Files
linux-nvgpu/drivers/gpu/nvgpu/common/linux/vm.c
Alex Waterman 0090ee5aca gpu: nvgpu: nvgpu SGL implementation
The last major item preventing the core MM code in the nvgpu
driver from being platform agnostic is the usage of Linux
scattergather tables and scattergather lists. These data
structures are used throughout the mapping code to handle
discontiguous DMA allocations and also overloaded to represent
VIDMEM allocs.

The notion of a scatter gather table is crucial to a HW device
that can handle discontiguous DMA. The GPU has a MMU which
allows the GPU to do page gathering and present a virtually
contiguous buffer to the GPU HW. As a result it makes sense
for the GPU driver to use some sort of scatter gather concept
so maximize memory usage efficiency.

To that end this patch keeps the notion of a scatter gather
list but implements it in the nvgpu common code. It is based
heavily on the Linux SGL concept. It is a singly linked list
of blocks - each representing a chunk of memory. To map or
use a DMA allocation SW must iterate over each block in the
SGL.

This patch implements the most basic level of support for this
data structure. There are certainly easy optimizations that
could be done to speed up the current implementation. However,
this patches' goal is to simply divest the core MM code from
any last Linux'isms. Speed and efficiency come next.

Change-Id: Icf44641db22d87fa1d003debbd9f71b605258e42
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1530867
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2017-09-22 12:52:48 -07:00

492 lines
13 KiB
C

/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/dma-buf.h>
#include <linux/scatterlist.h>
#include <nvgpu/log.h>
#include <nvgpu/lock.h>
#include <nvgpu/rbtree.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/linux/nvgpu_mem.h>
#include "gk20a/gk20a.h"
#include "gk20a/mm_gk20a.h"
#include "gk20a/kind_gk20a.h"
#include "gk20a/platform_gk20a.h"
#include "vm_priv.h"
#include "os_linux.h"
static struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_reverse(
struct vm_gk20a *vm, struct dma_buf *dmabuf, u32 kind)
{
struct nvgpu_rbtree_node *node = NULL;
struct nvgpu_rbtree_node *root = vm->mapped_buffers;
nvgpu_rbtree_enum_start(0, &node, root);
while (node) {
struct nvgpu_mapped_buf *mapped_buffer =
mapped_buffer_from_rbtree_node(node);
if (mapped_buffer->dmabuf == dmabuf &&
kind == mapped_buffer->kind)
return mapped_buffer;
nvgpu_rbtree_enum_next(&node, node);
}
return NULL;
}
/*
* Determine alignment for a passed buffer. Necessary since the buffer may
* appear big to map with large pages but the SGL may have chunks that are not
* aligned on a 64/128kB large page boundary.
*/
static u64 nvgpu_get_buffer_alignment(struct gk20a *g, struct scatterlist *sgl,
enum nvgpu_aperture aperture)
{
u64 align = 0, chunk_align = 0;
u64 buf_addr;
if (aperture == APERTURE_VIDMEM) {
struct nvgpu_page_alloc *alloc = get_vidmem_page_alloc(sgl);
struct nvgpu_mem_sgl *sgl_vid = alloc->sgl;
while (sgl_vid) {
chunk_align = 1ULL <<
__ffs(nvgpu_mem_sgl_phys(sgl_vid) |
nvgpu_mem_sgl_length(sgl_vid));
if (align)
align = min(align, chunk_align);
else
align = chunk_align;
sgl_vid = nvgpu_mem_sgl_next(sgl_vid);
}
return align;
}
buf_addr = (u64)sg_dma_address(sgl);
if (g->mm.bypass_smmu || buf_addr == DMA_ERROR_CODE || !buf_addr) {
while (sgl) {
buf_addr = (u64)sg_phys(sgl);
chunk_align = 1ULL << __ffs(buf_addr |
(u64)sgl->length);
if (align)
align = min(align, chunk_align);
else
align = chunk_align;
sgl = sg_next(sgl);
}
return align;
}
align = 1ULL << __ffs(buf_addr);
return align;
}
/*
* vm->update_gmmu_lock must be held. This checks to see if we already have
* mapped the passed buffer into this VM. If so, just return the existing
* mapping address.
*/
static u64 __nvgpu_vm_find_mapping(struct vm_gk20a *vm,
struct dma_buf *dmabuf,
u64 offset_align,
u32 flags,
int kind,
bool user_mapped,
int rw_flag)
{
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_mapped_buf *mapped_buffer = NULL;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) {
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, offset_align);
if (!mapped_buffer)
return 0;
if (mapped_buffer->dmabuf != dmabuf ||
mapped_buffer->kind != (u32)kind)
return 0;
} else {
mapped_buffer =
__nvgpu_vm_find_mapped_buf_reverse(vm, dmabuf, kind);
if (!mapped_buffer)
return 0;
}
if (mapped_buffer->flags != flags)
return 0;
/* mark the buffer as used */
if (user_mapped) {
if (mapped_buffer->user_mapped == 0)
vm->num_user_mapped_buffers++;
mapped_buffer->user_mapped++;
/* If the mapping comes from user space, we own
* the handle ref. Since we reuse an
* existing mapping here, we need to give back those
* refs once in order not to leak.
*/
if (mapped_buffer->own_mem_ref)
dma_buf_put(mapped_buffer->dmabuf);
else
mapped_buffer->own_mem_ref = true;
}
nvgpu_ref_get(&mapped_buffer->ref);
nvgpu_log(g, gpu_dbg_map,
"gv: 0x%04x_%08x + 0x%-7zu "
"[dma: 0x%02x_%08x, pa: 0x%02x_%08x] "
"pgsz=%-3dKb as=%-2d ctags=%d start=%d "
"flags=0x%x apt=%s (reused)",
u64_hi32(mapped_buffer->addr), u64_lo32(mapped_buffer->addr),
dmabuf->size,
u64_hi32((u64)sg_dma_address(mapped_buffer->sgt->sgl)),
u64_lo32((u64)sg_dma_address(mapped_buffer->sgt->sgl)),
u64_hi32((u64)sg_phys(mapped_buffer->sgt->sgl)),
u64_lo32((u64)sg_phys(mapped_buffer->sgt->sgl)),
vm->gmmu_page_sizes[mapped_buffer->pgsz_idx] >> 10,
vm_aspace_id(vm),
mapped_buffer->ctag_lines, mapped_buffer->ctag_offset,
mapped_buffer->flags,
nvgpu_aperture_str(gk20a_dmabuf_aperture(g, dmabuf)));
return mapped_buffer->addr;
}
static int setup_bfr_kind_fields(struct buffer_attrs *bfr, s16 compr_kind,
s16 incompr_kind, u32 flags)
{
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_DIRECT_KIND_CTRL) {
/* were we supplied with a kind in either parameter? */
if ((compr_kind < 0 || compr_kind >= NV_KIND_ATTR_SIZE) &&
(incompr_kind < 0 || incompr_kind >= NV_KIND_ATTR_SIZE))
return -EINVAL;
if (compr_kind != NV_KIND_INVALID) {
bfr->use_kind_v = true;
bfr->kind_v = (u8)compr_kind;
}
if (incompr_kind != NV_KIND_INVALID) {
bfr->use_uc_kind_v = true;
bfr->uc_kind_v = (u8)incompr_kind;
}
} else {
if (compr_kind < 0 || compr_kind >= NV_KIND_ATTR_SIZE)
return -EINVAL;
bfr->use_kind_v = true;
bfr->kind_v = (u8)compr_kind;
/*
* Note: setup_buffer_kind_and_compression() will
* figure out uc_kind_v or return an error
*/
}
return 0;
}
u64 nvgpu_vm_map(struct vm_gk20a *vm,
struct dma_buf *dmabuf,
u64 offset_align,
u32 flags,
s16 compr_kind,
s16 incompr_kind,
bool user_mapped,
int rw_flag,
u64 buffer_offset,
u64 mapping_size,
struct vm_gk20a_mapping_batch *batch)
{
struct gk20a *g = gk20a_from_vm(vm);
struct device *dev = dev_from_gk20a(g);
struct gk20a_comptag_allocator *ctag_allocator = &g->gr.comp_tags;
struct nvgpu_mapped_buf *mapped_buffer = NULL;
bool va_allocated = false;
u64 map_offset = 0;
int err = 0;
struct buffer_attrs bfr = {NULL};
struct gk20a_comptags comptags;
bool clear_ctags = false;
struct scatterlist *sgl;
struct nvgpu_vm_area *vm_area = NULL;
u32 ctag_offset;
enum nvgpu_aperture aperture;
struct nvgpu_mem_sgl *nvgpu_sgl;
/*
* The kind used as part of the key for map caching. HW may
* actually be programmed with the fallback kind in case the
* key kind is compressible but we're out of comptags.
*/
s16 map_key_kind;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_DIRECT_KIND_CTRL) {
if (compr_kind != NV_KIND_INVALID)
map_key_kind = compr_kind;
else
map_key_kind = incompr_kind;
} else {
map_key_kind = compr_kind;
}
if (user_mapped && vm->userspace_managed &&
!(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)) {
nvgpu_err(g, "non-fixed-offset mapping not available on "
"userspace managed address spaces");
return -EFAULT;
}
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
/* check if this buffer is already mapped */
if (!vm->userspace_managed) {
map_offset = __nvgpu_vm_find_mapping(
vm, dmabuf, offset_align,
flags, map_key_kind,
user_mapped, rw_flag);
if (map_offset) {
nvgpu_mutex_release(&vm->update_gmmu_lock);
return map_offset;
}
}
/* pin buffer to get phys/iovmm addr */
bfr.sgt = gk20a_mm_pin(dev, dmabuf);
if (IS_ERR(bfr.sgt)) {
/* Falling back to physical is actually possible
* here in many cases if we use 4K phys pages in the
* gmmu. However we have some regions which require
* contig regions to work properly (either phys-contig
* or contig through smmu io_vaspace). Until we can
* track the difference between those two cases we have
* to fail the mapping when we run out of SMMU space.
*/
nvgpu_warn(g, "oom allocating tracking buffer");
goto clean_up;
}
err = setup_bfr_kind_fields(&bfr, compr_kind, incompr_kind, flags);
if (err)
goto clean_up;
bfr.size = dmabuf->size;
sgl = bfr.sgt->sgl;
aperture = gk20a_dmabuf_aperture(g, dmabuf);
if (aperture == APERTURE_INVALID) {
err = -EINVAL;
goto clean_up;
}
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)
map_offset = offset_align;
bfr.align = nvgpu_get_buffer_alignment(g, sgl, aperture);
if (g->mm.disable_bigpage)
bfr.pgsz_idx = gmmu_page_size_small;
else
bfr.pgsz_idx = __get_pte_size(vm, map_offset,
min_t(u64, bfr.size, bfr.align));
mapping_size = mapping_size ? mapping_size : bfr.size;
mapping_size = ALIGN(mapping_size, SZ_4K);
if ((mapping_size > bfr.size) ||
(buffer_offset > (bfr.size - mapping_size))) {
err = -EINVAL;
goto clean_up;
}
/* Check if we should use a fixed offset for mapping this buffer */
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) {
err = nvgpu_vm_area_validate_buffer(vm, offset_align, mapping_size,
bfr.pgsz_idx, &vm_area);
if (err)
goto clean_up;
map_offset = offset_align;
va_allocated = false;
} else
va_allocated = true;
err = setup_buffer_kind_and_compression(vm, flags, &bfr, bfr.pgsz_idx);
if (unlikely(err)) {
nvgpu_err(g, "failure setting up kind and compression");
goto clean_up;
}
/* bar1 and pmu vm don't need ctag */
if (!vm->enable_ctag)
bfr.ctag_lines = 0;
gk20a_get_comptags(dev, dmabuf, &comptags);
/* ensure alignment to compression page size if compression enabled */
if (bfr.ctag_offset)
mapping_size = ALIGN(mapping_size,
g->ops.fb.compression_page_size(g));
if (bfr.ctag_lines && !comptags.lines) {
/* allocate compression resources if needed */
err = gk20a_alloc_comptags(g, dev, dmabuf,
ctag_allocator,
bfr.ctag_lines);
if (unlikely(err)) {
/* TBD: we can partially alloc ctags as well... */
if (bfr.use_uc_kind_v) {
/* no comptags, but fallback kind available */
bfr.kind_v = bfr.uc_kind_v;
} else {
nvgpu_err(g, "comptag alloc failed and no fallback kind specified");
goto clean_up;
}
} else {
gk20a_get_comptags(dev,
dmabuf, &comptags);
if (g->ops.ltc.cbc_ctrl)
g->ops.ltc.cbc_ctrl(g, gk20a_cbc_op_clear,
comptags.offset,
comptags.offset +
comptags.allocated_lines - 1);
else
clear_ctags = true;
}
}
/* store the comptag info */
bfr.ctag_offset = comptags.offset;
bfr.ctag_lines = comptags.lines;
bfr.ctag_allocated_lines = comptags.allocated_lines;
bfr.ctag_user_mappable = comptags.user_mappable;
/*
* Calculate comptag index for this mapping. Differs in
* case of partial mapping.
*/
ctag_offset = comptags.offset;
if (ctag_offset)
ctag_offset += buffer_offset >>
ilog2(g->ops.fb.compression_page_size(g));
nvgpu_sgl = nvgpu_mem_sgl_create(g, bfr.sgt);
/* update gmmu ptes */
map_offset = g->ops.mm.gmmu_map(vm,
map_offset,
nvgpu_sgl,
buffer_offset, /* sg offset */
mapping_size,
bfr.pgsz_idx,
bfr.kind_v,
ctag_offset,
flags, rw_flag,
clear_ctags,
false,
false,
batch,
aperture);
if (!map_offset)
goto clean_up;
nvgpu_mem_sgl_free(g, nvgpu_sgl);
mapped_buffer = nvgpu_kzalloc(g, sizeof(*mapped_buffer));
if (!mapped_buffer) {
nvgpu_warn(g, "oom allocating tracking buffer");
goto clean_up;
}
mapped_buffer->dmabuf = dmabuf;
mapped_buffer->sgt = bfr.sgt;
mapped_buffer->addr = map_offset;
mapped_buffer->size = mapping_size;
mapped_buffer->pgsz_idx = bfr.pgsz_idx;
mapped_buffer->ctag_offset = bfr.ctag_offset;
mapped_buffer->ctag_lines = bfr.ctag_lines;
mapped_buffer->ctag_allocated_lines = bfr.ctag_allocated_lines;
mapped_buffer->vm = vm;
mapped_buffer->flags = flags;
mapped_buffer->kind = map_key_kind;
mapped_buffer->va_allocated = va_allocated;
mapped_buffer->user_mapped = user_mapped ? 1 : 0;
mapped_buffer->own_mem_ref = user_mapped;
nvgpu_init_list_node(&mapped_buffer->buffer_list);
nvgpu_ref_init(&mapped_buffer->ref);
err = nvgpu_insert_mapped_buf(vm, mapped_buffer);
if (err) {
nvgpu_err(g, "failed to insert into mapped buffer tree");
goto clean_up;
}
if (user_mapped)
vm->num_user_mapped_buffers++;
if (vm_area) {
nvgpu_list_add_tail(&mapped_buffer->buffer_list,
&vm_area->buffer_list_head);
mapped_buffer->vm_area = vm_area;
}
nvgpu_mutex_release(&vm->update_gmmu_lock);
return map_offset;
clean_up:
nvgpu_kfree(g, mapped_buffer);
if (va_allocated)
__nvgpu_vm_free_va(vm, map_offset, bfr.pgsz_idx);
if (!IS_ERR(bfr.sgt))
gk20a_mm_unpin(dev, dmabuf, bfr.sgt);
nvgpu_mutex_release(&vm->update_gmmu_lock);
nvgpu_log_info(g, "err=%d", err);
return 0;
}
void nvgpu_vm_unmap(struct vm_gk20a *vm, u64 offset)
{
struct gk20a *g = vm->mm->g;
struct nvgpu_mapped_buf *mapped_buffer;
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, offset);
if (!mapped_buffer) {
nvgpu_mutex_release(&vm->update_gmmu_lock);
nvgpu_err(g, "invalid addr to unmap 0x%llx", offset);
return;
}
nvgpu_ref_put(&mapped_buffer->ref, gk20a_vm_unmap_locked_ref);
nvgpu_mutex_release(&vm->update_gmmu_lock);
}