Files
linux-nvgpu/drivers/gpu/nvgpu/common/linux/nvgpu_mem.c
Thomas Fleury 0601fd25a5 gpu: nvgpu: gv100: nvlink endpoint driver
The following changes implements the initial (as per bringup) nvlink driver.

(1) SW initialization of nvlink core driver structures
(2) Nvlink interrupt handling
(3) Device initialization (IOCTRL, pll and clocks, device level intr)
(4) Falcon support for minion
(5) Minion load and bootstrapping
(6) Link initialization and DL PROD settings
(7) Device Interface init (and switching HSHUB to nvlink)
(8) HS set/get mode for both link and sublink
(9) Topology discovery and VBIOS settings.
(10) Ensures we get physical contiguous memory when Nvlink is enabled

This driver includes a hack for the current single dev/single link limitation.

JIRA: EVLR-2331
JIRA: EVLR-2330
JIRA: EVLR-2329
JIRA: EVLR-2328

Change-Id: Idca9a819179376cc655784482b24b575a52fa9e5
Signed-off-by: Thomas Fleury <tfleury@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1656790
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-02-25 21:48:24 -08:00

601 lines
15 KiB
C

/*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/log.h>
#include <nvgpu/bug.h>
#include <nvgpu/enabled.h>
#include <nvgpu/kmem.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/linux/dma.h>
#include <nvgpu/linux/vidmem.h>
#include <linux/vmalloc.h>
#include "os_linux.h"
#include "gk20a/gk20a.h"
#include "gk20a/mm_gk20a.h"
u32 __nvgpu_aperture_mask(struct gk20a *g, enum nvgpu_aperture aperture,
u32 sysmem_mask, u32 vidmem_mask)
{
switch (aperture) {
case APERTURE_SYSMEM:
/* some igpus consider system memory vidmem */
return nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)
? sysmem_mask : vidmem_mask;
case APERTURE_VIDMEM:
/* for dgpus only */
return vidmem_mask;
case APERTURE_INVALID:
WARN_ON("Bad aperture");
}
return 0;
}
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
u32 sysmem_mask, u32 vidmem_mask)
{
return __nvgpu_aperture_mask(g, mem->aperture,
sysmem_mask, vidmem_mask);
}
int nvgpu_mem_begin(struct gk20a *g, struct nvgpu_mem *mem)
{
void *cpu_va;
pgprot_t prot = nvgpu_is_enabled(g, NVGPU_DMA_COHERENT) ? PAGE_KERNEL :
pgprot_writecombine(PAGE_KERNEL);
if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
return 0;
/*
* A CPU mapping is implicitly made for all SYSMEM DMA allocations that
* don't have NVGPU_DMA_NO_KERNEL_MAPPING. Thus we don't need to make
* another CPU mapping.
*/
if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
return 0;
if (WARN_ON(mem->cpu_va)) {
nvgpu_warn(g, "nested");
return -EBUSY;
}
cpu_va = vmap(mem->priv.pages,
PAGE_ALIGN(mem->size) >> PAGE_SHIFT,
0, prot);
if (WARN_ON(!cpu_va))
return -ENOMEM;
mem->cpu_va = cpu_va;
return 0;
}
void nvgpu_mem_end(struct gk20a *g, struct nvgpu_mem *mem)
{
if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
return;
/*
* Similar to nvgpu_mem_begin() we don't need to unmap the CPU mapping
* already made by the DMA API.
*/
if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
return;
vunmap(mem->cpu_va);
mem->cpu_va = NULL;
}
static void pramin_access_batch_rd_n(struct gk20a *g, u32 start, u32 words, u32 **arg)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
u32 r = start, *dest_u32 = *arg;
if (!l->regs) {
__gk20a_warn_on_no_regs();
return;
}
while (words--) {
*dest_u32++ = gk20a_readl(g, r);
r += sizeof(u32);
}
*arg = dest_u32;
}
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
{
u32 data = 0;
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u32 *ptr = mem->cpu_va;
WARN_ON(!ptr);
data = ptr[w];
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
#endif
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 value;
u32 *p = &value;
nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
sizeof(u32), pramin_access_batch_rd_n, &p);
data = value;
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
return data;
}
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
{
WARN_ON(offset & 3);
return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
}
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
u32 offset, void *dest, u32 size)
{
WARN_ON(offset & 3);
WARN_ON(size & 3);
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u8 *src = (u8 *)mem->cpu_va + offset;
WARN_ON(!mem->cpu_va);
memcpy(dest, src, size);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
if (size)
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
src, *dest, size);
#endif
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 *dest_u32 = dest;
nvgpu_pramin_access_batched(g, mem, offset, size,
pramin_access_batch_rd_n, &dest_u32);
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
static void pramin_access_batch_wr_n(struct gk20a *g, u32 start, u32 words, u32 **arg)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
u32 r = start, *src_u32 = *arg;
if (!l->regs) {
__gk20a_warn_on_no_regs();
return;
}
while (words--) {
writel_relaxed(*src_u32++, l->regs + r);
r += sizeof(u32);
}
*arg = src_u32;
}
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
{
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u32 *ptr = mem->cpu_va;
WARN_ON(!ptr);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
#endif
ptr[w] = data;
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 value = data;
u32 *p = &value;
nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
sizeof(u32), pramin_access_batch_wr_n, &p);
if (!mem->skip_wmb)
wmb();
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
{
WARN_ON(offset & 3);
nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
}
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
void *src, u32 size)
{
WARN_ON(offset & 3);
WARN_ON(size & 3);
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(!mem->cpu_va);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
if (size)
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
dest, *src, size);
#endif
memcpy(dest, src, size);
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 *src_u32 = src;
nvgpu_pramin_access_batched(g, mem, offset, size,
pramin_access_batch_wr_n, &src_u32);
if (!mem->skip_wmb)
wmb();
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
static void pramin_access_batch_set(struct gk20a *g, u32 start, u32 words, u32 **arg)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
u32 r = start, repeat = **arg;
if (!l->regs) {
__gk20a_warn_on_no_regs();
return;
}
while (words--) {
writel_relaxed(repeat, l->regs + r);
r += sizeof(u32);
}
}
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
u32 c, u32 size)
{
WARN_ON(offset & 3);
WARN_ON(size & 3);
WARN_ON(c & ~0xff);
c &= 0xff;
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(!mem->cpu_va);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
if (size)
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x [times %d]",
dest, c, size);
#endif
memset(dest, c, size);
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
u32 *p = &repeat_value;
nvgpu_pramin_access_batched(g, mem, offset, size,
pramin_access_batch_set, &p);
if (!mem->skip_wmb)
wmb();
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
/*
* Obtain a SYSMEM address from a Linux SGL. This should eventually go away
* and/or become private to this file once all bad usages of Linux SGLs are
* cleaned up in the driver.
*/
u64 nvgpu_mem_get_addr_sgl(struct gk20a *g, struct scatterlist *sgl)
{
if (!nvgpu_iommuable(g))
return g->ops.mm.gpu_phys_addr(g, NULL, sg_phys(sgl));
if (sg_dma_address(sgl) == 0)
return g->ops.mm.gpu_phys_addr(g, NULL, sg_phys(sgl));
if (sg_dma_address(sgl) == DMA_ERROR_CODE)
return 0;
return nvgpu_mem_iommu_translate(g, sg_dma_address(sgl));
}
/*
* Obtain the address the GPU should use from the %mem assuming this is a SYSMEM
* allocation.
*/
static u64 nvgpu_mem_get_addr_sysmem(struct gk20a *g, struct nvgpu_mem *mem)
{
return nvgpu_mem_get_addr_sgl(g, mem->priv.sgt->sgl);
}
/*
* Return the base address of %mem. Handles whether this is a VIDMEM or SYSMEM
* allocation.
*
* Note: this API does not make sense to use for _VIDMEM_ buffers with greater
* than one scatterlist chunk. If there's more than one scatterlist chunk then
* the buffer will not be contiguous. As such the base address probably isn't
* very useful. This is true for SYSMEM as well, if there's no IOMMU.
*
* However! It _is_ OK to use this on discontiguous sysmem buffers _if_ there's
* an IOMMU present and enabled for the GPU.
*
* %attrs can be NULL. If it is not NULL then it may be inspected to determine
* if the address needs to be modified before writing into a PTE.
*/
u64 nvgpu_mem_get_addr(struct gk20a *g, struct nvgpu_mem *mem)
{
struct nvgpu_page_alloc *alloc;
if (mem->aperture == APERTURE_SYSMEM)
return nvgpu_mem_get_addr_sysmem(g, mem);
/*
* Otherwise get the vidmem address.
*/
alloc = mem->vidmem_alloc;
/* This API should not be used with > 1 chunks */
WARN_ON(alloc->nr_chunks != 1);
return alloc->base;
}
/*
* This should only be used on contiguous buffers regardless of whether
* there's an IOMMU present/enabled. This applies to both SYSMEM and
* VIDMEM.
*/
u64 nvgpu_mem_get_phys_addr(struct gk20a *g, struct nvgpu_mem *mem)
{
/*
* For a VIDMEM buf, this is identical to simply get_addr() so just fall
* back to that.
*/
if (mem->aperture == APERTURE_VIDMEM)
return nvgpu_mem_get_addr(g, mem);
return sg_phys(mem->priv.sgt->sgl);
}
/*
* Be careful how you use this! You are responsible for correctly freeing this
* memory.
*/
int nvgpu_mem_create_from_mem(struct gk20a *g,
struct nvgpu_mem *dest, struct nvgpu_mem *src,
int start_page, int nr_pages)
{
int ret;
u64 start = start_page * PAGE_SIZE;
u64 size = nr_pages * PAGE_SIZE;
dma_addr_t new_iova;
if (src->aperture != APERTURE_SYSMEM)
return -EINVAL;
/* Some silly things a caller might do... */
if (size > src->size)
return -EINVAL;
if ((start + size) > src->size)
return -EINVAL;
dest->mem_flags = src->mem_flags | NVGPU_MEM_FLAG_SHADOW_COPY;
dest->aperture = src->aperture;
dest->skip_wmb = src->skip_wmb;
dest->size = size;
/*
* Re-use the CPU mapping only if the mapping was made by the DMA API.
*/
if (!(src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
dest->cpu_va = src->cpu_va + (PAGE_SIZE * start_page);
dest->priv.pages = src->priv.pages + start_page;
dest->priv.flags = src->priv.flags;
new_iova = sg_dma_address(src->priv.sgt->sgl) ?
sg_dma_address(src->priv.sgt->sgl) + start : 0;
/*
* Make a new SG table that is based only on the subset of pages that
* is passed to us. This table gets freed by the dma free routines.
*/
if (src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING)
ret = nvgpu_get_sgtable_from_pages(g, &dest->priv.sgt,
src->priv.pages + start_page,
new_iova, size);
else
ret = nvgpu_get_sgtable(g, &dest->priv.sgt, dest->cpu_va,
new_iova, size);
return ret;
}
int __nvgpu_mem_create_from_pages(struct gk20a *g, struct nvgpu_mem *dest,
struct page **pages, int nr_pages)
{
struct sg_table *sgt;
struct page **our_pages =
nvgpu_kmalloc(g, sizeof(struct page *) * nr_pages);
if (!our_pages)
return -ENOMEM;
memcpy(our_pages, pages, sizeof(struct page *) * nr_pages);
if (nvgpu_get_sgtable_from_pages(g, &sgt, pages, 0,
nr_pages * PAGE_SIZE)) {
nvgpu_kfree(g, our_pages);
return -ENOMEM;
}
/*
* If we are making an SGT from physical pages we can be reasonably
* certain that this should bypass the SMMU - thus we set the DMA (aka
* IOVA) address to 0. This tells the GMMU mapping code to not make a
* mapping directed to the SMMU.
*/
sg_dma_address(sgt->sgl) = 0;
dest->mem_flags = __NVGPU_MEM_FLAG_NO_DMA;
dest->aperture = APERTURE_SYSMEM;
dest->skip_wmb = 0;
dest->size = PAGE_SIZE * nr_pages;
dest->priv.flags = 0;
dest->priv.pages = our_pages;
dest->priv.sgt = sgt;
return 0;
}
#ifdef CONFIG_TEGRA_GK20A_NVHOST
int __nvgpu_mem_create_from_phys(struct gk20a *g, struct nvgpu_mem *dest,
u64 src_phys, int nr_pages)
{
struct page **pages =
nvgpu_kmalloc(g, sizeof(struct page *) * nr_pages);
int i, ret = 0;
if (!pages)
return -ENOMEM;
for (i = 0; i < nr_pages; i++)
pages[i] = phys_to_page(src_phys + PAGE_SIZE * i);
ret = __nvgpu_mem_create_from_pages(g, dest, pages, nr_pages);
nvgpu_kfree(g, pages);
return ret;
}
#endif
static void *nvgpu_mem_linux_sgl_next(void *sgl)
{
return sg_next((struct scatterlist *)sgl);
}
static u64 nvgpu_mem_linux_sgl_phys(void *sgl)
{
return (u64)sg_phys((struct scatterlist *)sgl);
}
static u64 nvgpu_mem_linux_sgl_dma(void *sgl)
{
return (u64)sg_dma_address((struct scatterlist *)sgl);
}
static u64 nvgpu_mem_linux_sgl_length(void *sgl)
{
return (u64)((struct scatterlist *)sgl)->length;
}
static u64 nvgpu_mem_linux_sgl_gpu_addr(struct gk20a *g, void *sgl,
struct nvgpu_gmmu_attrs *attrs)
{
if (sg_dma_address((struct scatterlist *)sgl) == 0)
return g->ops.mm.gpu_phys_addr(g, attrs,
sg_phys((struct scatterlist *)sgl));
if (sg_dma_address((struct scatterlist *)sgl) == DMA_ERROR_CODE)
return 0;
return nvgpu_mem_iommu_translate(g,
sg_dma_address((struct scatterlist *)sgl));
}
static bool nvgpu_mem_linux_sgt_iommuable(struct gk20a *g,
struct nvgpu_sgt *sgt)
{
if (nvgpu_is_enabled(g, NVGPU_MM_USE_PHYSICAL_SG))
return false;
return true;
}
static void nvgpu_mem_linux_sgl_free(struct gk20a *g, struct nvgpu_sgt *sgt)
{
/*
* Free this SGT. All we do is free the passed SGT. The actual Linux
* SGT/SGL needs to be freed separately.
*/
nvgpu_kfree(g, sgt);
}
static const struct nvgpu_sgt_ops nvgpu_linux_sgt_ops = {
.sgl_next = nvgpu_mem_linux_sgl_next,
.sgl_phys = nvgpu_mem_linux_sgl_phys,
.sgl_dma = nvgpu_mem_linux_sgl_dma,
.sgl_length = nvgpu_mem_linux_sgl_length,
.sgl_gpu_addr = nvgpu_mem_linux_sgl_gpu_addr,
.sgt_iommuable = nvgpu_mem_linux_sgt_iommuable,
.sgt_free = nvgpu_mem_linux_sgl_free,
};
static struct nvgpu_sgt *__nvgpu_mem_get_sgl_from_vidmem(
struct gk20a *g,
struct scatterlist *linux_sgl)
{
struct nvgpu_page_alloc *vidmem_alloc;
vidmem_alloc = nvgpu_vidmem_get_page_alloc(linux_sgl);
if (!vidmem_alloc)
return NULL;
return &vidmem_alloc->sgt;
}
struct nvgpu_sgt *nvgpu_linux_sgt_create(struct gk20a *g, struct sg_table *sgt)
{
struct nvgpu_sgt *nvgpu_sgt;
struct scatterlist *linux_sgl = sgt->sgl;
if (nvgpu_addr_is_vidmem_page_alloc(sg_dma_address(linux_sgl)))
return __nvgpu_mem_get_sgl_from_vidmem(g, linux_sgl);
nvgpu_sgt = nvgpu_kzalloc(g, sizeof(*nvgpu_sgt));
if (!nvgpu_sgt)
return NULL;
nvgpu_log(g, gpu_dbg_sgl, "Making Linux SGL!");
nvgpu_sgt->sgl = sgt->sgl;
nvgpu_sgt->ops = &nvgpu_linux_sgt_ops;
return nvgpu_sgt;
}
struct nvgpu_sgt *nvgpu_sgt_create_from_mem(struct gk20a *g,
struct nvgpu_mem *mem)
{
return nvgpu_linux_sgt_create(g, mem->priv.sgt);
}