mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 09:12:24 +03:00
513 lines
13 KiB
C
513 lines
13 KiB
C
/*
|
|
* Copyright (c) 2018-2020, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <unit/io.h>
|
|
#include <unit/unit.h>
|
|
|
|
#include <nvgpu/io.h>
|
|
#include <nvgpu/io_usermode.h>
|
|
#include <nvgpu/posix/io.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/page_allocator.h>
|
|
#include <nvgpu/pramin.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/gk20a.h>
|
|
|
|
#include "hal/bus/bus_gk20a.h"
|
|
#include "hal/pramin/pramin_init.h"
|
|
|
|
#include <nvgpu/hw/gk20a/hw_pram_gk20a.h>
|
|
#include <nvgpu/hw/gk20a/hw_bus_gk20a.h>
|
|
|
|
#ifdef CONFIG_NVGPU_DGPU
|
|
|
|
static u32 *rand_test_data;
|
|
static u32 *vidmem;
|
|
|
|
/*
|
|
* VIDMEM_ADDRESS represents an arbitrary VIDMEM address that will be passed
|
|
* to the PRAMIN module to set the PRAM window to.
|
|
*/
|
|
#define VIDMEM_ADDRESS 0x00100100
|
|
#define VIDMEM_SIZE (8*SZ_1M)
|
|
|
|
/*
|
|
* Amount of data to use in the tests.
|
|
* Must be smaller or equal to VIDMEM_SIZE and RAND_DATA_SIZE.
|
|
* To use multiple PRAM windows, TEST_SIZE should be > 1 MB
|
|
*/
|
|
#define TEST_SIZE (2*SZ_1M)
|
|
|
|
/* Size of the random data to generate, must be >= TEST_SIZE*/
|
|
#define RAND_DATA_SIZE (2*SZ_1M)
|
|
|
|
/* Simple pattern for memset operations */
|
|
#define MEMSET_PATTERN 0x12345678
|
|
|
|
static bool is_PRAM_range(struct gk20a *g, u32 addr)
|
|
{
|
|
if ((addr >= pram_data032_r(0)) &&
|
|
(addr <= (pram_data032_r(0)+SZ_1M))) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static u32 PRAM_get_u32_index(struct gk20a *g, u32 addr)
|
|
{
|
|
/* Offset is based on the currently set 1MB PRAM window */
|
|
u32 offset = (g->mm.pramin_window) <<
|
|
bus_bar0_window_target_bar0_window_base_shift_v();
|
|
|
|
/* addr must be 32-bit aligned */
|
|
BUG_ON(addr & 0x3);
|
|
|
|
return (addr + offset)/sizeof(u32);
|
|
}
|
|
|
|
static u32 PRAM_read(struct gk20a *g, u32 addr)
|
|
{
|
|
return vidmem[PRAM_get_u32_index(g, addr)];
|
|
}
|
|
|
|
static void PRAM_write(struct gk20a *g, u32 addr, u32 value)
|
|
{
|
|
vidmem[PRAM_get_u32_index(g, addr)] = value;
|
|
}
|
|
|
|
/*
|
|
* Write callback (for all nvgpu_writel calls). If address belongs to PRAM
|
|
* range, route the call to our own handler, otherwise call the IO framework
|
|
*/
|
|
static void writel_access_reg_fn(struct gk20a *g,
|
|
struct nvgpu_reg_access *access)
|
|
{
|
|
if (is_PRAM_range(g, access->addr)) {
|
|
PRAM_write(g, access->addr - pram_data032_r(0), access->value);
|
|
} else {
|
|
nvgpu_posix_io_writel_reg_space(g, access->addr, access->value);
|
|
}
|
|
nvgpu_posix_io_record_access(g, access);
|
|
}
|
|
|
|
/*
|
|
* Read callback, similar to the write callback above.
|
|
*/
|
|
static void readl_access_reg_fn(struct gk20a *g,
|
|
struct nvgpu_reg_access *access)
|
|
{
|
|
if (is_PRAM_range(g, access->addr)) {
|
|
access->value = PRAM_read(g, access->addr - pram_data032_r(0));
|
|
} else {
|
|
access->value = nvgpu_posix_io_readl_reg_space(g, access->addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Define all the callbacks to be used during the test. Typically all
|
|
* write operations use the same callback, likewise for all read operations.
|
|
*/
|
|
static struct nvgpu_posix_io_callbacks pramin_callbacks = {
|
|
/* Write APIs all can use the same accessor. */
|
|
.writel = writel_access_reg_fn,
|
|
.writel_check = writel_access_reg_fn,
|
|
.bar1_writel = writel_access_reg_fn,
|
|
.usermode_writel = writel_access_reg_fn,
|
|
|
|
/* Likewise for the read APIs. */
|
|
.__readl = readl_access_reg_fn,
|
|
.readl = readl_access_reg_fn,
|
|
.bar1_readl = readl_access_reg_fn,
|
|
};
|
|
|
|
static void init_rand_buffer(void)
|
|
{
|
|
u32 i;
|
|
|
|
/*
|
|
* Fill the test buffer with random data. Always use the same seed to
|
|
* make the test deterministic.
|
|
*/
|
|
srand(0);
|
|
for (i = 0; i < RAND_DATA_SIZE/sizeof(u32); i++) {
|
|
rand_test_data[i] = (u32) rand();
|
|
}
|
|
}
|
|
|
|
static int init_test_env(struct unit_module *m, struct gk20a *g)
|
|
{
|
|
static bool first_init = true;
|
|
int err = 0;
|
|
|
|
if (!first_init) {
|
|
/*
|
|
* If already initialized, just refill the test buffer with
|
|
* new random data
|
|
*/
|
|
init_rand_buffer();
|
|
return 0;
|
|
}
|
|
first_init = false;
|
|
|
|
nvgpu_init_pramin(&g->mm);
|
|
|
|
/* Create a test buffer to be filled with random data */
|
|
rand_test_data = (u32 *) malloc(RAND_DATA_SIZE);
|
|
if (rand_test_data == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Create the VIDMEM */
|
|
vidmem = (u32 *) malloc(VIDMEM_SIZE);
|
|
if (vidmem == NULL) {
|
|
err = -ENOMEM;
|
|
goto clean_rand_data;
|
|
}
|
|
|
|
nvgpu_posix_register_io(g, &pramin_callbacks);
|
|
|
|
/* Minimum HAL init for PRAMIN */
|
|
g->ops.bus.set_bar0_window = gk20a_bus_set_bar0_window;
|
|
nvgpu_pramin_ops_init(g);
|
|
unit_assert(g->ops.pramin.data032_r != NULL, return -EINVAL);
|
|
|
|
/* Register space: BUS_BAR0 */
|
|
if (nvgpu_posix_io_add_reg_space(g, bus_bar0_window_r(), 0x100) != 0) {
|
|
err = -ENOMEM;
|
|
goto clean_vidmem;
|
|
}
|
|
|
|
init_rand_buffer();
|
|
return 0;
|
|
|
|
clean_vidmem:
|
|
free(vidmem);
|
|
clean_rand_data:
|
|
free(rand_test_data);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int free_test_env(struct unit_module *m, struct gk20a *g,
|
|
void *__args)
|
|
{
|
|
free(rand_test_data);
|
|
free(vidmem);
|
|
nvgpu_posix_io_delete_reg_space(g, bus_bar0_window_r());
|
|
return UNIT_SUCCESS;
|
|
}
|
|
|
|
static int create_alloc_and_sgt(struct unit_module *m, struct gk20a *g,
|
|
struct nvgpu_mem *mem)
|
|
{
|
|
struct nvgpu_sgt *sgt;
|
|
|
|
mem->vidmem_alloc = (struct nvgpu_page_alloc *) malloc(sizeof(
|
|
struct nvgpu_page_alloc));
|
|
if (mem->vidmem_alloc == NULL) {
|
|
unit_err(m, "Memory allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* All we need from the SGT are the ops */
|
|
sgt = nvgpu_sgt_create_from_mem(g, mem);
|
|
if (sgt == NULL) {
|
|
unit_err(m, "Memory allocation failed\n");
|
|
free(mem->vidmem_alloc);
|
|
return -ENOMEM;
|
|
}
|
|
mem->vidmem_alloc->sgt.ops = sgt->ops;
|
|
mem->vidmem_alloc->sgt.sgl = (void *) mem;
|
|
free(sgt);
|
|
|
|
/* All PRAMIN accessed must have a VIDMEM aperture */
|
|
mem->aperture = APERTURE_VIDMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct nvgpu_mem_sgl *create_sgl(struct unit_module *m, u64 length,
|
|
u64 phys)
|
|
{
|
|
struct nvgpu_mem_sgl *sgl = (struct nvgpu_mem_sgl *) malloc(
|
|
sizeof(struct nvgpu_mem_sgl));
|
|
if (sgl == NULL) {
|
|
unit_err(m, "Memory allocation failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
sgl->length = length;
|
|
sgl->phys = phys;
|
|
|
|
return sgl;
|
|
}
|
|
|
|
/*
|
|
* Test case to exercize "nvgpu_pramin_rd_n". It will read TEST_SIZE bytes
|
|
* from VIDMEM base address VIDMEM_ADDRESS. Only use one SGL in this test
|
|
*/
|
|
static int test_pramin_rd_n_single(struct unit_module *m, struct gk20a *g,
|
|
void *__args)
|
|
{
|
|
u32 *dest;
|
|
struct nvgpu_mem mem = { };
|
|
struct nvgpu_mem_sgl *sgl;
|
|
u32 byte_cnt = TEST_SIZE;
|
|
bool success = false;
|
|
|
|
if (init_test_env(m, g) != 0) {
|
|
unit_return_fail(m, "Module init failed\n");
|
|
}
|
|
|
|
unit_info(m, "Reading %d bytes via PRAMIN\n", byte_cnt);
|
|
|
|
/*
|
|
* Get the first byte_cnt bytes from the test buffer and copy them
|
|
* into VIDMEM
|
|
*/
|
|
memcpy(((u8 *) vidmem) + VIDMEM_ADDRESS, (void *) rand_test_data,
|
|
byte_cnt);
|
|
|
|
/* PRAMIN will copy data into the buffer below */
|
|
dest = malloc(byte_cnt);
|
|
if (dest == NULL) {
|
|
unit_return_fail(m, "Memory allocation failed\n");
|
|
}
|
|
|
|
if (create_alloc_and_sgt(m, g, &mem) != 0) {
|
|
goto free_dest;
|
|
}
|
|
|
|
sgl = create_sgl(m, byte_cnt, VIDMEM_ADDRESS);
|
|
if (sgl == NULL) {
|
|
goto free_vidmem;
|
|
}
|
|
|
|
mem.vidmem_alloc->sgt.sgl = (void *)sgl;
|
|
|
|
nvgpu_pramin_rd_n(g, &mem, 0, byte_cnt, (void *) dest);
|
|
|
|
if (memcmp((void *) dest, (void *) rand_test_data, byte_cnt) != 0) {
|
|
unit_err(m, "Mismatch comparing copied data\n");
|
|
} else {
|
|
success = true;
|
|
}
|
|
|
|
free(sgl);
|
|
free_vidmem:
|
|
free(mem.vidmem_alloc);
|
|
free_dest:
|
|
free(dest);
|
|
|
|
if (success)
|
|
return UNIT_SUCCESS;
|
|
else
|
|
return UNIT_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Test case to exercize "nvgpu_pramin_wr_n" with a couple of advanced cases:
|
|
* - Use multiple SGLs
|
|
* - Use a byte offset
|
|
*/
|
|
static int test_pramin_wr_n_multi(struct unit_module *m, struct gk20a *g,
|
|
void *__args)
|
|
{
|
|
u32 *src;
|
|
struct nvgpu_mem mem = { };
|
|
struct nvgpu_mem_sgl *sgl1, *sgl2, *sgl3;
|
|
u32 byte_cnt = TEST_SIZE;
|
|
u32 byte_offset = SZ_128K;
|
|
void *vidmem_data;
|
|
bool success = false;
|
|
|
|
if (init_test_env(m, g) != 0) {
|
|
unit_return_fail(m, "Module init failed\n");
|
|
}
|
|
|
|
/* This is where the written data should end up in VIDMEM */
|
|
vidmem_data = ((u8 *) vidmem) + VIDMEM_ADDRESS + byte_offset;
|
|
|
|
unit_info(m, "Writing %d bytes via PRAMIN\n", byte_cnt);
|
|
|
|
/* Source data contains random data from test buffer */
|
|
src = malloc(byte_cnt);
|
|
if (src == NULL) {
|
|
unit_return_fail(m, "Memory allocation failed\n");
|
|
}
|
|
|
|
memcpy((void *) src, (void *) rand_test_data, byte_cnt);
|
|
|
|
if (create_alloc_and_sgt(m, g, &mem) != 0) {
|
|
goto free_src;
|
|
}
|
|
|
|
/*
|
|
* If the PRAMIN access has an offset that is greater than the length
|
|
* of the first SGL, then PRAMIN will move to the next SGL, and so on
|
|
* until the the total length of encountered SGLs has reached offset.
|
|
* Practically for this test, it means that the total length of all
|
|
* SGLs + the byte offset must be greater or equal to the number of
|
|
* bytes to write.
|
|
* Below, the first SGL has a length of byte_offset, so PRAMIN will
|
|
* skip it. Then 2 more SGLs each cover half of the data to be copied.
|
|
*/
|
|
sgl1 = create_sgl(m, byte_offset, VIDMEM_ADDRESS);
|
|
if (sgl1 == NULL) {
|
|
goto free_vidmem;
|
|
}
|
|
|
|
sgl2 = create_sgl(m, byte_cnt / 2, sgl1->phys + sgl1->length);
|
|
if (sgl2 == NULL) {
|
|
goto free_sgl1;
|
|
}
|
|
|
|
sgl3 = create_sgl(m, byte_cnt / 2, sgl2->phys + sgl2->length);
|
|
if (sgl3 == NULL) {
|
|
goto free_sgl2;
|
|
}
|
|
|
|
sgl1->next = sgl2;
|
|
sgl2->next = sgl3;
|
|
sgl3->next = NULL;
|
|
|
|
mem.vidmem_alloc->sgt.sgl = (void *) sgl1;
|
|
|
|
nvgpu_pramin_wr_n(g, &mem, byte_offset, byte_cnt, (void *) src);
|
|
|
|
if (memcmp((void *) src, vidmem_data, byte_cnt) != 0) {
|
|
unit_err(m, "Mismatch comparing copied data\n");
|
|
} else {
|
|
success = true;
|
|
}
|
|
|
|
free(sgl3);
|
|
free_sgl2:
|
|
free(sgl2);
|
|
free_sgl1:
|
|
free(sgl1);
|
|
free_vidmem:
|
|
free(mem.vidmem_alloc);
|
|
free_src:
|
|
free(src);
|
|
|
|
if (success)
|
|
return UNIT_SUCCESS;
|
|
else
|
|
return UNIT_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Test case to exercize "nvgpu_pramin_memset"
|
|
*/
|
|
static int test_pramin_memset(struct unit_module *m, struct gk20a *g,
|
|
void *__args)
|
|
{
|
|
struct nvgpu_mem mem = { };
|
|
struct nvgpu_mem_sgl *sgl;
|
|
u32 byte_cnt = TEST_SIZE;
|
|
u32 word_cnt = byte_cnt / sizeof(u32);
|
|
u32 vidmem_index = VIDMEM_ADDRESS / sizeof(u32);
|
|
bool success = false;
|
|
u32 i;
|
|
|
|
if (init_test_env(m, g) != 0) {
|
|
unit_return_fail(m, "Module init failed\n");
|
|
}
|
|
|
|
unit_info(m, "Memsetting %d bytes in PRAM\n", byte_cnt);
|
|
|
|
if (create_alloc_and_sgt(m, g, &mem) != 0) {
|
|
return UNIT_FAIL;
|
|
}
|
|
|
|
sgl = create_sgl(m, byte_cnt, VIDMEM_ADDRESS);
|
|
if (sgl == NULL) {
|
|
goto free_vidmem;
|
|
}
|
|
|
|
mem.vidmem_alloc->sgt.sgl = (void *)sgl;
|
|
|
|
nvgpu_pramin_memset(g, &mem, 0, byte_cnt, MEMSET_PATTERN);
|
|
|
|
for (i = 0; i < word_cnt; i++) {
|
|
if (vidmem[vidmem_index + i] != MEMSET_PATTERN) {
|
|
unit_err(m,
|
|
"Memset pattern not found at offset %d\n", i);
|
|
goto free_sgl;
|
|
}
|
|
}
|
|
success = true;
|
|
|
|
free_sgl:
|
|
free(sgl);
|
|
free_vidmem:
|
|
free(mem.vidmem_alloc);
|
|
|
|
if (success)
|
|
return UNIT_SUCCESS;
|
|
else
|
|
return UNIT_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Test case to exercize the special case where NVGPU is dying. In that case,
|
|
* PRAM is not available and PRAMIN should handle the case by not trying to
|
|
* access PRAM.
|
|
*/
|
|
static int test_pramin_nvgpu_dying(struct unit_module *m, struct gk20a *g,
|
|
void *__args)
|
|
{
|
|
if (init_test_env(m, g) != 0) {
|
|
unit_return_fail(m, "Module init failed\n");
|
|
}
|
|
nvgpu_set_enabled(g, NVGPU_DRIVER_IS_DYING, true);
|
|
/*
|
|
* When the GPU is dying, PRAMIN should prevent any accesses, so
|
|
* pointers to nvgpu_mem and destination data don't matter and can be
|
|
* left NULL. If the pramin call below causes a sigsegv, then it would
|
|
* be a test failure, otherwise it is a success.
|
|
*/
|
|
nvgpu_pramin_rd_n(g, NULL, 0, 1, NULL);
|
|
|
|
/* Restore GPU driver state for other tests */
|
|
nvgpu_set_enabled(g, NVGPU_DRIVER_IS_DYING, false);
|
|
return UNIT_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
struct unit_module_test pramin_tests[] = {
|
|
#ifdef CONFIG_NVGPU_DGPU
|
|
UNIT_TEST(nvgpu_pramin_rd_n_1_sgl, test_pramin_rd_n_single, NULL, 0),
|
|
UNIT_TEST(nvgpu_pramin_wr_n_3_sgl, test_pramin_wr_n_multi, NULL, 0),
|
|
UNIT_TEST(nvgpu_pramin_memset, test_pramin_memset, NULL, 0),
|
|
UNIT_TEST(nvgpu_pramin_dying, test_pramin_nvgpu_dying, NULL, 0),
|
|
UNIT_TEST(nvgpu_pramin_free_test_env, free_test_env, NULL, 0),
|
|
#endif
|
|
};
|
|
|
|
UNIT_MODULE(pramin, pramin_tests, UNIT_PRIO_NVGPU_TEST);
|