valid_true_f()); } static bool pte_is_read_only(u32 *pte) { return (pte[0] & gmmu_new_pte_read_only_true_f()); } static bool pte_is_rw(u32 *pte) { return !(pte[0] & gmmu_new_pte_read_only_true_f()); } static bool pte_is_priv(u32 *pte) { return (pte[0] & gmmu_new_pte_privilege_true_f()); } static bool pte_is_volatile(u32 *pte) { return (pte[0] & gmmu_new_pte_vol_true_f()); } static u64 pte_get_phys_addr(u32 *pte) { u64 addr_bits = ((u64) (pte[1] & 0x00FFFFFF)) << 32; addr_bits |= (u64) (pte[0] & ~0xFF); addr_bits >>= 8; return (addr_bits << gmmu_new_pde_address_shift_v()); } /* * Test: test_nvgpu_gmmu_map_unmap * This test does a simple map and unmap of a buffer. Several parameters can * be changed and provided in the args. * This test will also attempt to compare the data in PTEs to the parameters * provided. */ static int test_nvgpu_gmmu_map_unmap(struct unit_module *m, struct gk20a *g, void *args) { struct nvgpu_mem mem; u32 pte[2]; int result; struct nvgpu_os_posix *p = nvgpu_os_posix_from_gk20a(g); struct test_parameters *params = (struct test_parameters *) args; p->mm_is_iommuable = params->is_iommuable; mem.size = TEST_SIZE; mem.cpu_va = (void *) TEST_PA_ADDRESS; mem.gpu_va = nvgpu_gmmu_map(g->mm.pmu.vm, &mem, mem.size, params->flags, params->rw_flag, params->priv, params->aperture); if (mem.gpu_va == 0) { unit_return_fail(m, "Failed to map GMMU page"); } nvgpu_log(g, gpu_dbg_map, "Mapped VA=%p", (void *) mem.gpu_va); /* * Based on the VA returned from gmmu_map, lookup the corresponding * PTE */ result = __nvgpu_get_pte(g, g->mm.pmu.vm, mem.gpu_va, &pte[0]); if (result != 0) { unit_return_fail(m, "PTE lookup failed with code=%d\n", result); } nvgpu_log(g, gpu_dbg_map, "Found PTE=%08x %08x", pte[1], pte[0]); /* Make sure PTE is valid */ if (!pte_is_valid(pte) && (!(params->flags & NVGPU_VM_MAP_UNMAPPED_PTE))) { unit_return_fail(m, "Unexpected invalid PTE\n"); } /* Make sure PTE corresponds to the PA we wanted to map */ if (pte_get_phys_addr(pte) != TEST_PA_ADDRESS) { unit_return_fail(m, "Unexpected physical address in PTE\n"); } /* Check RO, WO, RW */ switch (params->rw_flag) { case gk20a_mem_flag_none: if (!pte_is_rw(pte) && (!(params->flags & NVGPU_VM_MAP_UNMAPPED_PTE))) { unit_return_fail(m, "PTE is not RW as expected.\n"); } break; case gk20a_mem_flag_write_only: /* WO is not supported anymore in Pascal+ */ break; case gk20a_mem_flag_read_only: if (!pte_is_read_only(pte)) { unit_return_fail(m, "PTE is not RO as expected.\n"); } break; default: unit_return_fail(m, "Unexpected params->rw_flag value.\n"); break; } /* Check privileged bit */ if ((params->priv) && (!pte_is_priv(pte))) { unit_return_fail(m, "PTE is not PRIV as expected.\n"); } else if (!(params->priv) && (pte_is_priv(pte))) { unit_return_fail(m, "PTE is PRIV when it should not.\n"); } /* Check if cached */ if ((params->flags & NVGPU_VM_MAP_CACHEABLE) && pte_is_volatile(pte)) { unit_return_fail(m, "PTE is not cacheable as expected.\n"); } else if ((params->flags & NVGPU_VM_MAP_CACHEABLE) && pte_is_volatile(pte)) { unit_return_fail(m, "PTE is not volatile as expected.\n"); } /* Now unmap the buffer and make sure the PTE is now invalid */ nvgpu_gmmu_unmap(g->mm.pmu.vm, &mem, mem.gpu_va); result = __nvgpu_get_pte(g, g->mm.pmu.vm, mem.gpu_va, &pte[0]); if (result != 0) { unit_return_fail(m, "PTE lookup failed with code=%d\n", result); } if (pte_is_valid(pte)) { unit_return_fail(m, "PTE still valid for unmapped memory\n"); } return UNIT_SUCCESS; } /* * Test: test_nvgpu_gmmu_set_pte * This test targets the __nvgpu_set_pte() function by mapping a buffer, and * then trying to alter the validity bit of the corresponding PTE. */ static int test_nvgpu_gmmu_set_pte(struct unit_module *m, struct gk20a *g, void *args) { struct nvgpu_mem mem; u32 pte[2]; int result; struct nvgpu_os_posix *p = nvgpu_os_posix_from_gk20a(g); struct test_parameters *params = (struct test_parameters *) args; p->mm_is_iommuable = params->is_iommuable; mem.size = TEST_SIZE; mem.cpu_va = (void *) TEST_PA_ADDRESS; mem.gpu_va = nvgpu_gmmu_map(g->mm.pmu.vm, &mem, mem.size, params->flags, params->rw_flag, params->priv, params->aperture); if (mem.gpu_va == 0) { unit_return_fail(m, "Failed to map GMMU page"); } result = __nvgpu_get_pte(g, g->mm.pmu.vm, mem.gpu_va, &pte[0]); if (result != 0) { unit_return_fail(m, "PTE lookup failed with code=%d\n", result); } /* Flip the valid bit of the PTE */ pte[0] &= ~(gmmu_new_pte_valid_true_f()); /* Test error case where the VA is not mapped */ result = __nvgpu_set_pte(g, g->mm.pmu.vm, TEST_INVALID_ADDRESS, &pte[0]); if (result == 0) { unit_return_fail(m, "Set PTE succeeded with invalid VA\n"); } /* Now rewrite PTE of the already mapped page */ result = __nvgpu_set_pte(g, g->mm.pmu.vm, mem.gpu_va, &pte[0]); if (result != 0) { unit_return_fail(m, "Set PTE failed with code=%d\n", result); } result = __nvgpu_get_pte(g, g->mm.pmu.vm, mem.gpu_va, &pte[0]); if (result != 0) { unit_return_fail(m, "PTE lookup failed with code=%d\n", result); } if (pte_is_valid(pte)) { unit_return_fail(m, "Unexpected valid PTE\n"); } return UNIT_SUCCESS; } /* * Helper function to wrap calls to g->ops.mm.gmmu_map and thus giving * access to more parameters */ static u64 gmmu_map_advanced(struct unit_module *m, struct gk20a *g, struct nvgpu_mem *mem, struct test_parameters *params, struct vm_gk20a_mapping_batch *batch) { struct nvgpu_sgt *sgt; u64 vaddr; struct nvgpu_os_posix *p = nvgpu_os_posix_from_gk20a(g); struct vm_gk20a *vm = g->mm.pmu.vm; size_t offset = params->offset_pages * vm->gmmu_page_sizes[params->page_size]; p->mm_is_iommuable = params->is_iommuable; if (params->sparse && params->special_null_phys) { mem->cpu_va = NULL; } sgt = nvgpu_sgt_create_from_mem(g, mem); if (sgt == NULL) { unit_err(m, "Failed to create SGT\n"); return 0; } if (nvgpu_is_enabled(g, NVGPU_USE_COHERENT_SYSMEM)) { params->flags |= NVGPU_VM_MAP_IO_COHERENT; } nvgpu_mutex_acquire(&vm->update_gmmu_lock); vaddr = g->ops.mm.gmmu_map(vm, (u64) mem->cpu_va, sgt, offset, mem->size, params->page_size, 0, /* kind */ params->ctag_offset, params->flags, params->rw_flag, false, /* clear_ctags (unused) */ params->sparse, params->priv, batch, params->aperture); nvgpu_mutex_release(&vm->update_gmmu_lock); nvgpu_sgt_free(g, sgt); return vaddr; } /* * Helper function to wrap calls to g->ops.mm.gmmu_unmap and thus giving * access to more parameters */ static void gmmu_unmap_advanced(struct vm_gk20a *vm, struct nvgpu_mem *mem, u64 gpu_va, struct test_parameters *params, struct vm_gk20a_mapping_batch *batch) { struct gk20a *g = gk20a_from_vm(vm); nvgpu_mutex_acquire(&vm->update_gmmu_lock); g->ops.mm.gmmu_unmap(vm, gpu_va, mem->size, params->page_size, mem->free_gpu_va, gk20a_mem_flag_none, false, batch); nvgpu_mutex_release(&vm->update_gmmu_lock); } /* * Test: test_nvgpu_gmmu_map_unmap_adv * Similar to test_nvgpu_gmmu_map_unmap but using the advanced helper functions * defined above. This test function is used to test advanced features defined * in the parameters. */ static int test_nvgpu_gmmu_map_unmap_adv(struct unit_module *m, struct gk20a *g, void *args) { struct nvgpu_mem mem; u64 vaddr; struct test_parameters *params = (struct test_parameters *) args; mem.size = TEST_SIZE; mem.cpu_va = (void *) TEST_PA_ADDRESS; vaddr = gmmu_map_advanced(m, g, &mem, params, NULL); if (vaddr == 0ULL) { unit_return_fail(m, "Failed to map buffer\n"); } nvgpu_gmmu_unmap(g->mm.pmu.vm, &mem, vaddr); return UNIT_SUCCESS; } /* * Test: test_nvgpu_gmmu_map_unmap_batched * This tests uses the batch mode and maps 2 buffers. Then it checks that * the flags in the batch structure were set correctly. */ static int test_nvgpu_gmmu_map_unmap_batched(struct unit_module *m, struct gk20a *g, void *args) { struct nvgpu_mem mem, mem2; u64 vaddr, vaddr2; struct vm_gk20a_mapping_batch batch; struct test_parameters *params = (struct test_parameters *) args; mem.size = TEST_SIZE; mem.cpu_va = (void *) TEST_PA_ADDRESS; mem2.size = TEST_SIZE; mem2.cpu_va = (void *) (TEST_PA_ADDRESS + TEST_SIZE); vaddr = gmmu_map_advanced(m, g, &mem, params, &batch); if (vaddr == 0ULL) { unit_return_fail(m, "Failed to map buffer\n"); } vaddr2 = gmmu_map_advanced(m, g, &mem2, params, &batch); if (vaddr2 == 0ULL) { unit_return_fail(m, "Failed to map buffer 2\n"); } if (!batch.need_tlb_invalidate) { unit_return_fail(m, "TLB invalidate flag not set.\n"); } batch.need_tlb_invalidate = false; gmmu_unmap_advanced(g->mm.pmu.vm, &mem, vaddr, params, &batch); gmmu_unmap_advanced(g->mm.pmu.vm, &mem, vaddr2, params, &batch); if (!batch.need_tlb_invalidate) { unit_return_fail(m, "TLB invalidate flag not set.\n"); } if (!batch.gpu_l2_flushed) { unit_return_fail(m, "GPU L2 not flushed.\n"); } return UNIT_SUCCESS; } struct unit_module_test nvgpu_gmmu_tests[] = { UNIT_TEST(gmmu_init, test_nvgpu_gmmu_init, (void *) 1), UNIT_TEST(gmmu_map_unmap_iommu_sysmem, test_nvgpu_gmmu_map_unmap, (void *) &test_iommu_sysmem), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_ro, test_nvgpu_gmmu_map_unmap, (void *) &test_iommu_sysmem_ro), UNIT_TEST(gmmu_map_unmap_no_iommu_sysmem, test_nvgpu_gmmu_map_unmap, (void *) &test_no_iommu_sysmem), UNIT_TEST(gmmu_map_unmap_vidmem, test_nvgpu_gmmu_map_unmap, (void *) &test_no_iommu_vidmem), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_coh, test_nvgpu_gmmu_map_unmap, (void *) &test_iommu_sysmem_coh), UNIT_TEST(gmmu_set_pte, test_nvgpu_gmmu_set_pte, (void *) &test_iommu_sysmem), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_adv_kernel_pages, test_nvgpu_gmmu_map_unmap_adv, (void *) &test_iommu_sysmem_adv), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_adv_big_pages, test_nvgpu_gmmu_map_unmap_adv, (void *) &test_iommu_sysmem_adv_big), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_adv_big_pages_offset, test_nvgpu_gmmu_map_unmap_adv, (void *) &test_iommu_sysmem_adv_big_offset), UNIT_TEST(gmmu_map_unmap_no_iommu_sysmem_adv_big_pages_offset_large, test_nvgpu_gmmu_map_unmap_adv, (void *) &test_no_iommu_sysmem_adv_big_offset_large), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_adv_small_pages_sparse, test_nvgpu_gmmu_map_unmap_adv, (void *) &test_iommu_sysmem_adv_small_sparse), UNIT_TEST(gmmu_map_unmap_no_iommu_sysmem_noncacheable, test_nvgpu_gmmu_map_unmap, (void *) &test_no_iommu_sysmem_noncacheable), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_adv_small_pages_sparse, test_nvgpu_gmmu_map_unmap_adv, (void *) &test_iommu_sysmem_adv_ctag), UNIT_TEST(gmmu_map_unmap_iommu_sysmem_adv_big_pages_batched, test_nvgpu_gmmu_map_unmap_batched, (void *) &test_iommu_sysmem_adv_big), UNIT_TEST(gmmu_map_unmap_unmapped, test_nvgpu_gmmu_map_unmap, (void *) &test_no_iommu_unmapped), UNIT_TEST(gmmu_clean, test_nvgpu_gmmu_clean, NULL), }; UNIT_MODULE(nvgpu_gmmu, nvgpu_gmmu_tests, UNIT_PRIO_NVGPU_TEST);