Files
linux-nvgpu/userspace/units/sync/nvgpu-sync.c
2025-12-19 15:25:44 -08:00

576 lines
15 KiB
C

/*
* Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <unit/unit.h>
#include <unit/io.h>
#include <nvgpu/types.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/hal_init.h>
#include <nvgpu/dma.h>
#include <nvgpu/posix/io.h>
#include <os/posix/os_posix.h>
#include <nvgpu/posix/posix-fault-injection.h>
#include <nvgpu/posix/posix-nvhost.h>
#include <nvgpu/channel.h>
#include <nvgpu/channel_user_syncpt.h>
#include "../fifo/nvgpu-fifo-common.h"
#include "../fifo/nvgpu-fifo-gv11b.h"
#include "nvgpu-sync.h"
#define NV_PMC_BOOT_0_ARCHITECTURE_GV110 (0x00000015 << \
NVGPU_GPU_ARCHITECTURE_SHIFT)
#define NV_PMC_BOOT_0_IMPLEMENTATION_B 0xB
#define assert(cond) unit_assert(cond, goto done)
static struct nvgpu_channel *ch;
static int init_syncpt_mem(struct unit_module *m, struct gk20a *g)
{
u64 nr_pages;
int err;
if (!nvgpu_mem_is_valid(&g->syncpt_mem)) {
nr_pages = U64(DIV_ROUND_UP(g->syncpt_unit_size,
NVGPU_CPU_PAGE_SIZE));
err = nvgpu_mem_create_from_phys(g, &g->syncpt_mem,
g->syncpt_unit_base, nr_pages);
if (err != 0) {
nvgpu_err(g, "Failed to create syncpt mem");
return err;
}
}
return 0;
}
static int init_channel_vm(struct unit_module *m, struct nvgpu_channel *ch)
{
u64 low_hole, aperture_size;
struct gk20a *g = ch->g;
struct nvgpu_os_posix *p = nvgpu_os_posix_from_gk20a(g);
struct mm_gk20a *mm = &g->mm;
p->mm_is_iommuable = true;
/*
* Initialize one VM space for system memory to be used throughout this
* unit module.
* Values below are similar to those used in nvgpu_init_system_vm()
*/
low_hole = SZ_4K * 16UL;
aperture_size = GK20A_PMU_VA_SIZE;
mm->pmu.aperture_size = GK20A_PMU_VA_SIZE;
g->ops.mm.get_default_va_sizes(NULL, &mm->channel.user_size,
&mm->channel.kernel_size);
mm->pmu.vm = nvgpu_vm_init(g,
g->ops.mm.gmmu.get_default_big_page_size(),
low_hole,
0ULL,
nvgpu_safe_sub_u64(aperture_size, low_hole),
0ULL,
true,
false,
false,
"system");
if (mm->pmu.vm == NULL) {
unit_return_fail(m, "nvgpu_vm_init failed\n");
}
ch->vm = mm->pmu.vm;
mm->bar1.aperture_size = bar1_aperture_size_mb_gk20a() << 20;
mm->bar1.vm = nvgpu_vm_init(g,
g->ops.mm.gmmu.get_default_big_page_size(),
low_hole,
0ULL,
nvgpu_safe_sub_u64(mm->bar1.aperture_size, low_hole),
0ULL,
true, false, false,
"bar1");
if (mm->bar1.vm == NULL) {
unit_return_fail(m, "nvgpu_vm_init failed\n");
}
if (nvgpu_pd_cache_init(g) != 0) {
unit_return_fail(m, "pd cache initialization failed\n");
}
return UNIT_SUCCESS;
}
int test_sync_init(struct unit_module *m, struct gk20a *g, void *args)
{
int ret = 0;
test_fifo_setup_gv11b_reg_space(m, g);
nvgpu_set_enabled(g, NVGPU_HAS_SYNCPOINTS, true);
/*
* HAL init required for getting
* the sync ops initialized.
*/
ret = nvgpu_init_hal(g);
if (ret != 0) {
return -ENODEV;
}
/*
* Init g->nvhost containing sync metadata
*/
ret = nvgpu_get_nvhost_dev(g);
if (ret != 0) {
unit_return_fail(m, "nvgpu_sync_early_init failed\n");
}
/*
* Alloc memory for g->syncpt_mem
*/
ret = init_syncpt_mem(m, g);
if (ret != 0) {
nvgpu_free_nvhost_dev(g);
unit_return_fail(m, "sync mem allocation failure");
}
/*
* Alloc memory for channel
*/
ch = nvgpu_kzalloc(g, sizeof(struct nvgpu_channel));
if (ch == NULL) {
nvgpu_free_nvhost_dev(g);
unit_return_fail(m, "sync channel creation failure");
}
ch->g = g;
/*
* Alloc and Init a VM for the channel
*/
ret = init_channel_vm(m, ch);
if (ret != 0) {
nvgpu_kfree(g, ch);
nvgpu_free_nvhost_dev(g);
unit_return_fail(m, "sync channel vm init failure");
}
return UNIT_SUCCESS;
}
int test_sync_create_destroy_sync(struct unit_module *m, struct gk20a *g, void *args)
{
struct nvgpu_channel_user_syncpt *sync = NULL;
u32 syncpt_value = 0U;
int ret = UNIT_FAIL;
sync = nvgpu_channel_user_syncpt_create(ch);
if (sync == NULL) {
unit_return_fail(m, "unexpected failure in creating sync points");
}
syncpt_value = g->nvhost->syncpt_value;
unit_info(m, "Syncpt ID: %u, Syncpt Value: %u\n",
g->nvhost->syncpt_id, syncpt_value);
assert((g->nvhost->syncpt_id > 0U) &&
(g->nvhost->syncpt_id <= NUM_HW_PTS));
assert(syncpt_value < (UINT_MAX - SYNCPT_SAFE_STATE_INCR));
nvgpu_channel_user_syncpt_destroy(sync);
sync = NULL;
ret = UNIT_SUCCESS;
done:
if (sync != NULL)
nvgpu_channel_user_syncpt_destroy(sync);
if (nvgpu_mem_is_valid(&g->syncpt_mem) &&
ch->vm->syncpt_ro_map_gpu_va != 0ULL) {
nvgpu_gmmu_unmap(ch->vm, &g->syncpt_mem,
ch->vm->syncpt_ro_map_gpu_va);
ch->vm->syncpt_ro_map_gpu_va = 0ULL;
}
return ret;
}
int test_sync_set_safe_state(struct unit_module *m, struct gk20a *g, void *args)
{
struct nvgpu_channel_user_syncpt *sync = NULL;
u32 syncpt_value, syncpt_id;
u32 syncpt_safe_state_val;
int ret = UNIT_FAIL;
sync = nvgpu_channel_user_syncpt_create(ch);
if (sync == NULL) {
unit_return_fail(m, "unexpected failure in creating sync points");
}
syncpt_id = g->nvhost->syncpt_id;
syncpt_value = g->nvhost->syncpt_value;
unit_info(m, "Syncpt ID: %u, Syncpt Value: %u\n",
syncpt_id, syncpt_value);
assert((syncpt_id > 0U) && (syncpt_id <= NUM_HW_PTS));
assert(syncpt_value < (UINT_MAX - SYNCPT_SAFE_STATE_INCR));
nvgpu_channel_user_syncpt_set_safe_state(sync);
syncpt_safe_state_val = g->nvhost->syncpt_value;
if ((syncpt_safe_state_val - syncpt_value) != SYNCPT_SAFE_STATE_INCR) {
unit_return_fail(m, "unexpected increment value for safe state");
}
nvgpu_channel_user_syncpt_destroy(sync);
sync = NULL;
ret = UNIT_SUCCESS;
done:
if (sync != NULL)
nvgpu_channel_user_syncpt_destroy(sync);
if (nvgpu_mem_is_valid(&g->syncpt_mem) &&
ch->vm->syncpt_ro_map_gpu_va != 0ULL) {
nvgpu_gmmu_unmap(ch->vm, &g->syncpt_mem,
ch->vm->syncpt_ro_map_gpu_va);
ch->vm->syncpt_ro_map_gpu_va = 0ULL;
}
return ret;
}
int test_sync_usermanaged_syncpt_apis(struct unit_module *m, struct gk20a *g, void *args)
{
struct nvgpu_channel_user_syncpt *user_sync = NULL;
u32 syncpt_id = 0U;
u64 syncpt_buf_addr = 0ULL;
int ret = UNIT_FAIL;
user_sync = nvgpu_channel_user_syncpt_create(ch);
if (user_sync == NULL) {
unit_return_fail(m, "unexpected failure in creating user sync points");
}
syncpt_id = nvgpu_channel_user_syncpt_get_id(user_sync);
assert((syncpt_id > 0U) && (syncpt_id <= NUM_HW_PTS));
syncpt_buf_addr = nvgpu_channel_user_syncpt_get_address(user_sync);
assert(syncpt_buf_addr > 0ULL);
unit_info(m, "Syncpt ID: %u, Syncpt Shim GPU VA: %llu\n",
syncpt_id, syncpt_buf_addr);
nvgpu_channel_user_syncpt_destroy(user_sync);
user_sync = NULL;
ret = UNIT_SUCCESS;
done:
if (user_sync != NULL)
nvgpu_channel_user_syncpt_destroy(user_sync);
if (nvgpu_mem_is_valid(&g->syncpt_mem) &&
ch->vm->syncpt_ro_map_gpu_va != 0ULL) {
nvgpu_gmmu_unmap(ch->vm, &g->syncpt_mem,
ch->vm->syncpt_ro_map_gpu_va);
ch->vm->syncpt_ro_map_gpu_va = 0ULL;
}
return ret;
}
#define F_SYNC_GET_RO_MAP_PRE_ALLOCATED 0
#define F_SYNC_GET_RO_MAP 1
#define F_SYNC_GET_RO_MAP_FAIL 2
static const char *f_sync_get_ro_map[] = {
"sync_get_ro_map_preallocated",
"sync_get_ro_map",
"sync_get_ro_map_fail",
};
static void syncpt_ro_map_gpu_va_clear(struct gk20a *g, struct nvgpu_channel *ch)
{
if (nvgpu_mem_is_valid(&g->syncpt_mem) &&
ch->vm->syncpt_ro_map_gpu_va != 0ULL) {
nvgpu_gmmu_unmap(ch->vm, &g->syncpt_mem,
ch->vm->syncpt_ro_map_gpu_va);
ch->vm->syncpt_ro_map_gpu_va = 0ULL;
} else if (ch->vm->syncpt_ro_map_gpu_va != 0ULL) {
ch->vm->syncpt_ro_map_gpu_va = 0ULL;
} else {
(void) memset(&g->syncpt_mem, 0, sizeof(struct nvgpu_mem));
}
}
int test_sync_get_ro_map(struct unit_module *m, struct gk20a *g, void *args)
{
u64 base_gpuva = 0U;
u32 sync_size = 0U;
u32 num_syncpoints = 0U;
u32 branches;
int err = 0;
int ret = UNIT_FAIL;
for (branches = 0U; branches <= F_SYNC_GET_RO_MAP_FAIL; branches++) {
if (branches == F_SYNC_GET_RO_MAP_PRE_ALLOCATED) {
ch->vm->syncpt_ro_map_gpu_va = nvgpu_gmmu_map(ch->vm,
&g->syncpt_mem, g->syncpt_unit_size,
0, gk20a_mem_flag_read_only,
false, APERTURE_SYSMEM);
if (ch->vm->syncpt_ro_map_gpu_va == 0U) {
unit_return_fail(m, "Unable to preallocate mapping");
}
} else if (branches == F_SYNC_GET_RO_MAP) {
ch->vm->syncpt_ro_map_gpu_va = 0U;
} else if (branches == F_SYNC_GET_RO_MAP_FAIL) {
ch->vm->syncpt_ro_map_gpu_va = 0U;
/* fail Read-Only nvgpu_gmmu_map of g->syncpt_mem */
ch->vm->guest_managed = true;
}
unit_info(m, "%s branch: %s\n", __func__, f_sync_get_ro_map[branches]);
err = g->ops.sync.syncpt.get_sync_ro_map(ch->vm,
&base_gpuva, &sync_size, &num_syncpoints);
if (branches < F_SYNC_GET_RO_MAP_FAIL) {
if(err != 0) {
unit_return_fail(m,
"unexpected failure in get_sync_ro_map");
} else {
ret = UNIT_SUCCESS;
}
assert(base_gpuva > 0ULL);
assert(sync_size > 0U);
unit_info(m, "Syncpt Shim GPU VA: %llu\n", base_gpuva);
} else {
if (err == 0) {
unit_return_fail(m,
"expected failure in get_sync_ro_map");
} else {
ret = UNIT_SUCCESS;
}
}
syncpt_ro_map_gpu_va_clear(g, ch);
if (ch->vm->guest_managed == true) {
ch->vm->guest_managed = false;
}
base_gpuva = 0U;
sync_size = 0U;
}
done:
syncpt_ro_map_gpu_va_clear(g, ch);
if (ch->vm->guest_managed == true) {
ch->vm->guest_managed = false;
}
return ret;
}
#define F_SYNC_SYNCPT_ALLOC_FAILED 1
#define F_SYNC_STRADD_FAIL 3
#define F_SYNC_NVHOST_CLIENT_MANAGED_FAIL 4
#define F_SYNC_RO_MAP_GPU_VA_MAP_FAIL 5
#define F_SYNC_MEM_CREATE_PHYS_FAIL 6
#define F_SYNC_BUF_MAP_FAIL 7
#define F_SYNC_FAIL_LAST 8
static const char *f_syncpt_open[] = {
"global_disable_syncpt",
"syncpt_alloc_failed",
"syncpt_user_managed_false",
"syncpt_stradd_fail",
"syncpt_get_client_managed_fail",
"syncpt_ro_map_gpu_va_fail",
"syncpt_create_phys_mem_fail",
"syncpt_buf_map_fail",
};
/*
* syncpt name is 32 chars big, including nul byte; the chid is 1 byte here
* ("0") and nvgpu_strnadd_u32 needs that plus nul byte. A "_" is added after
* g->name, so this would break just at the nul byte.
*/
#define FAIL_G_NAME_STR "123456789012345678901234567890"
static void clear_test_params(struct gk20a *g,
bool *fault_injection_enabled, u32 branch,
struct nvgpu_posix_fault_inj *kmem_fi)
{
if (ch->vm->guest_managed) {
ch->vm->guest_managed = false;
}
if (*fault_injection_enabled) {
nvgpu_posix_enable_fault_injection(kmem_fi, false, 0);
*fault_injection_enabled = false;
}
syncpt_ro_map_gpu_va_clear(g, ch);
}
int test_sync_create_fail(struct unit_module *m, struct gk20a *g, void *args)
{
struct nvgpu_channel_user_syncpt *sync = NULL;
struct nvgpu_posix_fault_inj *kmem_fi;
u32 branches;
bool fault_injection_enabled = false;
int ret = UNIT_FAIL;
const char *g_name = g->name;
kmem_fi = nvgpu_kmem_get_fault_injection();
ch->vm->syncpt_ro_map_gpu_va = 0U;
for (branches = 0U; branches < F_SYNC_FAIL_LAST; branches++) {
u32 syncpt_id, syncpt_value;
/*
* This is normally not cleared when a syncpt's last ref
* is removed. Hence, explicitely zero it after every failure
*/
g->nvhost->syncpt_id = 0U;
if (branches == F_SYNC_SYNCPT_ALLOC_FAILED) {
/* fail first kzalloc call */
nvgpu_posix_enable_fault_injection(kmem_fi, true, 0);
fault_injection_enabled = true;
} else if (branches == F_SYNC_STRADD_FAIL) {
/*
* fill the entire buffer resulting in
* failure in nvgpu_strnadd_u32
*/
g->name = FAIL_G_NAME_STR;
} else if (branches == F_SYNC_NVHOST_CLIENT_MANAGED_FAIL) {
g->nvhost->syncpt_id = 20U; /* arbitary id */
} else if (branches == F_SYNC_RO_MAP_GPU_VA_MAP_FAIL) {
/* fail Read-Only nvgpu_gmmu_map of g->syncpt_mem */
ch->vm->guest_managed = true;
} else if (branches == F_SYNC_MEM_CREATE_PHYS_FAIL) {
/*
* bypass map of g->syncpt_mem and fail at
* nvgpu_mem_create_from_phys after first kzalloc.
*/
ch->vm->syncpt_ro_map_gpu_va = 0x1000ULL;
nvgpu_posix_enable_fault_injection(kmem_fi, true, 1);
fault_injection_enabled = true;
} else if (branches == F_SYNC_BUF_MAP_FAIL) {
/*
* bypass map of g->syncpt_mem and fail at
* nvgpu_gmmu_map after first kzalloc and then two
* consequtive calls to kmalloc
*/
ch->vm->syncpt_ro_map_gpu_va = 1ULL;
nvgpu_posix_enable_fault_injection(kmem_fi, true, 2);
fault_injection_enabled = true;
} else {
continue;
}
unit_info(m, "%s branch: %s\n", __func__, f_syncpt_open[branches]);
sync = nvgpu_channel_user_syncpt_create(ch);
if (branches == F_SYNC_NVHOST_CLIENT_MANAGED_FAIL) {
g->nvhost->syncpt_id = 0U;
}
/* restore the original name member of the gk20a device */
g->name = g_name;
if (sync != NULL) {
nvgpu_channel_user_syncpt_destroy(sync);
unit_return_fail(m, "expected failure in creating sync points");
}
syncpt_id = g->nvhost->syncpt_id;
syncpt_value = g->nvhost->syncpt_value;
assert(syncpt_id == 0U);
assert(syncpt_value == 0U);
clear_test_params(g, &fault_injection_enabled, branches, kmem_fi);
}
return UNIT_SUCCESS;
done:
clear_test_params(g, &fault_injection_enabled, 0, kmem_fi);
return ret;
}
int test_sync_deinit(struct unit_module *m, struct gk20a *g, void *args)
{
nvgpu_vm_put(g->mm.pmu.vm);
nvgpu_vm_put(g->mm.bar1.vm);
if (ch != NULL) {
nvgpu_kfree(g, ch);
}
if (g->nvhost == NULL) {
unit_return_fail(m ,"no valid nvhost device exists\n");
}
nvgpu_free_nvhost_dev(g);
return UNIT_SUCCESS;
}
struct unit_module_test nvgpu_sync_tests[] = {
UNIT_TEST(sync_init, test_sync_init, NULL, 0),
UNIT_TEST(sync_create_destroy, test_sync_create_destroy_sync, NULL, 0),
UNIT_TEST(sync_set_safe_state, test_sync_set_safe_state, NULL, 0),
UNIT_TEST(sync_user_managed_apis, test_sync_usermanaged_syncpt_apis, NULL, 0),
UNIT_TEST(sync_get_ro_map, test_sync_get_ro_map, NULL, 0),
UNIT_TEST(sync_fail, test_sync_create_fail, NULL, 0),
UNIT_TEST(sync_deinit, test_sync_deinit, NULL, 0),
};
UNIT_MODULE(nvgpu-sync, nvgpu_sync_tests, UNIT_PRIO_NVGPU_TEST);