mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
Final VM mapping refactoring. Move most of the logic in the VM map path to the common/mm/vm.c code and use the generic APIs previously implemented to deal with comptags and map caching. This also updates the mapped_buffer struct to finally be free of the Linux dma_buf and scatter gather table pointers. This is replaced with the nvgpu_os_buffer struct. JIRA NVGPU-30 JIRA NVGPU-71 JIRA NVGPU-224 Change-Id: If5b32886221c3e5af2f3d7ddd4fa51dd487bb981 Signed-off-by: Alex Waterman <alexw@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1583987 GVS: Gerrit_Virtual_Submit Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
1108 lines
29 KiB
C
1108 lines
29 KiB
C
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/vm.h>
|
|
#include <nvgpu/vm_area.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/lock.h>
|
|
#include <nvgpu/list.h>
|
|
#include <nvgpu/rbtree.h>
|
|
#include <nvgpu/semaphore.h>
|
|
#include <nvgpu/enabled.h>
|
|
|
|
#include <nvgpu/vgpu/vm.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/mm_gk20a.h"
|
|
|
|
static void __nvgpu_vm_unmap(struct nvgpu_mapped_buf *mapped_buffer,
|
|
struct vm_gk20a_mapping_batch *batch);
|
|
|
|
int vm_aspace_id(struct vm_gk20a *vm)
|
|
{
|
|
return vm->as_share ? vm->as_share->id : -1;
|
|
}
|
|
|
|
static void __nvgpu_vm_free_entries(struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
int level)
|
|
{
|
|
int i;
|
|
|
|
if (pd->mem) {
|
|
__nvgpu_pd_free(vm, pd);
|
|
pd->mem = NULL;
|
|
}
|
|
|
|
if (pd->entries) {
|
|
for (i = 0; i < pd->num_entries; i++)
|
|
__nvgpu_vm_free_entries(vm, &pd->entries[i],
|
|
level + 1);
|
|
nvgpu_vfree(vm->mm->g, pd->entries);
|
|
pd->entries = NULL;
|
|
}
|
|
}
|
|
|
|
static void nvgpu_vm_free_entries(struct vm_gk20a *vm,
|
|
struct nvgpu_gmmu_pd *pdb)
|
|
{
|
|
struct gk20a *g = vm->mm->g;
|
|
int i;
|
|
|
|
__nvgpu_pd_cache_free_direct(g, pdb);
|
|
|
|
if (!pdb->entries)
|
|
return;
|
|
|
|
for (i = 0; i < pdb->num_entries; i++)
|
|
__nvgpu_vm_free_entries(vm, &pdb->entries[i], 1);
|
|
|
|
nvgpu_vfree(g, pdb->entries);
|
|
pdb->entries = NULL;
|
|
}
|
|
|
|
u64 __nvgpu_vm_alloc_va(struct vm_gk20a *vm, u64 size,
|
|
enum gmmu_pgsz_gk20a pgsz_idx)
|
|
|
|
{
|
|
struct gk20a *g = vm->mm->g;
|
|
struct nvgpu_allocator *vma = NULL;
|
|
u64 addr;
|
|
u64 page_size = vm->gmmu_page_sizes[pgsz_idx];
|
|
|
|
vma = vm->vma[pgsz_idx];
|
|
|
|
if (pgsz_idx >= gmmu_nr_page_sizes) {
|
|
nvgpu_err(g, "(%s) invalid page size requested", vma->name);
|
|
return 0;
|
|
}
|
|
|
|
if ((pgsz_idx == gmmu_page_size_big) && !vm->big_pages) {
|
|
nvgpu_err(g, "(%s) unsupportd page size requested", vma->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Be certain we round up to page_size if needed */
|
|
size = (size + ((u64)page_size - 1)) & ~((u64)page_size - 1);
|
|
|
|
addr = nvgpu_alloc(vma, size);
|
|
if (!addr) {
|
|
nvgpu_err(g, "(%s) oom: sz=0x%llx", vma->name, size);
|
|
return 0;
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
int __nvgpu_vm_free_va(struct vm_gk20a *vm, u64 addr,
|
|
enum gmmu_pgsz_gk20a pgsz_idx)
|
|
{
|
|
struct nvgpu_allocator *vma = vm->vma[pgsz_idx];
|
|
|
|
nvgpu_free(vma, addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_vm_mapping_batch_start(struct vm_gk20a_mapping_batch *mapping_batch)
|
|
{
|
|
memset(mapping_batch, 0, sizeof(*mapping_batch));
|
|
mapping_batch->gpu_l2_flushed = false;
|
|
mapping_batch->need_tlb_invalidate = false;
|
|
}
|
|
|
|
void nvgpu_vm_mapping_batch_finish_locked(
|
|
struct vm_gk20a *vm, struct vm_gk20a_mapping_batch *mapping_batch)
|
|
{
|
|
/* hanging kref_put batch pointer? */
|
|
WARN_ON(vm->kref_put_batch == mapping_batch);
|
|
|
|
if (mapping_batch->need_tlb_invalidate) {
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
g->ops.fb.tlb_invalidate(g, vm->pdb.mem);
|
|
}
|
|
}
|
|
|
|
void nvgpu_vm_mapping_batch_finish(struct vm_gk20a *vm,
|
|
struct vm_gk20a_mapping_batch *mapping_batch)
|
|
{
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
nvgpu_vm_mapping_batch_finish_locked(vm, mapping_batch);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine if the passed address space can support big pages or not.
|
|
*/
|
|
int nvgpu_big_pages_possible(struct vm_gk20a *vm, u64 base, u64 size)
|
|
{
|
|
u64 mask = ((u64)vm->big_page_size << 10) - 1;
|
|
|
|
if (base & mask || size & mask)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Initialize a semaphore pool. Just return successfully if we do not need
|
|
* semaphores (i.e when sync-pts are active).
|
|
*/
|
|
static int nvgpu_init_sema_pool(struct vm_gk20a *vm)
|
|
{
|
|
struct nvgpu_semaphore_sea *sema_sea;
|
|
struct mm_gk20a *mm = vm->mm;
|
|
struct gk20a *g = mm->g;
|
|
int err;
|
|
|
|
/*
|
|
* Don't waste the memory on semaphores if we don't need them.
|
|
*/
|
|
if (nvgpu_is_enabled(g, NVGPU_HAS_SYNCPOINTS))
|
|
return 0;
|
|
|
|
if (vm->sema_pool)
|
|
return 0;
|
|
|
|
sema_sea = nvgpu_semaphore_sea_create(g);
|
|
if (!sema_sea)
|
|
return -ENOMEM;
|
|
|
|
vm->sema_pool = nvgpu_semaphore_pool_alloc(sema_sea);
|
|
if (!vm->sema_pool)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Allocate a chunk of GPU VA space for mapping the semaphores. We will
|
|
* do a fixed alloc in the kernel VM so that all channels have the same
|
|
* RO address range for the semaphores.
|
|
*
|
|
* !!! TODO: cleanup.
|
|
*/
|
|
sema_sea->gpu_va = nvgpu_alloc_fixed(&vm->kernel,
|
|
vm->va_limit -
|
|
mm->channel.kernel_size,
|
|
512 * PAGE_SIZE,
|
|
SZ_4K);
|
|
if (!sema_sea->gpu_va) {
|
|
nvgpu_free(&vm->kernel, sema_sea->gpu_va);
|
|
nvgpu_vm_put(vm);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = nvgpu_semaphore_pool_map(vm->sema_pool, vm);
|
|
if (err) {
|
|
nvgpu_semaphore_pool_unmap(vm->sema_pool, vm);
|
|
nvgpu_free(vm->vma[gmmu_page_size_small],
|
|
vm->sema_pool->gpu_va);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __nvgpu_vm_init(struct mm_gk20a *mm,
|
|
struct vm_gk20a *vm,
|
|
u32 big_page_size,
|
|
u64 low_hole,
|
|
u64 kernel_reserved,
|
|
u64 aperture_size,
|
|
bool big_pages,
|
|
bool userspace_managed,
|
|
char *name)
|
|
{
|
|
int err;
|
|
char alloc_name[32];
|
|
u64 kernel_vma_flags;
|
|
u64 user_vma_start, user_vma_limit;
|
|
u64 user_lp_vma_start, user_lp_vma_limit;
|
|
u64 kernel_vma_start, kernel_vma_limit;
|
|
struct gk20a *g = gk20a_from_mm(mm);
|
|
|
|
if (WARN_ON(kernel_reserved + low_hole > aperture_size))
|
|
return -ENOMEM;
|
|
|
|
nvgpu_log_info(g, "Init space for %s: valimit=0x%llx, "
|
|
"LP size=0x%x lowhole=0x%llx",
|
|
name, aperture_size,
|
|
(unsigned int)big_page_size, low_hole);
|
|
|
|
vm->mm = mm;
|
|
|
|
vm->gmmu_page_sizes[gmmu_page_size_small] = SZ_4K;
|
|
vm->gmmu_page_sizes[gmmu_page_size_big] = big_page_size;
|
|
vm->gmmu_page_sizes[gmmu_page_size_kernel] = SZ_4K;
|
|
|
|
/* Set up vma pointers. */
|
|
vm->vma[gmmu_page_size_small] = &vm->user;
|
|
vm->vma[gmmu_page_size_big] = &vm->user;
|
|
vm->vma[gmmu_page_size_kernel] = &vm->kernel;
|
|
if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES))
|
|
vm->vma[gmmu_page_size_big] = &vm->user_lp;
|
|
|
|
vm->va_start = low_hole;
|
|
vm->va_limit = aperture_size;
|
|
|
|
vm->big_page_size = vm->gmmu_page_sizes[gmmu_page_size_big];
|
|
vm->userspace_managed = userspace_managed;
|
|
vm->mmu_levels = g->ops.mm.get_mmu_levels(g, vm->big_page_size);
|
|
|
|
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
|
|
if (g->is_virtual && userspace_managed) {
|
|
nvgpu_err(g, "vGPU: no userspace managed addr space support");
|
|
return -ENOSYS;
|
|
}
|
|
if (g->is_virtual && vgpu_vm_init(g, vm)) {
|
|
nvgpu_err(g, "Failed to init vGPU VM!");
|
|
return -ENOMEM;
|
|
}
|
|
#endif
|
|
|
|
/* Initialize the page table data structures. */
|
|
strncpy(vm->name, name, min(strlen(name), sizeof(vm->name)));
|
|
err = nvgpu_gmmu_init_page_table(vm);
|
|
if (err)
|
|
goto clean_up_vgpu_vm;
|
|
|
|
/* Setup vma limits. */
|
|
if (kernel_reserved + low_hole < aperture_size) {
|
|
/*
|
|
* If big_pages are disabled for this VM then it only makes
|
|
* sense to make one VM, same as if the unified address flag
|
|
* is set.
|
|
*/
|
|
if (!big_pages ||
|
|
nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES)) {
|
|
user_vma_start = low_hole;
|
|
user_vma_limit = vm->va_limit - kernel_reserved;
|
|
user_lp_vma_start = user_vma_limit;
|
|
user_lp_vma_limit = user_vma_limit;
|
|
} else {
|
|
user_vma_start = low_hole;
|
|
user_vma_limit = __nv_gmmu_va_small_page_limit();
|
|
user_lp_vma_start = __nv_gmmu_va_small_page_limit();
|
|
user_lp_vma_limit = vm->va_limit - kernel_reserved;
|
|
}
|
|
} else {
|
|
user_vma_start = 0;
|
|
user_vma_limit = 0;
|
|
user_lp_vma_start = 0;
|
|
user_lp_vma_limit = 0;
|
|
}
|
|
kernel_vma_start = vm->va_limit - kernel_reserved;
|
|
kernel_vma_limit = vm->va_limit;
|
|
|
|
nvgpu_log_info(g, "user_vma [0x%llx,0x%llx)",
|
|
user_vma_start, user_vma_limit);
|
|
nvgpu_log_info(g, "user_lp_vma [0x%llx,0x%llx)",
|
|
user_lp_vma_start, user_lp_vma_limit);
|
|
nvgpu_log_info(g, "kernel_vma [0x%llx,0x%llx)",
|
|
kernel_vma_start, kernel_vma_limit);
|
|
|
|
if (WARN_ON(user_vma_start > user_vma_limit) ||
|
|
WARN_ON(user_lp_vma_start > user_lp_vma_limit) ||
|
|
WARN_ON(kernel_vma_start >= kernel_vma_limit)) {
|
|
err = -EINVAL;
|
|
goto clean_up_page_tables;
|
|
}
|
|
|
|
kernel_vma_flags = (kernel_reserved + low_hole) == aperture_size ?
|
|
0 : GPU_ALLOC_GVA_SPACE;
|
|
|
|
/*
|
|
* A "user" area only makes sense for the GVA spaces. For VMs where
|
|
* there is no "user" area user_vma_start will be equal to
|
|
* user_vma_limit (i.e a 0 sized space). In such a situation the kernel
|
|
* area must be non-zero in length.
|
|
*/
|
|
if (user_vma_start >= user_vma_limit &&
|
|
kernel_vma_start >= kernel_vma_limit) {
|
|
err = -EINVAL;
|
|
goto clean_up_page_tables;
|
|
}
|
|
|
|
/*
|
|
* Determine if big pages are possible in this VM. If a split address
|
|
* space is used then check the user_lp vma instead of the user vma.
|
|
*/
|
|
if (nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES))
|
|
vm->big_pages = big_pages &&
|
|
nvgpu_big_pages_possible(vm, user_vma_start,
|
|
user_vma_limit - user_vma_start);
|
|
else
|
|
vm->big_pages = big_pages &&
|
|
nvgpu_big_pages_possible(vm, user_lp_vma_start,
|
|
user_lp_vma_limit - user_lp_vma_start);
|
|
|
|
/*
|
|
* User VMA.
|
|
*/
|
|
if (user_vma_start < user_vma_limit) {
|
|
snprintf(alloc_name, sizeof(alloc_name), "gk20a_%s", name);
|
|
err = __nvgpu_buddy_allocator_init(g, &vm->user,
|
|
vm, alloc_name,
|
|
user_vma_start,
|
|
user_vma_limit -
|
|
user_vma_start,
|
|
SZ_4K,
|
|
GPU_BALLOC_MAX_ORDER,
|
|
GPU_ALLOC_GVA_SPACE);
|
|
if (err)
|
|
goto clean_up_page_tables;
|
|
} else {
|
|
/*
|
|
* Make these allocator pointers point to the kernel allocator
|
|
* since we still use the legacy notion of page size to choose
|
|
* the allocator.
|
|
*/
|
|
vm->vma[0] = &vm->kernel;
|
|
vm->vma[1] = &vm->kernel;
|
|
}
|
|
|
|
/*
|
|
* User VMA for large pages when a split address range is used.
|
|
*/
|
|
if (user_lp_vma_start < user_lp_vma_limit) {
|
|
snprintf(alloc_name, sizeof(alloc_name), "gk20a_%s_lp", name);
|
|
err = __nvgpu_buddy_allocator_init(g, &vm->user_lp,
|
|
vm, alloc_name,
|
|
user_lp_vma_start,
|
|
user_lp_vma_limit -
|
|
user_lp_vma_start,
|
|
vm->big_page_size,
|
|
GPU_BALLOC_MAX_ORDER,
|
|
GPU_ALLOC_GVA_SPACE);
|
|
if (err)
|
|
goto clean_up_allocators;
|
|
}
|
|
|
|
/*
|
|
* Kernel VMA. Must always exist for an address space.
|
|
*/
|
|
snprintf(alloc_name, sizeof(alloc_name), "gk20a_%s-sys", name);
|
|
err = __nvgpu_buddy_allocator_init(g, &vm->kernel,
|
|
vm, alloc_name,
|
|
kernel_vma_start,
|
|
kernel_vma_limit - kernel_vma_start,
|
|
SZ_4K,
|
|
GPU_BALLOC_MAX_ORDER,
|
|
kernel_vma_flags);
|
|
if (err)
|
|
goto clean_up_allocators;
|
|
|
|
vm->mapped_buffers = NULL;
|
|
|
|
nvgpu_mutex_init(&vm->update_gmmu_lock);
|
|
nvgpu_ref_init(&vm->ref);
|
|
nvgpu_init_list_node(&vm->vm_area_list);
|
|
|
|
/*
|
|
* This is only necessary for channel address spaces. The best way to
|
|
* distinguish channel address spaces from other address spaces is by
|
|
* size - if the address space is 4GB or less, it's not a channel.
|
|
*/
|
|
if (vm->va_limit > SZ_4G) {
|
|
err = nvgpu_init_sema_pool(vm);
|
|
if (err)
|
|
goto clean_up_allocators;
|
|
}
|
|
|
|
return 0;
|
|
|
|
clean_up_allocators:
|
|
if (nvgpu_alloc_initialized(&vm->kernel))
|
|
nvgpu_alloc_destroy(&vm->kernel);
|
|
if (nvgpu_alloc_initialized(&vm->user))
|
|
nvgpu_alloc_destroy(&vm->user);
|
|
if (nvgpu_alloc_initialized(&vm->user_lp))
|
|
nvgpu_alloc_destroy(&vm->user_lp);
|
|
clean_up_page_tables:
|
|
/* Cleans up nvgpu_gmmu_init_page_table() */
|
|
__nvgpu_pd_cache_free_direct(g, &vm->pdb);
|
|
clean_up_vgpu_vm:
|
|
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
|
|
if (g->is_virtual)
|
|
vgpu_vm_remove(vm);
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* nvgpu_init_vm() - Initialize an address space.
|
|
*
|
|
* @mm - Parent MM.
|
|
* @vm - The VM to init.
|
|
* @big_page_size - Size of big pages associated with this VM.
|
|
* @low_hole - The size of the low hole (unaddressable memory at the bottom of
|
|
* the address space).
|
|
* @kernel_reserved - Space reserved for kernel only allocations.
|
|
* @aperture_size - Total size of the aperture.
|
|
* @big_pages - If true then big pages are possible in the VM. Note this does
|
|
* not guarantee that big pages will be possible.
|
|
* @name - Name of the address space.
|
|
*
|
|
* This function initializes an address space according to the following map:
|
|
*
|
|
* +--+ 0x0
|
|
* | |
|
|
* +--+ @low_hole
|
|
* | |
|
|
* ~ ~ This is the "user" section.
|
|
* | |
|
|
* +--+ @aperture_size - @kernel_reserved
|
|
* | |
|
|
* ~ ~ This is the "kernel" section.
|
|
* | |
|
|
* +--+ @aperture_size
|
|
*
|
|
* The user section is therefor what ever is left over after the @low_hole and
|
|
* @kernel_reserved memory have been portioned out. The @kernel_reserved is
|
|
* always persent at the top of the memory space and the @low_hole is always at
|
|
* the bottom.
|
|
*
|
|
* For certain address spaces a "user" section makes no sense (bar1, etc) so in
|
|
* such cases the @kernel_reserved and @low_hole should sum to exactly
|
|
* @aperture_size.
|
|
*/
|
|
struct vm_gk20a *nvgpu_vm_init(struct gk20a *g,
|
|
u32 big_page_size,
|
|
u64 low_hole,
|
|
u64 kernel_reserved,
|
|
u64 aperture_size,
|
|
bool big_pages,
|
|
bool userspace_managed,
|
|
char *name)
|
|
{
|
|
struct vm_gk20a *vm = nvgpu_kzalloc(g, sizeof(*vm));
|
|
|
|
if (!vm)
|
|
return NULL;
|
|
|
|
if (__nvgpu_vm_init(&g->mm, vm, big_page_size, low_hole,
|
|
kernel_reserved, aperture_size, big_pages,
|
|
userspace_managed, name)) {
|
|
nvgpu_kfree(g, vm);
|
|
return NULL;
|
|
}
|
|
|
|
return vm;
|
|
}
|
|
|
|
/*
|
|
* Cleanup the VM!
|
|
*/
|
|
static void __nvgpu_vm_remove(struct vm_gk20a *vm)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
struct nvgpu_vm_area *vm_area, *vm_area_tmp;
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
struct gk20a *g = vm->mm->g;
|
|
|
|
/*
|
|
* Do this outside of the update_gmmu_lock since unmapping the semaphore
|
|
* pool involves unmapping a GMMU mapping which means aquiring the
|
|
* update_gmmu_lock.
|
|
*/
|
|
if (!nvgpu_is_enabled(g, NVGPU_HAS_SYNCPOINTS)) {
|
|
if (vm->sema_pool) {
|
|
nvgpu_semaphore_pool_unmap(vm->sema_pool, vm);
|
|
nvgpu_semaphore_pool_put(vm->sema_pool);
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_TEGRA_GK20A_NVHOST) && defined(CONFIG_TEGRA_19x_GPU)
|
|
if (nvgpu_mem_is_valid(&g->syncpt_mem) && vm->syncpt_ro_map_gpu_va)
|
|
nvgpu_gmmu_unmap(vm, &g->syncpt_mem,
|
|
vm->syncpt_ro_map_gpu_va);
|
|
#endif
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
|
|
while (node) {
|
|
mapped_buffer = mapped_buffer_from_rbtree_node(node);
|
|
__nvgpu_vm_unmap(mapped_buffer, NULL);
|
|
nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
|
|
}
|
|
|
|
/* destroy remaining reserved memory areas */
|
|
nvgpu_list_for_each_entry_safe(vm_area, vm_area_tmp,
|
|
&vm->vm_area_list,
|
|
nvgpu_vm_area, vm_area_list) {
|
|
nvgpu_list_del(&vm_area->vm_area_list);
|
|
nvgpu_kfree(vm->mm->g, vm_area);
|
|
}
|
|
|
|
if (nvgpu_alloc_initialized(&vm->kernel))
|
|
nvgpu_alloc_destroy(&vm->kernel);
|
|
if (nvgpu_alloc_initialized(&vm->user))
|
|
nvgpu_alloc_destroy(&vm->user);
|
|
if (nvgpu_alloc_initialized(&vm->user_lp))
|
|
nvgpu_alloc_destroy(&vm->user_lp);
|
|
|
|
nvgpu_vm_free_entries(vm, &vm->pdb);
|
|
|
|
#ifdef CONFIG_TEGRA_GR_VIRTUALIZATION
|
|
if (g->is_virtual)
|
|
vgpu_vm_remove(vm);
|
|
#endif
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
nvgpu_kfree(g, vm);
|
|
}
|
|
|
|
static void __nvgpu_vm_remove_ref(struct nvgpu_ref *ref)
|
|
{
|
|
struct vm_gk20a *vm = container_of(ref, struct vm_gk20a, ref);
|
|
|
|
__nvgpu_vm_remove(vm);
|
|
}
|
|
|
|
void nvgpu_vm_get(struct vm_gk20a *vm)
|
|
{
|
|
nvgpu_ref_get(&vm->ref);
|
|
}
|
|
|
|
void nvgpu_vm_put(struct vm_gk20a *vm)
|
|
{
|
|
nvgpu_ref_put(&vm->ref, __nvgpu_vm_remove_ref);
|
|
}
|
|
|
|
int nvgpu_insert_mapped_buf(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf *mapped_buffer)
|
|
{
|
|
mapped_buffer->node.key_start = mapped_buffer->addr;
|
|
mapped_buffer->node.key_end = mapped_buffer->addr + mapped_buffer->size;
|
|
|
|
nvgpu_rbtree_insert(&mapped_buffer->node, &vm->mapped_buffers);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_remove_mapped_buf(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf *mapped_buffer)
|
|
{
|
|
nvgpu_rbtree_unlink(&mapped_buffer->node, &vm->mapped_buffers);
|
|
}
|
|
|
|
struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf(
|
|
struct vm_gk20a *vm, u64 addr)
|
|
{
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
struct nvgpu_rbtree_node *root = vm->mapped_buffers;
|
|
|
|
nvgpu_rbtree_search(addr, &node, root);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
return mapped_buffer_from_rbtree_node(node);
|
|
}
|
|
|
|
struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_range(
|
|
struct vm_gk20a *vm, u64 addr)
|
|
{
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
struct nvgpu_rbtree_node *root = vm->mapped_buffers;
|
|
|
|
nvgpu_rbtree_range_search(addr, &node, root);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
return mapped_buffer_from_rbtree_node(node);
|
|
}
|
|
|
|
struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_less_than(
|
|
struct vm_gk20a *vm, u64 addr)
|
|
{
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
struct nvgpu_rbtree_node *root = vm->mapped_buffers;
|
|
|
|
nvgpu_rbtree_less_than_search(addr, &node, root);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
return mapped_buffer_from_rbtree_node(node);
|
|
}
|
|
|
|
int nvgpu_vm_get_buffers(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf ***mapped_buffers,
|
|
int *num_buffers)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
struct nvgpu_mapped_buf **buffer_list;
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
int i = 0;
|
|
|
|
if (vm->userspace_managed) {
|
|
*mapped_buffers = NULL;
|
|
*num_buffers = 0;
|
|
return 0;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
buffer_list = nvgpu_big_zalloc(vm->mm->g, sizeof(*buffer_list) *
|
|
vm->num_user_mapped_buffers);
|
|
if (!buffer_list) {
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvgpu_rbtree_enum_start(0, &node, vm->mapped_buffers);
|
|
while (node) {
|
|
mapped_buffer = mapped_buffer_from_rbtree_node(node);
|
|
buffer_list[i] = mapped_buffer;
|
|
nvgpu_ref_get(&mapped_buffer->ref);
|
|
i++;
|
|
nvgpu_rbtree_enum_next(&node, node);
|
|
}
|
|
|
|
BUG_ON(i != vm->num_user_mapped_buffers);
|
|
|
|
*num_buffers = vm->num_user_mapped_buffers;
|
|
*mapped_buffers = buffer_list;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_vm_put_buffers(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf **mapped_buffers,
|
|
int num_buffers)
|
|
{
|
|
int i;
|
|
struct vm_gk20a_mapping_batch batch;
|
|
|
|
if (num_buffers == 0)
|
|
return;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
nvgpu_vm_mapping_batch_start(&batch);
|
|
vm->kref_put_batch = &batch;
|
|
|
|
for (i = 0; i < num_buffers; ++i)
|
|
nvgpu_ref_put(&mapped_buffers[i]->ref, __nvgpu_vm_unmap_ref);
|
|
|
|
vm->kref_put_batch = NULL;
|
|
nvgpu_vm_mapping_batch_finish_locked(vm, &batch);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
nvgpu_big_free(vm->mm->g, mapped_buffers);
|
|
}
|
|
|
|
struct nvgpu_mapped_buf *nvgpu_vm_map(struct vm_gk20a *vm,
|
|
struct nvgpu_os_buffer *os_buf,
|
|
struct nvgpu_sgt *sgt,
|
|
u64 map_addr,
|
|
u64 map_size,
|
|
u64 phys_offset,
|
|
int rw,
|
|
u32 flags,
|
|
s16 compr_kind,
|
|
s16 incompr_kind,
|
|
struct vm_gk20a_mapping_batch *batch,
|
|
enum nvgpu_aperture aperture)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
struct nvgpu_mapped_buf *mapped_buffer = NULL;
|
|
struct nvgpu_ctag_buffer_info binfo = { 0 };
|
|
struct gk20a_comptags comptags;
|
|
struct nvgpu_vm_area *vm_area = NULL;
|
|
int err = 0;
|
|
u64 align;
|
|
u32 ctag_offset;
|
|
bool clear_ctags = false;
|
|
bool va_allocated = true;
|
|
|
|
/*
|
|
* The kind used as part of the key for map caching. HW may
|
|
* actually be programmed with the fallback kind in case the
|
|
* key kind is compressible but we're out of comptags.
|
|
*/
|
|
s16 map_key_kind;
|
|
|
|
if (vm->userspace_managed &&
|
|
!(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)) {
|
|
nvgpu_err(g,
|
|
"non-fixed-offset mapping not available on "
|
|
"userspace managed address spaces");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
binfo.flags = flags;
|
|
binfo.size = nvgpu_os_buf_get_size(os_buf);
|
|
binfo.compr_kind = compr_kind;
|
|
binfo.incompr_kind = incompr_kind;
|
|
|
|
if (compr_kind != NV_KIND_INVALID)
|
|
map_key_kind = compr_kind;
|
|
else
|
|
map_key_kind = incompr_kind;
|
|
|
|
/*
|
|
* Check if this buffer is already mapped.
|
|
*/
|
|
if (!vm->userspace_managed) {
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
mapped_buffer = nvgpu_vm_find_mapping(vm,
|
|
os_buf,
|
|
map_addr,
|
|
flags,
|
|
map_key_kind);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
if (mapped_buffer) {
|
|
nvgpu_ref_get(&mapped_buffer->ref);
|
|
return mapped_buffer;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate a new mapping!
|
|
*/
|
|
mapped_buffer = nvgpu_kzalloc(g, sizeof(*mapped_buffer));
|
|
if (!mapped_buffer) {
|
|
nvgpu_warn(g, "oom allocating tracking buffer");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
align = nvgpu_sgt_alignment(g, sgt);
|
|
if (g->mm.disable_bigpage)
|
|
binfo.pgsz_idx = gmmu_page_size_small;
|
|
else
|
|
binfo.pgsz_idx = __get_pte_size(vm, map_addr,
|
|
min_t(u64, binfo.size, align));
|
|
map_size = map_size ? map_size : binfo.size;
|
|
map_size = ALIGN(map_size, SZ_4K);
|
|
|
|
if ((map_size > binfo.size) ||
|
|
(phys_offset > (binfo.size - map_size))) {
|
|
err = -EINVAL;
|
|
goto clean_up_nolock;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
/*
|
|
* Check if we should use a fixed offset for mapping this buffer.
|
|
*/
|
|
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) {
|
|
err = nvgpu_vm_area_validate_buffer(vm,
|
|
map_addr,
|
|
map_size,
|
|
binfo.pgsz_idx,
|
|
&vm_area);
|
|
if (err)
|
|
goto clean_up;
|
|
|
|
va_allocated = false;
|
|
}
|
|
|
|
err = nvgpu_vm_compute_compression(vm, &binfo);
|
|
if (err) {
|
|
nvgpu_err(g, "failure setting up compression");
|
|
goto clean_up;
|
|
}
|
|
|
|
/*
|
|
* bar1 and pmu VMs don't need ctags.
|
|
*/
|
|
if (!vm->enable_ctag)
|
|
binfo.ctag_lines = 0;
|
|
|
|
gk20a_get_comptags(os_buf, &comptags);
|
|
|
|
if (binfo.ctag_lines && !comptags.lines) {
|
|
/*
|
|
* Allocate compression resources if needed.
|
|
*/
|
|
if (gk20a_alloc_comptags(g,
|
|
os_buf,
|
|
&g->gr.comp_tags,
|
|
binfo.ctag_lines)) {
|
|
|
|
/*
|
|
* Prevent compression...
|
|
*/
|
|
binfo.compr_kind = NV_KIND_INVALID;
|
|
|
|
/*
|
|
* ... And make sure we have a fallback.
|
|
*/
|
|
if (binfo.incompr_kind == NV_KIND_INVALID) {
|
|
nvgpu_err(g, "comptag alloc failed and no "
|
|
"fallback kind specified");
|
|
err = -ENOMEM;
|
|
|
|
/*
|
|
* Any alloced comptags are cleaned up when the
|
|
* dmabuf is freed.
|
|
*/
|
|
goto clean_up;
|
|
}
|
|
} else {
|
|
gk20a_get_comptags(os_buf, &comptags);
|
|
|
|
if (g->ops.ltc.cbc_ctrl)
|
|
g->ops.ltc.cbc_ctrl(g, gk20a_cbc_op_clear,
|
|
comptags.offset,
|
|
comptags.offset +
|
|
comptags.allocated_lines - 1);
|
|
else
|
|
clear_ctags = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate comptag index for this mapping. Differs in case of partial
|
|
* mapping.
|
|
*/
|
|
ctag_offset = comptags.offset;
|
|
if (ctag_offset)
|
|
ctag_offset += phys_offset >>
|
|
ilog2(g->ops.fb.compression_page_size(g));
|
|
|
|
map_addr = g->ops.mm.gmmu_map(vm,
|
|
map_addr,
|
|
sgt,
|
|
phys_offset,
|
|
map_size,
|
|
binfo.pgsz_idx,
|
|
binfo.compr_kind != NV_KIND_INVALID ?
|
|
binfo.compr_kind : binfo.incompr_kind,
|
|
ctag_offset,
|
|
flags,
|
|
rw,
|
|
clear_ctags,
|
|
false,
|
|
false,
|
|
batch,
|
|
aperture);
|
|
if (!map_addr) {
|
|
err = -ENOMEM;
|
|
goto clean_up;
|
|
}
|
|
|
|
nvgpu_init_list_node(&mapped_buffer->buffer_list);
|
|
nvgpu_ref_init(&mapped_buffer->ref);
|
|
mapped_buffer->addr = map_addr;
|
|
mapped_buffer->size = map_size;
|
|
mapped_buffer->pgsz_idx = binfo.pgsz_idx;
|
|
mapped_buffer->ctag_offset = ctag_offset;
|
|
mapped_buffer->ctag_lines = binfo.ctag_lines;
|
|
mapped_buffer->ctag_allocated_lines = comptags.allocated_lines;
|
|
mapped_buffer->vm = vm;
|
|
mapped_buffer->flags = flags;
|
|
mapped_buffer->kind = map_key_kind;
|
|
mapped_buffer->va_allocated = va_allocated;
|
|
mapped_buffer->vm_area = vm_area;
|
|
|
|
err = nvgpu_insert_mapped_buf(vm, mapped_buffer);
|
|
if (err) {
|
|
nvgpu_err(g, "failed to insert into mapped buffer tree");
|
|
goto clean_up;
|
|
}
|
|
|
|
vm->num_user_mapped_buffers++;
|
|
|
|
if (vm_area) {
|
|
nvgpu_list_add_tail(&mapped_buffer->buffer_list,
|
|
&vm_area->buffer_list_head);
|
|
mapped_buffer->vm_area = vm_area;
|
|
}
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
return mapped_buffer;
|
|
|
|
clean_up:
|
|
if (mapped_buffer->addr)
|
|
g->ops.mm.gmmu_unmap(vm,
|
|
mapped_buffer->addr,
|
|
mapped_buffer->size,
|
|
mapped_buffer->pgsz_idx,
|
|
mapped_buffer->va_allocated,
|
|
gk20a_mem_flag_none,
|
|
mapped_buffer->vm_area ?
|
|
mapped_buffer->vm_area->sparse : false,
|
|
NULL);
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
clean_up_nolock:
|
|
nvgpu_kfree(g, mapped_buffer);
|
|
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/*
|
|
* Really unmap. This does the real GMMU unmap and removes the mapping from the
|
|
* VM map tracking tree (and vm_area list if necessary).
|
|
*/
|
|
static void __nvgpu_vm_unmap(struct nvgpu_mapped_buf *mapped_buffer,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
struct vm_gk20a *vm = mapped_buffer->vm;
|
|
struct gk20a *g = vm->mm->g;
|
|
|
|
vm->num_user_mapped_buffers--;
|
|
|
|
g->ops.mm.gmmu_unmap(vm,
|
|
mapped_buffer->addr,
|
|
mapped_buffer->size,
|
|
mapped_buffer->pgsz_idx,
|
|
mapped_buffer->va_allocated,
|
|
gk20a_mem_flag_none,
|
|
mapped_buffer->vm_area ?
|
|
mapped_buffer->vm_area->sparse : false,
|
|
batch);
|
|
|
|
/*
|
|
* Remove from mapped buffer tree. Then delete the buffer from the
|
|
* linked list of mapped buffers; though note: not all mapped buffers
|
|
* are part of a vm_area.
|
|
*/
|
|
nvgpu_remove_mapped_buf(vm, mapped_buffer);
|
|
nvgpu_list_del(&mapped_buffer->buffer_list);
|
|
|
|
/*
|
|
* OS specific freeing. This is after the generic freeing incase the
|
|
* generic freeing relies on some component of the OS specific
|
|
* nvgpu_mapped_buf in some abstraction or the like.
|
|
*/
|
|
nvgpu_vm_unmap_system(mapped_buffer);
|
|
|
|
nvgpu_kfree(g, mapped_buffer);
|
|
}
|
|
|
|
void __nvgpu_vm_unmap_ref(struct nvgpu_ref *ref)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer =
|
|
container_of(ref, struct nvgpu_mapped_buf, ref);
|
|
|
|
__nvgpu_vm_unmap(mapped_buffer, mapped_buffer->vm->kref_put_batch);
|
|
}
|
|
|
|
/*
|
|
* For fixed-offset buffers we must sync the buffer. That means we wait for the
|
|
* buffer to hit a ref-count of 1 before proceeding.
|
|
*
|
|
* Note: this requires the update_gmmu_lock to be held since we release it and
|
|
* re-aquire it in this function.
|
|
*/
|
|
static int nvgpu_vm_unmap_sync_buffer(struct vm_gk20a *vm,
|
|
struct nvgpu_mapped_buf *mapped_buffer)
|
|
{
|
|
struct nvgpu_timeout timeout;
|
|
int ret = 0;
|
|
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
|
|
/*
|
|
* 500ms second timer.
|
|
*/
|
|
nvgpu_timeout_init(vm->mm->g, &timeout, 50, NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
if (nvgpu_atomic_read(&mapped_buffer->ref.refcount) == 1)
|
|
break;
|
|
nvgpu_msleep(10);
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"sync-unmap failed on 0x%llx"));
|
|
|
|
if (nvgpu_timeout_expired(&timeout))
|
|
ret = -ETIMEDOUT;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void nvgpu_vm_unmap(struct vm_gk20a *vm, u64 offset,
|
|
struct vm_gk20a_mapping_batch *batch)
|
|
{
|
|
struct nvgpu_mapped_buf *mapped_buffer;
|
|
|
|
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
|
|
|
|
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, offset);
|
|
if (!mapped_buffer)
|
|
goto done;
|
|
|
|
if (mapped_buffer->flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) {
|
|
if (nvgpu_vm_unmap_sync_buffer(vm, mapped_buffer))
|
|
/*
|
|
* Looks like we have failed... Better not continue in
|
|
* case the buffer is in use.
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Make sure we have access to the batch if we end up calling through to
|
|
* the unmap_ref function.
|
|
*/
|
|
vm->kref_put_batch = batch;
|
|
nvgpu_ref_put(&mapped_buffer->ref, __nvgpu_vm_unmap_ref);
|
|
vm->kref_put_batch = NULL;
|
|
|
|
done:
|
|
nvgpu_mutex_release(&vm->update_gmmu_lock);
|
|
return;
|
|
}
|
|
|
|
int nvgpu_vm_compute_compression(struct vm_gk20a *vm,
|
|
struct nvgpu_ctag_buffer_info *binfo)
|
|
{
|
|
bool kind_compressible = (binfo->compr_kind != NV_KIND_INVALID);
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
int ctag_granularity = g->ops.fb.compression_page_size(g);
|
|
|
|
if (kind_compressible &&
|
|
vm->gmmu_page_sizes[binfo->pgsz_idx] <
|
|
g->ops.fb.compressible_page_size(g)) {
|
|
/*
|
|
* Let's double check that there is a fallback kind
|
|
*/
|
|
if (binfo->incompr_kind == NV_KIND_INVALID) {
|
|
nvgpu_err(g,
|
|
"Unsupported page size for compressible "
|
|
"kind, but no fallback kind");
|
|
return -EINVAL;
|
|
} else {
|
|
nvgpu_log(g, gpu_dbg_map,
|
|
"Unsupported page size for compressible "
|
|
"kind, demoting to incompressible");
|
|
binfo->compr_kind = NV_KIND_INVALID;
|
|
kind_compressible = false;
|
|
}
|
|
}
|
|
|
|
if (kind_compressible)
|
|
binfo->ctag_lines = DIV_ROUND_UP_ULL(binfo->size,
|
|
ctag_granularity);
|
|
|
|
return 0;
|
|
}
|