/* * Copyright (c) 2018-2022, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include int nvgpu_perfbuf_enable_locked(struct gk20a *g, u64 offset, u32 size) { int err; err = gk20a_busy(g); if (err != 0) { nvgpu_err(g, "failed to poweron"); return err; } g->ops.perf.membuf_reset_streaming(g); g->ops.perf.enable_membuf(g, size, offset); gk20a_idle(g); return 0; } int nvgpu_perfbuf_disable_locked(struct gk20a *g) { int err = gk20a_busy(g); if (err != 0) { nvgpu_err(g, "failed to poweron"); return err; } g->ops.perf.membuf_reset_streaming(g); g->ops.perf.disable_membuf(g); gk20a_idle(g); return 0; } int nvgpu_perfbuf_init_inst_block(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; int err; err = nvgpu_alloc_inst_block(g, &mm->perfbuf.inst_block); if (err != 0) { return err; } g->ops.mm.init_inst_block_core(&mm->perfbuf.inst_block, mm->perfbuf.vm, 0); g->ops.perf.init_inst_block(g, &mm->perfbuf.inst_block); return 0; } int nvgpu_perfbuf_init_vm(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; u32 big_page_size = g->ops.mm.gmmu.get_default_big_page_size(); int err; u64 user_size, kernel_size; g->ops.mm.get_default_va_sizes(NULL, &user_size, &kernel_size); mm->perfbuf.vm = nvgpu_vm_init(g, big_page_size, SZ_4K, nvgpu_safe_sub_u64(user_size, SZ_4K), kernel_size, 0ULL, false, false, false, "perfbuf"); if (mm->perfbuf.vm == NULL) { return -ENOMEM; } /* * The PMA unit can only access GPU VAs within a 4GB window which * includes PMA_BUF + PMA_AVAILABLE_BYTES_BUF, hence carveout and * reserved a 4GB window from the perfbuf.vm VA space and use this * VA while binding the buffers. */ mm->perfbuf.pma_buffer_gpu_va = 0; err = nvgpu_vm_area_alloc(mm->perfbuf.vm, PERFBUF_PMA_MEM_WINDOW_SIZE / SZ_4K, SZ_4K, &mm->perfbuf.pma_buffer_gpu_va, 0); if (err != 0) { nvgpu_vm_put(mm->perfbuf.vm); return err; } mm->perfbuf.pma_bytes_available_buffer_gpu_va = nvgpu_safe_add_u64( mm->perfbuf.pma_buffer_gpu_va, PERFBUF_PMA_BUF_MAX_SIZE); if (u64_hi32(mm->perfbuf.pma_bytes_available_buffer_gpu_va) != u64_hi32(mm->perfbuf.pma_buffer_gpu_va)) { nvgpu_err(g, "perfbuf: 0x%llx, 0x%llx, crosses 4GB boundary", mm->perfbuf.pma_buffer_gpu_va, mm->perfbuf.pma_bytes_available_buffer_gpu_va); nvgpu_vm_area_free(mm->perfbuf.vm, mm->perfbuf.pma_buffer_gpu_va); nvgpu_vm_put(mm->perfbuf.vm); return -ENOMEM; } nvgpu_log(g, gpu_dbg_prof, "perfbuf: 0x%llx, 0x%llx", mm->perfbuf.pma_buffer_gpu_va, mm->perfbuf.pma_bytes_available_buffer_gpu_va); err = g->ops.perfbuf.init_inst_block(g); if (err != 0) { nvgpu_vm_put(mm->perfbuf.vm); return err; } return 0; } void nvgpu_perfbuf_deinit_inst_block(struct gk20a *g) { g->ops.perf.deinit_inst_block(g); nvgpu_free_inst_block(g, &g->mm.perfbuf.inst_block); } void nvgpu_perfbuf_deinit_vm(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; g->ops.perfbuf.deinit_inst_block(g); nvgpu_vm_area_free(mm->perfbuf.vm, mm->perfbuf.pma_buffer_gpu_va); nvgpu_vm_put(g->mm.perfbuf.vm); } int nvgpu_perfbuf_update_get_put(struct gk20a *g, u64 bytes_consumed, u64 *bytes_available, void *cpuva, bool wait, u64 *put_ptr, bool *overflowed) { struct nvgpu_timeout timeout; int err; bool update_available_bytes = (bytes_available == NULL) ? false : true; volatile u32 *available_bytes_va = (u32 *)cpuva; if (update_available_bytes && available_bytes_va != NULL) { *available_bytes_va = 0xffffffff; } err = g->ops.perf.update_get_put(g, bytes_consumed, update_available_bytes, put_ptr, overflowed); if (err != 0) { return err; } if (update_available_bytes && wait && available_bytes_va != NULL) { nvgpu_timeout_init_cpu_timer(g, &timeout, 10000); do { if (*available_bytes_va != 0xffffffff) { break; } nvgpu_msleep(10); } while (nvgpu_timeout_expired(&timeout) == 0); if (*available_bytes_va == 0xffffffff) { nvgpu_err(g, "perfbuf update get put timed out"); return -ETIMEDOUT; } *bytes_available = *available_bytes_va; } return 0; }