mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
The last major item preventing the core MM code in the nvgpu driver from being platform agnostic is the usage of Linux scattergather tables and scattergather lists. These data structures are used throughout the mapping code to handle discontiguous DMA allocations and also overloaded to represent VIDMEM allocs. The notion of a scatter gather table is crucial to a HW device that can handle discontiguous DMA. The GPU has a MMU which allows the GPU to do page gathering and present a virtually contiguous buffer to the GPU HW. As a result it makes sense for the GPU driver to use some sort of scatter gather concept so maximize memory usage efficiency. To that end this patch keeps the notion of a scatter gather list but implements it in the nvgpu common code. It is based heavily on the Linux SGL concept. It is a singly linked list of blocks - each representing a chunk of memory. To map or use a DMA allocation SW must iterate over each block in the SGL. This patch implements the most basic level of support for this data structure. There are certainly easy optimizations that could be done to speed up the current implementation. However, this patches' goal is to simply divest the core MM code from any last Linux'isms. Speed and efficiency come next. Change-Id: Icf44641db22d87fa1d003debbd9f71b605258e42 Signed-off-by: Alex Waterman <alexw@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1530867 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
980 lines
24 KiB
C
980 lines
24 KiB
C
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/list.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/page_allocator.h>
|
|
#include <nvgpu/barrier.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/mm_gk20a.h"
|
|
|
|
#define __gmmu_dbg(g, attrs, fmt, args...) \
|
|
do { \
|
|
if (attrs->debug) \
|
|
nvgpu_info(g, fmt, ##args); \
|
|
else \
|
|
nvgpu_log(g, gpu_dbg_map, fmt, ##args); \
|
|
} while (0)
|
|
|
|
#define __gmmu_dbg_v(g, attrs, fmt, args...) \
|
|
do { \
|
|
if (attrs->debug) \
|
|
nvgpu_info(g, fmt, ##args); \
|
|
else \
|
|
nvgpu_log(g, gpu_dbg_map_v, fmt, ##args); \
|
|
} while (0)
|
|
|
|
static int pd_allocate(struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_attrs *attrs);
|
|
static u32 pd_size(const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_attrs *attrs);
|
|
/*
|
|
* Core GMMU map function for the kernel to use. If @addr is 0 then the GPU
|
|
* VA will be allocated for you. If addr is non-zero then the buffer will be
|
|
* mapped at @addr.
|
|
*/
|
|
static u64 __nvgpu_gmmu_map(struct vm_gk20a *vm,
|
|
struct nvgpu_mem *mem,
|
|
u64 addr,
|
|
u64 size,
|
|
u32 flags,
|
|
int rw_flag,
|
|
bool priv,
|
|
enum nvgpu_aperture aperture)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
u64 vaddr;
|
|
|
|
struct nvgpu_mem_sgl *sgl = nvgpu_mem_sgl_create_from_mem(g, mem);
|
|
|
|
if (!sgl)
|
|
return -ENOMEM;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
vaddr = g->ops.mm.gmmu_map(vm, addr,
|
|
sgl, /* sg list */
|
|
0, /* sg offset */
|
|
size,
|
|
gmmu_page_size_kernel,
|
|
0, /* kind */
|
|
0, /* ctag_offset */
|
|
flags, rw_flag,
|
|
false, /* clear_ctags */
|
|
false, /* sparse */
|
|
priv, /* priv */
|
|
NULL, /* mapping_batch handle */
|
|
aperture);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
nvgpu_mem_sgl_free(g, sgl);
|
|
|
|
if (!vaddr) {
|
|
nvgpu_err(g, "failed to map buffer!");
|
|
return 0;
|
|
}
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
/*
|
|
* Map a nvgpu_mem into the GMMU. This is for kernel space to use.
|
|
*/
|
|
u64 nvgpu_gmmu_map(struct vm_gk20a *vm,
|
|
struct nvgpu_mem *mem,
|
|
u64 size,
|
|
u32 flags,
|
|
int rw_flag,
|
|
bool priv,
|
|
enum nvgpu_aperture aperture)
|
|
{
|
|
return __nvgpu_gmmu_map(vm, mem, 0, size, flags, rw_flag, priv,
|
|
aperture);
|
|
}
|
|
|
|
/*
|
|
* Like nvgpu_gmmu_map() except this can work on a fixed address.
|
|
*/
|
|
u64 nvgpu_gmmu_map_fixed(struct vm_gk20a *vm,
|
|
struct nvgpu_mem *mem,
|
|
u64 addr,
|
|
u64 size,
|
|
u32 flags,
|
|
int rw_flag,
|
|
bool priv,
|
|
enum nvgpu_aperture aperture)
|
|
{
|
|
return __nvgpu_gmmu_map(vm, mem, addr, size, flags, rw_flag, priv,
|
|
aperture);
|
|
}
|
|
|
|
void nvgpu_gmmu_unmap(struct vm_gk20a *vm, struct nvgpu_mem *mem, u64 gpu_va)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
g->ops.mm.gmmu_unmap(vm,
|
|
gpu_va,
|
|
mem->size,
|
|
gmmu_page_size_kernel,
|
|
true, /*va_allocated */
|
|
gk20a_mem_flag_none,
|
|
false,
|
|
NULL);
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
}
|
|
|
|
int nvgpu_gmmu_init_page_table(struct vm_gk20a *vm)
|
|
{
|
|
u32 pdb_size;
|
|
int err;
|
|
|
|
/*
|
|
* Need this just for page size. Everything else can be ignored. Also
|
|
* note that we can just use pgsz 0 (i.e small pages) since the number
|
|
* of bits present in the top level PDE are the same for small/large
|
|
* page VMs.
|
|
*/
|
|
struct nvgpu_gmmu_attrs attrs = {
|
|
.pgsz = 0,
|
|
};
|
|
|
|
/*
|
|
* PDB size here must be one page so that its address is page size
|
|
* aligned. Although lower PDE tables can be aligned at 256B boundaries
|
|
* the main PDB must be page aligned.
|
|
*/
|
|
pdb_size = ALIGN(pd_size(&vm->mmu_levels[0], &attrs), PAGE_SIZE);
|
|
|
|
err = __nvgpu_pd_cache_alloc_direct(vm->mm->g, &vm->pdb, pdb_size);
|
|
if (WARN_ON(err))
|
|
return err;
|
|
|
|
/*
|
|
* One nvgpu_smp_mb() is done after all mapping operations. Don't need
|
|
* individual barriers for each PD write.
|
|
*/
|
|
vm->pdb.mem->skip_wmb = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Ensure that there's a CPU mapping for the page directory memory. This won't
|
|
* always be the case for 32 bit systems since we may need to save kernel
|
|
* virtual memory.
|
|
*/
|
|
static int map_gmmu_pages(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
return nvgpu_mem_begin(g, pd->mem);
|
|
}
|
|
|
|
/*
|
|
* Handle any necessary CPU unmap semantics for a page directories DMA memory.
|
|
* For 64 bit platforms this is a noop.
|
|
*/
|
|
static void unmap_gmmu_pages(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
nvgpu_mem_end(g, pd->mem);
|
|
}
|
|
|
|
/*
|
|
* Return the _physical_ address of a page directory.
|
|
*/
|
|
u64 nvgpu_pde_phys_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
u64 page_addr;
|
|
|
|
if (g->mm.has_physical_mode)
|
|
page_addr = sg_phys(pd->mem->priv.sgt->sgl);
|
|
else
|
|
page_addr = nvgpu_mem_get_addr(g, pd->mem);
|
|
|
|
return page_addr + pd->mem_offs;
|
|
}
|
|
|
|
/*
|
|
* Return the aligned length based on the page size in attrs.
|
|
*/
|
|
static u64 nvgpu_align_map_length(struct vm_gk20a *vm, u64 length,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
u64 page_size = vm->gmmu_page_sizes[attrs->pgsz];
|
|
|
|
return ALIGN(length, page_size);
|
|
}
|
|
|
|
static u32 pd_entries(const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
/*
|
|
* Number of entries in a PD is easy to compute from the number of bits
|
|
* used to index the page directory. That is simply 2 raised to the
|
|
* number of bits.
|
|
*/
|
|
return 1UL << (l->hi_bit[attrs->pgsz] - l->lo_bit[attrs->pgsz] + 1UL);
|
|
}
|
|
|
|
/*
|
|
* Computes the size of a PD table.
|
|
*/
|
|
static u32 pd_size(const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
return pd_entries(l, attrs) * l->entry_size;
|
|
}
|
|
|
|
/*
|
|
* Allocate a physically contiguous region big enough for a gmmu page table
|
|
* of the specified level and page size. The whole range is zeroed so that any
|
|
* accesses will fault until proper values are programmed.
|
|
*/
|
|
static int pd_allocate(struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
int err;
|
|
|
|
if (pd->mem)
|
|
return 0;
|
|
|
|
err = __nvgpu_pd_alloc(vm, pd, pd_size(l, attrs));
|
|
if (err) {
|
|
nvgpu_info(vm->mm->g, "error allocating page directory!");
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* One nvgpu_smp_mb() is done after all mapping operations. Don't need
|
|
* individual barriers for each PD write.
|
|
*/
|
|
pd->mem->skip_wmb = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute what page directory index at the passed level the passed virtual
|
|
* address corresponds to. @attrs is necessary for determining the page size
|
|
* which is used to pick the right bit offsets for the GMMU level.
|
|
*/
|
|
static u32 pd_index(const struct gk20a_mmu_level *l, u64 virt,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
u64 pd_mask = (1ULL << ((u64)l->hi_bit[attrs->pgsz] + 1)) - 1ULL;
|
|
u32 pd_shift = (u64)l->lo_bit[attrs->pgsz];
|
|
|
|
/*
|
|
* For convenience we don't bother computing the lower bound of the
|
|
* mask; it's easier to just shift it off.
|
|
*/
|
|
return (virt & pd_mask) >> pd_shift;
|
|
}
|
|
|
|
static int pd_allocate_children(struct vm_gk20a *vm,
|
|
const struct gk20a_mmu_level *l,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
if (pd->entries)
|
|
return 0;
|
|
|
|
pd->num_entries = pd_entries(l, attrs);
|
|
pd->entries = nvgpu_vzalloc(g, sizeof(struct nvgpu_gmmu_pd) *
|
|
pd->num_entries);
|
|
if (!pd->entries)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function programs the GMMU based on two ranges: a physical range and a
|
|
* GPU virtual range. The virtual is mapped to the physical. Physical in this
|
|
* case can mean either a real physical sysmem address or a IO virtual address
|
|
* (for instance when a system has an IOMMU running).
|
|
*
|
|
* The rest of the parameters are for describing the actual mapping itself.
|
|
*
|
|
* This function recursively calls itself for handling PDEs. At the final level
|
|
* a PTE handler is called. The phys and virt ranges are adjusted for each
|
|
* recursion so that each invocation of this function need only worry about the
|
|
* range it is passed.
|
|
*
|
|
* phys_addr will always point to a contiguous range - the discontiguous nature
|
|
* of DMA buffers is taken care of at the layer above this.
|
|
*/
|
|
static int __set_pd_level(struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
int lvl,
|
|
u64 phys_addr,
|
|
u64 virt_addr, u64 length,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
int err = 0;
|
|
u64 pde_range;
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
struct nvgpu_gmmu_pd *next_pd = NULL;
|
|
const struct gk20a_mmu_level *l = &vm->mmu_levels[lvl];
|
|
const struct gk20a_mmu_level *next_l = &vm->mmu_levels[lvl + 1];
|
|
|
|
/*
|
|
* 5 levels for Pascal+. For pre-pascal we only have 2. This puts
|
|
* offsets into the page table debugging code which makes it easier to
|
|
* see what level prints are from.
|
|
*/
|
|
static const char *__lvl_debug[] = {
|
|
"", /* L=0 */
|
|
" ", /* L=1 */
|
|
" ", /* L=2 */
|
|
" ", /* L=3 */
|
|
" ", /* L=4 */
|
|
};
|
|
|
|
pde_range = 1ULL << (u64)l->lo_bit[attrs->pgsz];
|
|
|
|
__gmmu_dbg_v(g, attrs,
|
|
"L=%d %sGPU virt %#-12llx +%#-9llx -> phys %#-12llx",
|
|
lvl,
|
|
__lvl_debug[lvl],
|
|
virt_addr,
|
|
length,
|
|
phys_addr);
|
|
|
|
/*
|
|
* Iterate across the mapping in chunks the size of this level's PDE.
|
|
* For each of those chunks program our level's PDE and then, if there's
|
|
* a next level, program the next level's PDEs/PTEs.
|
|
*/
|
|
while (length) {
|
|
u32 pd_idx = pd_index(l, virt_addr, attrs);
|
|
u64 chunk_size;
|
|
u64 target_addr;
|
|
|
|
/*
|
|
* Truncate the pde_range when the virtual address does not
|
|
* start at a PDE boundary.
|
|
*/
|
|
chunk_size = min(length,
|
|
pde_range - (virt_addr & (pde_range - 1)));
|
|
|
|
/*
|
|
* If the next level has an update_entry function then we know
|
|
* that _this_ level points to PDEs (not PTEs). Thus we need to
|
|
* have a bunch of children PDs.
|
|
*/
|
|
if (next_l->update_entry) {
|
|
if (pd_allocate_children(vm, l, pd, attrs))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Get the next PD so that we know what to put in this
|
|
* current PD. If the next level is actually PTEs then
|
|
* we don't need this - we will just use the real
|
|
* physical target.
|
|
*/
|
|
next_pd = &pd->entries[pd_idx];
|
|
|
|
/*
|
|
* Allocate the backing memory for next_pd.
|
|
*/
|
|
if (pd_allocate(vm, next_pd, next_l, attrs))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* This is the address we want to program into the actual PDE/
|
|
* PTE. When the next level is PDEs we need the target address
|
|
* to be the table of PDEs. When the next level is PTEs the
|
|
* target addr is the real physical address we are aiming for.
|
|
*/
|
|
target_addr = next_pd ?
|
|
nvgpu_pde_phys_addr(g, next_pd) :
|
|
phys_addr;
|
|
|
|
l->update_entry(vm, l,
|
|
pd, pd_idx,
|
|
virt_addr,
|
|
target_addr,
|
|
attrs);
|
|
|
|
if (next_l->update_entry) {
|
|
err = map_gmmu_pages(g, next_pd);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"couldn't map ptes for update as=%d",
|
|
vm_aspace_id(vm));
|
|
return err;
|
|
}
|
|
|
|
err = __set_pd_level(vm, next_pd,
|
|
lvl + 1,
|
|
phys_addr,
|
|
virt_addr,
|
|
chunk_size,
|
|
attrs);
|
|
unmap_gmmu_pages(g, next_pd);
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
virt_addr += chunk_size;
|
|
|
|
/*
|
|
* Only add to phys_addr if it's non-zero. A zero value implies
|
|
* we are unmapping as as a result we don't want to place
|
|
* non-zero phys addresses in the PTEs. A non-zero phys-addr
|
|
* would also confuse the lower level PTE programming code.
|
|
*/
|
|
if (phys_addr)
|
|
phys_addr += chunk_size;
|
|
length -= chunk_size;
|
|
}
|
|
|
|
__gmmu_dbg_v(g, attrs, "L=%d %s%s", lvl, __lvl_debug[lvl], "ret!");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* VIDMEM version of the update_ptes logic.
|
|
*/
|
|
static int __nvgpu_gmmu_update_page_table_vidmem(struct vm_gk20a *vm,
|
|
struct nvgpu_mem_sgl *sgl,
|
|
u64 space_to_skip,
|
|
u64 virt_addr,
|
|
u64 length,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
u64 phys_addr, chunk_length;
|
|
int err = 0;
|
|
|
|
if (!sgl) {
|
|
/*
|
|
* This is considered an unmap. Just pass in 0 as the physical
|
|
* address for the entire GPU range.
|
|
*/
|
|
err = __set_pd_level(vm, &vm->pdb,
|
|
0,
|
|
0,
|
|
virt_addr, length,
|
|
attrs);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Otherwise iterate across all the chunks in this allocation and
|
|
* map them.
|
|
*/
|
|
while (sgl) {
|
|
if (space_to_skip &&
|
|
space_to_skip >= nvgpu_mem_sgl_length(sgl)) {
|
|
space_to_skip -= nvgpu_mem_sgl_length(sgl);
|
|
sgl = nvgpu_mem_sgl_next(sgl);
|
|
continue;
|
|
}
|
|
|
|
phys_addr = nvgpu_mem_sgl_phys(sgl) + space_to_skip;
|
|
chunk_length = min(length, (nvgpu_mem_sgl_length(sgl) -
|
|
space_to_skip));
|
|
|
|
err = __set_pd_level(vm, &vm->pdb,
|
|
0,
|
|
phys_addr,
|
|
virt_addr, chunk_length,
|
|
attrs);
|
|
if (err)
|
|
break;
|
|
|
|
/* Space has been skipped so zero this for future chunks. */
|
|
space_to_skip = 0;
|
|
|
|
/*
|
|
* Update the map pointer and the remaining length.
|
|
*/
|
|
virt_addr += chunk_length;
|
|
length -= chunk_length;
|
|
|
|
if (length == 0)
|
|
break;
|
|
|
|
sgl = nvgpu_mem_sgl_next(sgl);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __nvgpu_gmmu_update_page_table_sysmem(struct vm_gk20a *vm,
|
|
struct nvgpu_mem_sgl *sgl,
|
|
u64 space_to_skip,
|
|
u64 virt_addr,
|
|
u64 length,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
int err;
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
if (!sgl) {
|
|
/*
|
|
* This is considered an unmap. Just pass in 0 as the physical
|
|
* address for the entire GPU range.
|
|
*/
|
|
err = __set_pd_level(vm, &vm->pdb,
|
|
0,
|
|
0,
|
|
virt_addr, length,
|
|
attrs);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* At this point we have a scatter-gather list pointing to some number
|
|
* of discontiguous chunks of memory. We must iterate over that list and
|
|
* generate a GMMU map call for each chunk. There are two possibilities:
|
|
* either an IOMMU is enabled or not. When an IOMMU is enabled the
|
|
* mapping is simple since the "physical" address is actually a virtual
|
|
* IO address and will be contiguous.
|
|
*/
|
|
if (!g->mm.bypass_smmu) {
|
|
u64 io_addr = nvgpu_mem_sgl_gpu_addr(g, sgl, attrs);
|
|
|
|
io_addr += space_to_skip;
|
|
|
|
err = __set_pd_level(vm, &vm->pdb,
|
|
0,
|
|
io_addr,
|
|
virt_addr,
|
|
length,
|
|
attrs);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Finally: last possible case: do the no-IOMMU mapping. In this case we
|
|
* really are mapping physical pages directly.
|
|
*/
|
|
while (sgl) {
|
|
u64 phys_addr;
|
|
u64 chunk_length;
|
|
|
|
/*
|
|
* Cut out sgl ents for space_to_skip.
|
|
*/
|
|
if (space_to_skip &&
|
|
space_to_skip >= nvgpu_mem_sgl_length(sgl)) {
|
|
space_to_skip -= nvgpu_mem_sgl_length(sgl);
|
|
sgl = nvgpu_mem_sgl_next(sgl);
|
|
continue;
|
|
}
|
|
|
|
phys_addr = nvgpu_mem_sgl_phys(sgl) + space_to_skip;
|
|
chunk_length = min(length,
|
|
nvgpu_mem_sgl_length(sgl) - space_to_skip);
|
|
|
|
err = __set_pd_level(vm, &vm->pdb,
|
|
0,
|
|
phys_addr,
|
|
virt_addr,
|
|
chunk_length,
|
|
attrs);
|
|
|
|
space_to_skip = 0;
|
|
virt_addr += chunk_length;
|
|
length -= chunk_length;
|
|
sgl = nvgpu_mem_sgl_next(sgl);
|
|
|
|
if (length == 0)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is the true top level GMMU mapping logic. This breaks down the incoming
|
|
* scatter gather table and does actual programming of GPU virtual address to
|
|
* physical* address.
|
|
*
|
|
* The update of each level of the page tables is farmed out to chip specific
|
|
* implementations. But the logic around that is generic to all chips. Every
|
|
* chip has some number of PDE levels and then a PTE level.
|
|
*
|
|
* Each chunk of the incoming SGL is sent to the chip specific implementation
|
|
* of page table update.
|
|
*
|
|
* [*] Note: the "physical" address may actually be an IO virtual address in the
|
|
* case of SMMU usage.
|
|
*/
|
|
static int __nvgpu_gmmu_update_page_table(struct vm_gk20a *vm,
|
|
struct nvgpu_mem_sgl *sgl,
|
|
u64 space_to_skip,
|
|
u64 virt_addr,
|
|
u64 length,
|
|
struct nvgpu_gmmu_attrs *attrs)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
u32 page_size;
|
|
int err;
|
|
|
|
/* note: here we need to map kernel to small, since the
|
|
* low-level mmu code assumes 0 is small and 1 is big pages */
|
|
if (attrs->pgsz == gmmu_page_size_kernel)
|
|
attrs->pgsz = gmmu_page_size_small;
|
|
|
|
page_size = vm->gmmu_page_sizes[attrs->pgsz];
|
|
|
|
if (space_to_skip & (page_size - 1))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Update length to be aligned to the passed page size.
|
|
*/
|
|
length = nvgpu_align_map_length(vm, length, attrs);
|
|
|
|
err = map_gmmu_pages(g, &vm->pdb);
|
|
if (err) {
|
|
nvgpu_err(g, "couldn't map ptes for update as=%d",
|
|
vm_aspace_id(vm));
|
|
return err;
|
|
}
|
|
|
|
__gmmu_dbg(g, attrs,
|
|
"vm=%s "
|
|
"%-5s GPU virt %#-12llx +%#-9llx phys %#-12llx "
|
|
"phys offset: %#-4llx; pgsz: %3dkb perm=%-2s | "
|
|
"kind=%#02x APT=%-6s %c%c%c%c%c",
|
|
vm->name,
|
|
sgl ? "MAP" : "UNMAP",
|
|
virt_addr,
|
|
length,
|
|
sgl ? nvgpu_mem_sgl_phys(sgl) : 0,
|
|
space_to_skip,
|
|
page_size >> 10,
|
|
nvgpu_gmmu_perm_str(attrs->rw_flag),
|
|
attrs->kind_v,
|
|
nvgpu_aperture_str(attrs->aperture),
|
|
attrs->cacheable ? 'C' : 'c', /* C = cached, V = volatile. */
|
|
attrs->sparse ? 'S' : '-',
|
|
attrs->priv ? 'P' : '-',
|
|
attrs->coherent ? 'c' : '-',
|
|
attrs->valid ? 'V' : '-');
|
|
|
|
/*
|
|
* For historical reasons these are separate, but soon these will be
|
|
* unified.
|
|
*/
|
|
if (attrs->aperture == APERTURE_VIDMEM)
|
|
err = __nvgpu_gmmu_update_page_table_vidmem(vm,
|
|
sgl,
|
|
space_to_skip,
|
|
virt_addr,
|
|
length,
|
|
attrs);
|
|
else
|
|
err = __nvgpu_gmmu_update_page_table_sysmem(vm,
|
|
sgl,
|
|
space_to_skip,
|
|
virt_addr,
|
|
length,
|
|
attrs);
|
|
|
|
unmap_gmmu_pages(g, &vm->pdb);
|
|
nvgpu_smp_mb();
|
|
|
|
__gmmu_dbg(g, attrs, "%-5s Done!", sgl ? "MAP" : "UNMAP");
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* gk20a_locked_gmmu_map - Map a buffer into the GMMU
|
|
*
|
|
* This is for non-vGPU chips. It's part of the HAL at the moment but really
|
|
* should not be. Chip specific stuff is handled at the PTE/PDE programming
|
|
* layer. The rest of the logic is essentially generic for all chips.
|
|
*
|
|
* To call this function you must have locked the VM lock: vm->update_gmmu_lock.
|
|
* However, note: this function is not called directly. It's used through the
|
|
* mm.gmmu_lock() HAL. So before calling the mm.gmmu_lock() HAL make sure you
|
|
* have the update_gmmu_lock aquired.
|
|
*/
|
|
u64 gk20a_locked_gmmu_map(struct vm_gk20a *vm,
|
|
u64 vaddr,
|
|
struct nvgpu_mem_sgl *sgl,
|
|
u64 buffer_offset,
|
|
u64 size,
|
|
int pgsz_idx,
|
|
u8 kind_v,
|
|
u32 ctag_offset,
|
|
u32 flags,
|
|
int rw_flag,
|
|
bool clear_ctags,
|
|
bool sparse,
|
|
bool priv,
|
|
struct vm_gk20a_mapping_batch *batch,
|
|
enum nvgpu_aperture aperture)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
int err = 0;
|
|
bool allocated = false;
|
|
int ctag_granularity = g->ops.fb.compression_page_size(g);
|
|
struct nvgpu_gmmu_attrs attrs = {
|
|
.pgsz = pgsz_idx,
|
|
.kind_v = kind_v,
|
|
.ctag = (u64)ctag_offset * (u64)ctag_granularity,
|
|
.cacheable = flags & NVGPU_MAP_BUFFER_FLAGS_CACHEABLE_TRUE,
|
|
.rw_flag = rw_flag,
|
|
.sparse = sparse,
|
|
.priv = priv,
|
|
.coherent = flags & NVGPU_AS_MAP_BUFFER_FLAGS_IO_COHERENT,
|
|
.valid = !(flags & NVGPU_AS_MAP_BUFFER_FLAGS_UNMAPPED_PTE),
|
|
.aperture = aperture
|
|
};
|
|
|
|
#ifdef CONFIG_TEGRA_19x_GPU
|
|
nvgpu_gmmu_add_t19x_attrs(&attrs, flags);
|
|
#endif
|
|
|
|
/*
|
|
* Only allocate a new GPU VA range if we haven't already been passed a
|
|
* GPU VA range. This facilitates fixed mappings.
|
|
*/
|
|
if (!vaddr) {
|
|
vaddr = __nvgpu_vm_alloc_va(vm, size, pgsz_idx);
|
|
if (!vaddr) {
|
|
nvgpu_err(g, "failed to allocate va space");
|
|
err = -ENOMEM;
|
|
goto fail_alloc;
|
|
}
|
|
allocated = true;
|
|
}
|
|
|
|
err = __nvgpu_gmmu_update_page_table(vm, sgl, buffer_offset,
|
|
vaddr, size, &attrs);
|
|
if (err) {
|
|
nvgpu_err(g, "failed to update ptes on map");
|
|
goto fail_validate;
|
|
}
|
|
|
|
if (!batch)
|
|
g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
|
|
else
|
|
batch->need_tlb_invalidate = true;
|
|
|
|
return vaddr;
|
|
fail_validate:
|
|
if (allocated)
|
|
__nvgpu_vm_free_va(vm, vaddr, pgsz_idx);
|
|
fail_alloc:
|
|
nvgpu_err(g, "%s: failed with err=%d", __func__, err);
|
|
return 0;
|
|
}
|
|
|
|
void gk20a_locked_gmmu_unmap(struct vm_gk20a *vm,
|
|
u64 vaddr,
|
|
u64 size,
|
|
int pgsz_idx,
|
|
bool va_allocated,
|
|
int rw_flag,
|
|
bool sparse,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
int err = 0;
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
struct nvgpu_gmmu_attrs attrs = {
|
|
.pgsz = pgsz_idx,
|
|
.kind_v = 0,
|
|
.ctag = 0,
|
|
.cacheable = 0,
|
|
.rw_flag = rw_flag,
|
|
.sparse = sparse,
|
|
.priv = 0,
|
|
.coherent = 0,
|
|
.valid = 0,
|
|
.aperture = APERTURE_INVALID,
|
|
};
|
|
|
|
if (va_allocated) {
|
|
err = __nvgpu_vm_free_va(vm, vaddr, pgsz_idx);
|
|
if (err) {
|
|
nvgpu_err(g, "failed to free va");
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* unmap here needs to know the page size we assigned at mapping */
|
|
err = __nvgpu_gmmu_update_page_table(vm, NULL, 0,
|
|
vaddr, size, &attrs);
|
|
if (err)
|
|
nvgpu_err(g, "failed to update gmmu ptes on unmap");
|
|
|
|
if (!batch) {
|
|
gk20a_mm_l2_flush(g, true);
|
|
g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
|
|
} else {
|
|
if (!batch->gpu_l2_flushed) {
|
|
gk20a_mm_l2_flush(g, true);
|
|
batch->gpu_l2_flushed = true;
|
|
}
|
|
batch->need_tlb_invalidate = true;
|
|
}
|
|
}
|
|
|
|
u32 __nvgpu_pte_words(struct gk20a *g)
|
|
{
|
|
const struct gk20a_mmu_level *l = g->ops.mm.get_mmu_levels(g, SZ_64K);
|
|
const struct gk20a_mmu_level *next_l;
|
|
|
|
/*
|
|
* Iterate to the bottom GMMU level - the PTE level. The levels array
|
|
* is always NULL terminated (by the update_entry function).
|
|
*/
|
|
do {
|
|
next_l = l + 1;
|
|
if (!next_l->update_entry)
|
|
break;
|
|
|
|
l++;
|
|
} while (true);
|
|
|
|
return (u32)(l->entry_size / sizeof(u32));
|
|
}
|
|
|
|
/*
|
|
* Recursively walk the pages tables to find the PTE.
|
|
*/
|
|
static int __nvgpu_locate_pte(struct gk20a *g, struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
u64 vaddr, int lvl,
|
|
struct nvgpu_gmmu_attrs *attrs,
|
|
u32 *data,
|
|
struct nvgpu_gmmu_pd **pd_out, u32 *pd_idx_out,
|
|
u32 *pd_offs_out)
|
|
{
|
|
const struct gk20a_mmu_level *l = &vm->mmu_levels[lvl];
|
|
const struct gk20a_mmu_level *next_l = &vm->mmu_levels[lvl + 1];
|
|
u32 pd_idx = pd_index(l, vaddr, attrs);
|
|
u32 pte_base;
|
|
u32 pte_size;
|
|
u32 i;
|
|
|
|
/*
|
|
* If this isn't the final level (i.e there's a valid next level)
|
|
* then find the next level PD and recurse.
|
|
*/
|
|
if (next_l->update_entry) {
|
|
struct nvgpu_gmmu_pd *pd_next = pd->entries + pd_idx;
|
|
|
|
/* Invalid entry! */
|
|
if (!pd_next->mem)
|
|
return -EINVAL;
|
|
|
|
return __nvgpu_locate_pte(g, vm, pd_next,
|
|
vaddr, lvl + 1, attrs,
|
|
data, pd_out, pd_idx_out,
|
|
pd_offs_out);
|
|
}
|
|
|
|
if (!pd->mem)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Take into account the real offset into the nvgpu_mem since the PD
|
|
* may be located at an offset other than 0 (due to PD packing).
|
|
*/
|
|
pte_base = (pd->mem_offs / sizeof(u32)) +
|
|
pd_offset_from_index(l, pd_idx);
|
|
pte_size = (u32)(l->entry_size / sizeof(u32));
|
|
|
|
if (data) {
|
|
map_gmmu_pages(g, pd);
|
|
for (i = 0; i < pte_size; i++)
|
|
data[i] = nvgpu_mem_rd32(g, pd->mem, pte_base + i);
|
|
unmap_gmmu_pages(g, pd);
|
|
}
|
|
|
|
if (pd_out)
|
|
*pd_out = pd;
|
|
|
|
if (pd_idx_out)
|
|
*pd_idx_out = pd_idx;
|
|
|
|
if (pd_offs_out)
|
|
*pd_offs_out = pd_offset_from_index(l, pd_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __nvgpu_get_pte(struct gk20a *g, struct vm_gk20a *vm, u64 vaddr, u32 *pte)
|
|
{
|
|
struct nvgpu_gmmu_attrs attrs = {
|
|
.pgsz = 0,
|
|
};
|
|
|
|
return __nvgpu_locate_pte(g, vm, &vm->pdb,
|
|
vaddr, 0, &attrs,
|
|
pte, NULL, NULL, NULL);
|
|
}
|
|
|
|
int __nvgpu_set_pte(struct gk20a *g, struct vm_gk20a *vm, u64 vaddr, u32 *pte)
|
|
{
|
|
struct nvgpu_gmmu_pd *pd;
|
|
u32 pd_idx, pd_offs, pte_size, i;
|
|
int err;
|
|
struct nvgpu_gmmu_attrs attrs = {
|
|
.pgsz = 0,
|
|
};
|
|
struct nvgpu_gmmu_attrs *attrs_ptr = &attrs;
|
|
|
|
err = __nvgpu_locate_pte(g, vm, &vm->pdb,
|
|
vaddr, 0, &attrs,
|
|
NULL, &pd, &pd_idx, &pd_offs);
|
|
if (err)
|
|
return err;
|
|
|
|
pte_size = __nvgpu_pte_words(g);
|
|
|
|
map_gmmu_pages(g, pd);
|
|
for (i = 0; i < pte_size; i++) {
|
|
pd_write(g, pd, pd_offs + i, pte[i]);
|
|
pte_dbg(g, attrs_ptr,
|
|
"PTE: idx=%-4u (%d) 0x%08x", pd_idx, i, pte[i]);
|
|
}
|
|
unmap_gmmu_pages(g, pd);
|
|
|
|
/*
|
|
* Ensures the pd_write()s are done. The pd_write() does not do this
|
|
* since generally there's lots of pd_write()s called one after another.
|
|
* There probably also needs to be a TLB invalidate as well but we leave
|
|
* that to the caller of this function.
|
|
*/
|
|
nvgpu_smp_wmb();
|
|
|
|
return 0;
|
|
}
|