Files
linux-nvgpu/drivers/gpu/nvgpu/include/nvgpu/static_analysis.h
Philip Elcan 039ec0b3da gpu: nvgpu: whitelist CERT-C STR34-C in static_analysis.h
Whitelist CERT-C violation STR34-C in nvgpu_safe_cast_s8_to_u8(). This
violation is being reported due to a bug in the Coverity scanner and
is tracked by nvbug 2673832.

JIRA NVGPU-4031

Change-Id: Ia6b897d162f945836d3da00e539dc59e0fceb1bf
Signed-off-by: Philip Elcan <pelcan@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2198903
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-12-15 14:05:52 -06:00

417 lines
9.6 KiB
C

/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef NVGPU_STATIC_ANALYSIS_H
#define NVGPU_STATIC_ANALYSIS_H
/**
* @file
*
* Macros/functions/etc for static analysis of nvgpu code.
*/
#include <nvgpu/types.h>
#include <nvgpu/bug.h>
/** @name Coverity Whitelisting
* These macros are used for whitelisting coverity violations. The macros are
* only enabled when a coverity scan is being run.
*/
/**@{*/
#ifdef NV_IS_COVERITY
/**
* NVGPU_MISRA - Define a MISRA rule for NVGPU_COV_WHITELIST.
*
* @param type - This should be Rule or Directive depending on if you're dealing
* with a MISRA rule or directive.
* @param num - This is the MISRA rule/directive number. Replace hyphens and
* periods in the rule/directive number with underscores. Example:
* 14.2 should be 14_2.
*
* This is a convenience macro for defining a MISRA rule for the
* NVGPU_COV_WHITELIST macro.
*
* Example 1: For defining MISRA rule 14.2, use NVGPU_MISRA(Rule, 14_2).\n
* Example 2: For defining MISRA directive 4.7, use NVGPU_MISRA(Directive, 4_7).
*/
#define NVGPU_MISRA(type, num) MISRA_C_2012_##type##_##num
/**
* NVGPU_CERT - Define a CERT C rule for NVGPU_COV_WHITELIST.
*
* @param num - This is the CERT C rule number. Replace hyphens and periods in
* the rule number with underscores. Example: INT30-C should be
* INT30_C.
*
* This is a convenience macro for defining a CERT C rule for the
* NVGPU_COV_WHITELIST macro.
*
* Example: For defining CERT C rule INT30-C, use NVGPU_CERT(INT30_C).
*/
#define NVGPU_CERT(num) CERT_##num
/**
* Helper macro for stringifying the _Pragma() string
*/
#define NVGPU_COV_STRING(x) #x
/**
* NVGPU_COV_WHITELIST - Whitelist a coverity violation on the next line.
*
* @param type - This is the whitelisting category. Valid values are
* deviate or false_positive.\n
* deviate is for an approved rule deviation.\n
* false_positive is normally used for a bug in coverity
* which causes a false violation to appear in the scan.
* @param checker - This is the MISRA or CERT C rule causing the violation.
* Use the NVGPU_MISRA() or NVGPU_CERT() macro to define
* this field.
* @param comment_str - This is the comment that you want associated with this
* whitelisting. This should normally be a bug number
* (ex: coverity bug) or JIRA task ID (ex: RFD). Unlike the
* other arguments, this argument must be a quoted string.
*
* Use this macro to whitelist a coverity violation in the next line of code.
*
* Example 1: Whitelist a MISRA rule 14.2 violation due to a deviation
* documented in the JIRA TID-123 RFD:\n
* NVGPU_COV_WHITELIST(deviate, NVGPU_MISRA(Rule, 14_2), "JIRA TID-123")\n
* // Next line of code with a rule 14.2 violation
*
* Example 2: Whitelist violations for CERT C rules INT30-C and STR30-C caused
* by coverity bugs:\n
* NVGPU_COV_WHITELIST(false_positive, NVGPU_CERT(INT30_C), "Bug 123456")\n
* NVGPU_COV_WHITELIST(false_positive, NVGPU_CERT(STR30_C), "Bug 123457")\n
* // Next line of code with INT30-C and STR30-C violations
*/
#define NVGPU_COV_WHITELIST(type, checker, comment_str) \
_Pragma(NVGPU_COV_STRING(coverity compliance type checker comment_str))
#else
/**
* no-op macros for normal compilation - whitelisting is disabled when a
* coverity scan is NOT being run
*/
#define NVGPU_MISRA(type, num)
#define NVGPU_CERT(num)
#define NVGPU_COV_WHITELIST(type, checker, comment_str)
#endif
/**@}*/ /* "Coverity Whitelisting" doxygen group */
static inline u32 nvgpu_safe_add_u32(u32 ui_a, u32 ui_b)
{
if (UINT_MAX - ui_a < ui_b) {
BUG();
} else {
return ui_a + ui_b;
}
}
static inline s32 nvgpu_safe_add_s32(s32 si_a, s32 si_b)
{
if (((si_b > 0) && (si_a > (INT_MAX - si_b))) ||
((si_b < 0) && (si_a < (INT_MIN - si_b)))) {
BUG();
} else {
return si_a + si_b;
}
}
static inline u64 nvgpu_safe_add_u64(u64 ul_a, u64 ul_b)
{
if (ULONG_MAX - ul_a < ul_b) {
BUG();
} else {
return ul_a + ul_b;
}
}
static inline s64 nvgpu_safe_add_s64(s64 sl_a, s64 sl_b)
{
if (((sl_b > 0) && (sl_a > (LONG_MAX - sl_b))) ||
((sl_b < 0) && (sl_a < (LONG_MIN - sl_b)))) {
BUG();
} else {
return sl_a + sl_b;
}
}
static inline u8 nvgpu_safe_sub_u8(u8 uc_a, u8 uc_b)
{
if (uc_a < uc_b) {
BUG();
} else {
return uc_a - uc_b;
}
}
static inline u32 nvgpu_safe_sub_u32(u32 ui_a, u32 ui_b)
{
if (ui_a < ui_b) {
BUG();
} else {
return ui_a - ui_b;
}
}
static inline s32 nvgpu_safe_sub_s32(s32 si_a, s32 si_b)
{
if ((si_b > 0 && si_a < INT_MIN + si_b) ||
(si_b < 0 && si_a > INT_MAX + si_b)) {
BUG();
} else {
return si_a - si_b;
}
}
static inline u64 nvgpu_safe_sub_u64(u64 ul_a, u64 ul_b)
{
if (ul_a < ul_b) {
BUG();
} else {
return ul_a - ul_b;
}
}
static inline s64 nvgpu_safe_sub_s64(s64 si_a, s64 si_b)
{
if ((si_b > 0 && si_a < LONG_MIN + si_b) ||
(si_b < 0 && si_a > LONG_MAX + si_b)) {
BUG();
} else {
return si_a - si_b;
}
}
static inline u32 nvgpu_safe_mult_u32(u32 ui_a, u32 ui_b)
{
if (ui_a == 0U || ui_b == 0U) {
return 0U;
} else if (ui_a > UINT_MAX / ui_b) {
BUG();
} else {
return ui_a * ui_b;
}
}
static inline u64 nvgpu_safe_mult_u64(u64 ul_a, u64 ul_b)
{
if (ul_a == 0UL || ul_b == 0UL) {
return 0UL;
} else if (ul_a > ULONG_MAX / ul_b) {
BUG();
} else {
return ul_a * ul_b;
}
}
static inline s64 nvgpu_safe_mult_s64(s64 sl_a, s64 sl_b)
{
if (sl_a > 0) {
if (sl_b > 0) {
if (sl_a > (LONG_MAX / sl_b)) {
BUG();
}
} else {
if (sl_b < (LONG_MIN / sl_a)) {
BUG();
}
}
} else {
if (sl_b > 0) {
if (sl_a < (LONG_MIN / sl_b)) {
BUG();
}
} else {
if ((sl_a != 0) && (sl_b < (LONG_MAX / sl_a))) {
BUG();
}
}
}
return sl_a * sl_b;
}
static inline u16 nvgpu_safe_cast_u64_to_u16(u64 ul_a)
{
if (ul_a > USHRT_MAX) {
BUG();
} else {
return (u16)ul_a;
}
}
static inline u32 nvgpu_safe_cast_u64_to_u32(u64 ul_a)
{
if (ul_a > UINT_MAX) {
BUG();
} else {
return (u32)ul_a;
}
}
static inline u32 nvgpu_safe_cast_s64_to_u32(s64 l_a)
{
if ((l_a < 0) || (l_a > UINT_MAX)) {
BUG();
} else {
return (u32)l_a;
}
}
static inline u64 nvgpu_safe_cast_s64_to_u64(s64 l_a)
{
if (l_a < 0) {
BUG();
} else {
return (u64)l_a;
}
}
static inline u32 nvgpu_safe_cast_bool_to_u32(bool bl_a)
{
return bl_a == true ? 1U : 0U;
}
static inline u8 nvgpu_safe_cast_s8_to_u8(s8 sc_a)
{
NVGPU_COV_WHITELIST(false_positive, NVGPU_CERT(STR34_C), "Bug 2673832")
if (sc_a < 0) {
BUG();
} else {
return (u8)sc_a;
}
}
static inline u32 nvgpu_safe_cast_s32_to_u32(s32 si_a)
{
if (si_a < 0) {
BUG();
} else {
return (u32)si_a;
}
}
static inline u64 nvgpu_safe_cast_s32_to_u64(s32 si_a)
{
if (si_a < 0) {
BUG();
} else {
return (u64)si_a;
}
}
static inline u16 nvgpu_safe_cast_u32_to_u16(u32 ui_a)
{
if (ui_a > USHRT_MAX) {
BUG();
} else {
return (u16)ui_a;
}
}
static inline u8 nvgpu_safe_cast_u32_to_u8(u32 ui_a)
{
if (ui_a > UCHAR_MAX) {
BUG();
} else {
return (u8)ui_a;
}
}
static inline s8 nvgpu_safe_cast_u32_to_s8(u32 ui_a)
{
if (ui_a > SCHAR_MAX) {
BUG();
} else {
return (s8)ui_a;
}
}
static inline s32 nvgpu_safe_cast_u32_to_s32(u32 ui_a)
{
if (ui_a > INT_MAX) {
BUG();
} else {
return (s32)ui_a;
}
}
static inline s32 nvgpu_safe_cast_u64_to_s32(u64 ul_a)
{
if (ul_a > INT_MAX) {
BUG();
} else {
return (s32)ul_a;
}
}
static inline s64 nvgpu_safe_cast_u64_to_s64(u64 ul_a)
{
if (ul_a > LONG_MAX) {
BUG();
} else {
return (s64)ul_a;
}
}
static inline s32 nvgpu_safe_cast_s64_to_s32(s64 sl_a)
{
if (sl_a > INT_MAX || sl_a < INT_MIN) {
BUG();
} else {
return (s32)sl_a;
}
}
#define NVGPU_PRECISION(v) _Generic(v, \
unsigned int : __builtin_popcount, \
unsigned long : __builtin_popcountl, \
unsigned long long : __builtin_popcountll, \
default : __builtin_popcount)(v)
static inline void nvgpu_safety_checks(void)
{
/*
* For CERT-C INT35-C rule
* Check compatibility between size (in bytes) and precision
* (in bits) of unsigned int. BUG() if two are not same.
*/
if (sizeof(unsigned int) * 8U != NVGPU_PRECISION(UINT_MAX)) {
BUG();
}
/*
* For CERT-C INT34-C rule
* Check precision of unsigned types. Shift operands have been
* checked to be less than these values.
*/
if (NVGPU_PRECISION(UCHAR_MAX) != 8 ||
NVGPU_PRECISION(USHRT_MAX) != 16 ||
NVGPU_PRECISION(UINT_MAX) != 32 ||
NVGPU_PRECISION(ULONG_MAX) != 64 ||
NVGPU_PRECISION(ULLONG_MAX) != 64) {
BUG();
}
}
#endif /* NVGPU_STATIC_ANALYSIS_H */