mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
549 lines
15 KiB
C
549 lines
15 KiB
C
/*
|
|
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <unit/io.h>
|
|
#include <unit/unit.h>
|
|
#include <unit/core.h>
|
|
|
|
#include <nvgpu/rbtree.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "rbtree.h"
|
|
|
|
struct nvgpu_rbtree_node *elements[INITIAL_ELEMENTS];
|
|
|
|
/*
|
|
* Helper function to ensure a given tree satisfies all the properties to be
|
|
* considered a red-black binary tree. That is:
|
|
* 1. Every node is either red or black: implied since color is a bool with only
|
|
* two possible values.
|
|
* 2. The root is black: checked by the function below.
|
|
* 3. Every leaf is black: implied since all leaves are NULL.
|
|
* 4. If a node is red, then both its children have to be black: checked by the
|
|
* function below.
|
|
* 5. All simple paths from a node to its descendant leaves must contain the
|
|
* same number of black nodes: checked by the function below.
|
|
*
|
|
* So only properties 2, 4 and 5 need to be checked.
|
|
*
|
|
* Returns either:
|
|
* - a negative value in case of error
|
|
* - the number of black nodes to leaves (which is the black height of the tree
|
|
* when ran from the root).
|
|
*/
|
|
static int check_rbtree(struct unit_module *m, struct nvgpu_rbtree_node *node)
|
|
{
|
|
int left_black_count, right_black_count;
|
|
int black_count = 0;
|
|
|
|
if (node == NULL) {
|
|
/* This is a leaf, so black count is 1 */
|
|
return 1;
|
|
}
|
|
|
|
/* Check property 2 (root is black) */
|
|
if ((node->parent == NULL) && (node->is_red)) {
|
|
unit_err(m, "check_rbtree: root is red\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Check property 4 (if red node, children must be black) */
|
|
if (node->is_red) {
|
|
/*
|
|
* If left or right is NULL then it is a leaf which is
|
|
* implicitly black
|
|
*/
|
|
if ((node->left != NULL) && (node->left->is_red)) {
|
|
unit_err(m,
|
|
"check_rbtree: l_child of red parent is also red\n");
|
|
return -1;
|
|
}
|
|
if ((node->right != NULL) && (node->right->is_red)) {
|
|
unit_err(m,
|
|
"check_rbtree: r_child of red parent is also red\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Count black nodes */
|
|
if (!node->is_red) {
|
|
black_count = 1;
|
|
}
|
|
|
|
/*
|
|
* Check property 5 (descendant leaves must have the same number of
|
|
* black nodes)
|
|
* Start by recursively checking the height of the left and right
|
|
* sub-trees.
|
|
*/
|
|
left_black_count = check_rbtree(m, node->left);
|
|
right_black_count = check_rbtree(m, node->right);
|
|
|
|
if ((left_black_count == -1) || (right_black_count == -1)) {
|
|
/* There was an error in one of the subtrees, propagate it */
|
|
return -1;
|
|
}
|
|
|
|
if (left_black_count != right_black_count) {
|
|
unit_err(m, "check_rbtree: mismatch between left and right\n");
|
|
return -1;
|
|
}
|
|
|
|
return left_black_count + black_count;
|
|
}
|
|
|
|
/*
|
|
* Helper function to insert elements into a tree using the initial_key_start
|
|
* values.
|
|
*/
|
|
static int fill_test_tree(struct unit_module *m,
|
|
struct nvgpu_rbtree_node **root)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < INITIAL_ELEMENTS; i++) {
|
|
elements[i] = (struct nvgpu_rbtree_node *)
|
|
malloc(sizeof(struct nvgpu_rbtree_node));
|
|
elements[i]->key_start = initial_key_start[i];
|
|
elements[i]->key_end = initial_key_start[i]+RANGE_SIZE;
|
|
nvgpu_rbtree_insert(elements[i], root);
|
|
}
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Helper function to free the test nodes of the tree.
|
|
*/
|
|
static void free_test_tree(struct unit_module *m,
|
|
struct nvgpu_rbtree_node *root)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < INITIAL_ELEMENTS; i++) {
|
|
free(elements[i]);
|
|
}
|
|
/* No need to explicitly free the root as it was one of the elements */
|
|
}
|
|
|
|
int test_insert(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
struct nvgpu_rbtree_node *node1, *node2 = NULL;
|
|
int status = UNIT_FAIL;
|
|
|
|
fill_test_tree(m, &root);
|
|
if (check_rbtree(m, root) < 0) {
|
|
goto free_tree;
|
|
}
|
|
|
|
node1 = (struct nvgpu_rbtree_node *)
|
|
malloc(sizeof(struct nvgpu_rbtree_node));
|
|
node1->key_start = RED_BLACK_VIOLATION_1;
|
|
node1->key_end = RED_BLACK_VIOLATION_1+RANGE_SIZE;
|
|
nvgpu_rbtree_insert(node1, &root);
|
|
|
|
node2 = (struct nvgpu_rbtree_node *)
|
|
malloc(sizeof(struct nvgpu_rbtree_node));
|
|
node2->key_start = RED_BLACK_VIOLATION_2;
|
|
node2->key_end = RED_BLACK_VIOLATION_2+RANGE_SIZE;
|
|
nvgpu_rbtree_insert(node2, &root);
|
|
|
|
if (check_rbtree(m, root) < 0) {
|
|
goto free_nodes;
|
|
}
|
|
|
|
status = UNIT_SUCCESS;
|
|
free_nodes:
|
|
free(node1);
|
|
free(node2);
|
|
free_tree:
|
|
free_test_tree(m, root);
|
|
return status;
|
|
}
|
|
|
|
int test_unlink(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
struct nvgpu_rbtree_node *result = NULL;
|
|
int status = UNIT_FAIL;
|
|
bool duplicate_handled = false;
|
|
u64 key_start_search;
|
|
int i;
|
|
|
|
fill_test_tree(m, &root);
|
|
|
|
for (i = 0; i < INITIAL_ELEMENTS; i++) {
|
|
/*
|
|
* Search for a node from values in the initial_key_start table.
|
|
*/
|
|
key_start_search = initial_key_start[i];
|
|
if ((key_start_search == DUPLICATE_VALUE) &&
|
|
(!duplicate_handled)) {
|
|
duplicate_handled = true;
|
|
continue;
|
|
}
|
|
|
|
nvgpu_rbtree_search(key_start_search, &result, root);
|
|
if (result == NULL) {
|
|
unit_err(m, "Search failed for key_start=%lld\n",
|
|
key_start_search);
|
|
goto cleanup;
|
|
} else {
|
|
if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Found node with key_start=%lld\n",
|
|
result->key_start);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unlink will simply remove the node from the tree. It will not
|
|
* free the resources. It will be done at the end of this
|
|
* function.
|
|
*/
|
|
nvgpu_rbtree_unlink(result, &root);
|
|
|
|
/* Make sure the node was actually removed */
|
|
nvgpu_rbtree_search(key_start_search, &result, root);
|
|
if (result != NULL) {
|
|
unit_err(m, "Unlink failed, node still exists\n");
|
|
goto cleanup;
|
|
} else {
|
|
if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Node was removed as expected\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
status = UNIT_SUCCESS;
|
|
cleanup:
|
|
free_test_tree(m, root);
|
|
return status;
|
|
}
|
|
|
|
int test_search(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
struct nvgpu_rbtree_node *result1, *result2 = NULL;
|
|
int status = UNIT_FAIL;
|
|
u64 key_start_search = SEARCH_KEY;
|
|
|
|
fill_test_tree(m, &root);
|
|
|
|
/* Search with a NULL root should not crash and keep result as NULL */
|
|
nvgpu_rbtree_search(key_start_search, &result1, NULL);
|
|
if (result1 != NULL) {
|
|
unit_err(m, "Search did not fail as expected\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Same thing with the range_search operation */
|
|
nvgpu_rbtree_range_search(key_start_search, &result2, NULL);
|
|
if (result1 != NULL) {
|
|
unit_err(m, "Range search did not fail as expected\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Now search for a real value */
|
|
if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Searching for key_start=%lld\n",
|
|
key_start_search);
|
|
}
|
|
nvgpu_rbtree_search(key_start_search, &result1, root);
|
|
if (result1 == NULL) {
|
|
unit_err(m, "Search failed\n");
|
|
goto cleanup;
|
|
} else if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Found node with key_start=%lld key_end=%lld\n",
|
|
result1->key_start, result1->key_end);
|
|
}
|
|
|
|
/*
|
|
* Now do a range search by just incrementing key_start_search by 1
|
|
* which should yield the exact same result as the previous search
|
|
* (since it will fall in the same range)
|
|
*/
|
|
key_start_search++;
|
|
if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Range searching for key=%lld\n",
|
|
key_start_search);
|
|
}
|
|
nvgpu_rbtree_range_search(key_start_search, &result2, root);
|
|
if (result2 == NULL) {
|
|
unit_err(m, "Range search failed\n");
|
|
goto cleanup;
|
|
} else if (result1 != result2) {
|
|
unit_err(m, "Range search did not find the expected result\n");
|
|
goto cleanup;
|
|
} else if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Found node with key_start=%lld key_end=%lld\n",
|
|
result1->key_start, result1->key_end);
|
|
}
|
|
|
|
status = UNIT_SUCCESS;
|
|
cleanup:
|
|
free_test_tree(m, root);
|
|
return status;
|
|
}
|
|
|
|
int test_enum(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
int status = UNIT_FAIL;
|
|
u64 key_start;
|
|
int i;
|
|
|
|
fill_test_tree(m, &root);
|
|
|
|
/* Enum with a NULL root should not crash and keep result as NULL */
|
|
nvgpu_rbtree_enum_start(0, &node, NULL);
|
|
if (node != NULL) {
|
|
unit_err(m, "Enum did not fail as expected (NULL root)\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Enum all the nodes we know are in the tree */
|
|
for (i = 0; i < INITIAL_ELEMENTS; i++) {
|
|
key_start = initial_key_start[i];
|
|
nvgpu_rbtree_enum_start(key_start, &node, root);
|
|
if (node->key_start != key_start) {
|
|
unit_err(m, "Enum mismatch\n");
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/* If the key_start does not exist, enum should return a NULL node */
|
|
nvgpu_rbtree_enum_start(INVALID_KEY_START, &node, root);
|
|
if (node != NULL) {
|
|
unit_err(m, "Enum did not fail as expected: wrong key_start\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
status = UNIT_SUCCESS;
|
|
cleanup:
|
|
free_test_tree(m, root);
|
|
return status;
|
|
}
|
|
|
|
int test_enum_next(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
int status = UNIT_FAIL;
|
|
u64 prev_key_start;
|
|
|
|
fill_test_tree(m, &root);
|
|
|
|
/* Enum with a NULL root should not crash and keep result as NULL */
|
|
nvgpu_rbtree_enum_next(&node, NULL);
|
|
if (node != NULL) {
|
|
unit_err(m, "Enum_next did not fail as expected (NULL root)\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* The tree is balanced and we know there are INITIAL_ELEMENTS inside.
|
|
* Enumerate the next key_start value from root.
|
|
*/
|
|
node = root;
|
|
prev_key_start = node->key_start;
|
|
while (node != NULL) {
|
|
nvgpu_rbtree_enum_next(&node, root);
|
|
if (node != NULL) {
|
|
if (verbose_lvl(m) > 0) {
|
|
unit_info(m, "Node has key_start=%lld\n",
|
|
node->key_start);
|
|
}
|
|
if (node->key_start < prev_key_start) {
|
|
unit_err(m, "Enum_next returned a low value\n");
|
|
goto cleanup;
|
|
}
|
|
prev_key_start = node->key_start;
|
|
}
|
|
}
|
|
|
|
/* For branch coverage, test some error handling. */
|
|
node = NULL;
|
|
nvgpu_rbtree_enum_next(&node, root);
|
|
nvgpu_rbtree_enum_next(&node, NULL);
|
|
|
|
status = UNIT_SUCCESS;
|
|
cleanup:
|
|
free_test_tree(m, root);
|
|
return status;
|
|
}
|
|
|
|
int test_search_less(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
struct nvgpu_rbtree_node *result;
|
|
int status = UNIT_FAIL;
|
|
u64 key_start_search;
|
|
|
|
fill_test_tree(m, &root);
|
|
|
|
/*
|
|
* The tree is balanced, so the range in the root should be in the
|
|
* middle of the values, so searching for that value will guarantee
|
|
* a result.
|
|
*/
|
|
key_start_search = root->key_start;
|
|
|
|
nvgpu_rbtree_less_than_search(key_start_search, &result, root);
|
|
if (result == NULL) {
|
|
unit_err(m, "less_than_search unexpectedly failed\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
if (result->key_start >= key_start_search) {
|
|
unit_err(m, "less_than_search returned a wrong result\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
status = UNIT_SUCCESS;
|
|
cleanup:
|
|
free_test_tree(m, root);
|
|
return status;
|
|
}
|
|
|
|
int test_unlink_corner_cases(struct unit_module *m, struct gk20a *g, void *args)
|
|
{
|
|
struct nvgpu_rbtree_node *root = NULL;
|
|
u64 more_key_start[] = {0x1000, 0x61000, 0x79000, 0x7d000, 0x7f000,
|
|
0x80000, 0x91000, 0x81000, 0x71000, 0x99000, 0x9d000, 0xa0000,
|
|
0x500, 0x600, 0x700, 0x800, 0x900, 0xa000, 0xb000, 0xc000,
|
|
0xd000, 0xe000, 0xf000};
|
|
u64 num_elems = sizeof(more_key_start) / sizeof(u64);
|
|
struct nvgpu_rbtree_node **more_elements =
|
|
malloc(sizeof(struct nvgpu_rbtree_node *)*num_elems);
|
|
u64 i;
|
|
|
|
fill_test_tree(m, &root);
|
|
|
|
/*
|
|
* Add extra nodes to create a much more complicated tree that will
|
|
* allow targeting specific conditions when unlinking those nodes.
|
|
* Even though the unlinking of some of those nodes have no direct
|
|
* impact on line or branch coverage, their presence is needed to create
|
|
* the corner cases we need.
|
|
*/
|
|
|
|
for (i = 0; i < num_elems; i++) {
|
|
more_elements[i] = (struct nvgpu_rbtree_node *)
|
|
malloc(sizeof(struct nvgpu_rbtree_node));
|
|
more_elements[i]->key_start = more_key_start[i];
|
|
more_elements[i]->key_end = more_key_start[i]+RANGE_SIZE;
|
|
nvgpu_rbtree_insert(more_elements[i], &root);
|
|
}
|
|
|
|
/* No impact on coverage */
|
|
nvgpu_rbtree_unlink(more_elements[0], &root);
|
|
|
|
/*
|
|
* Targets some conditions when removing a node on the left and the
|
|
* right needs to become red.
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[1], &root);
|
|
|
|
/* No impact on coverage */
|
|
nvgpu_rbtree_unlink(more_elements[2], &root);
|
|
|
|
/*
|
|
* Targets some conditions when removing a node on the left and the
|
|
* right is NULL.
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[3], &root);
|
|
|
|
/* No impact on coverage */
|
|
nvgpu_rbtree_unlink(more_elements[4], &root);
|
|
|
|
/*
|
|
* Targets some conditions when removing a node on the left and the
|
|
* right node is red. This requires rotating the tree to the left.
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[5], &root);
|
|
|
|
/* No impact on coverage */
|
|
nvgpu_rbtree_unlink(more_elements[6], &root);
|
|
nvgpu_rbtree_unlink(more_elements[7], &root);
|
|
|
|
/*
|
|
* Targets statements in the link rebuilding of the rotate_left
|
|
* function. Also targets some conditions when removing a node on the
|
|
* right and the left needs to become black.
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[8], &root);
|
|
|
|
/*
|
|
* Targets statements in the link rebuilding of nvgpu_rbtree_unlink
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[9], &root);
|
|
|
|
/* No impact on coverage */
|
|
nvgpu_rbtree_unlink(more_elements[10], &root);
|
|
nvgpu_rbtree_unlink(more_elements[11], &root);
|
|
nvgpu_rbtree_unlink(more_elements[12], &root);
|
|
nvgpu_rbtree_unlink(more_elements[13], &root);
|
|
nvgpu_rbtree_unlink(more_elements[14], &root);
|
|
nvgpu_rbtree_unlink(more_elements[15], &root);
|
|
nvgpu_rbtree_unlink(more_elements[16], &root);
|
|
nvgpu_rbtree_unlink(more_elements[17], &root);
|
|
|
|
/*
|
|
* Targets statements in the link rebuilding of delete_fixup (right
|
|
* sibling of deleted node is black or has a right sentinel)
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[18], &root);
|
|
|
|
/*
|
|
* Targets statement in the rotate_left function (the rotated node
|
|
* becomes the root of the tree)
|
|
*/
|
|
nvgpu_rbtree_unlink(more_elements[19], &root);
|
|
|
|
/* No impact on coverage */
|
|
nvgpu_rbtree_unlink(more_elements[20], &root);
|
|
nvgpu_rbtree_unlink(more_elements[21], &root);
|
|
nvgpu_rbtree_unlink(more_elements[22], &root);
|
|
|
|
free_test_tree(m, root);
|
|
for (i = 0; i < num_elems; i++) {
|
|
free(more_elements[i]);
|
|
}
|
|
free(more_elements);
|
|
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
struct unit_module_test interface_rbtree_tests[] = {
|
|
UNIT_TEST(insert, test_insert, NULL, 0),
|
|
UNIT_TEST(search, test_search, NULL, 0),
|
|
UNIT_TEST(unlink, test_unlink, NULL, 0),
|
|
UNIT_TEST(enum, test_enum, NULL, 0),
|
|
UNIT_TEST(enum_next, test_enum_next, NULL, 0),
|
|
UNIT_TEST(search_less_than, test_search_less, NULL, 0),
|
|
UNIT_TEST(unlink_corner_cases, test_unlink_corner_cases, NULL, 0),
|
|
};
|
|
|
|
UNIT_MODULE(interface_rbtree, interface_rbtree_tests, UNIT_PRIO_NVGPU_TEST);
|