Files
linux-nvgpu/drivers/gpu/nvgpu/common/vbios/bios.c
Philip Elcan 4071b35235 gpu: nvgpu: bios: use memcpy to fix MISRA 11.3 bugs
MISRA Rule 11.3 prohibits casting between different pointer types. The
previous "fix" in nvgpu_bios_parse_rom() was to use an intermediate cast
to uintptr_t. However, that leaves the possibility of creating a
mis-aligned pointer.  So, instead of casts, use nvgpu_memcpy() to make a
copy of the data in a local structure.

JIRA NVGPU-3317

Change-Id: I3f9dd0d6c10a7425f300b51410be2e248177b505
Signed-off-by: Philip Elcan <pelcan@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2122390
Reviewed-by: Thomas Fleury <tfleury@nvidia.com>
Reviewed-by: Alex Waterman <alexw@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-05-22 13:36:07 -07:00

599 lines
17 KiB
C

/*
* Copyright (c) 2015-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bios.h>
#include <nvgpu/io.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/string.h>
static void nvgpu_bios_parse_bit(struct gk20a *g, u32 offset);
static u16 nvgpu_bios_rdu16(struct gk20a *g, u32 offset)
{
u16 val = (U16(g->bios.data[offset+1U]) << U16(8)) +
U16(g->bios.data[offset]);
return val;
}
static u32 nvgpu_bios_rdu32(struct gk20a *g, u32 offset)
{
u32 val = (U32(g->bios.data[offset+3U]) << U32(24)) +
(U32(g->bios.data[offset+2U]) << U32(16)) +
(U32(g->bios.data[offset+1U]) << U32(8)) +
U32(g->bios.data[offset]);
return val;
}
int nvgpu_bios_parse_rom(struct gk20a *g)
{
u32 offset = 0;
u8 last = 0;
bool found = false;
unsigned int i;
while (last == 0U) {
struct pci_exp_rom pci_rom;
struct pci_data_struct pci_data;
struct pci_ext_data_struct pci_ext_data;
nvgpu_memcpy((u8 *)&pci_rom, (u8 *)(g->bios.data + offset),
sizeof(struct pci_exp_rom));
nvgpu_log_fn(g, "pci rom sig %04x ptr %04x block %x",
pci_rom.sig, pci_rom.pci_data_struct_ptr,
pci_rom.size_of_block);
if (pci_rom.sig != PCI_EXP_ROM_SIG &&
pci_rom.sig != PCI_EXP_ROM_SIG_NV) {
nvgpu_err(g, "invalid VBIOS signature");
return -EINVAL;
}
nvgpu_memcpy((u8 *)&pci_data, (u8 *)(g->bios.data + offset +
pci_rom.pci_data_struct_ptr),
sizeof(struct pci_data_struct));
nvgpu_log_fn(g, "pci data sig %08x len %d image len %x type %x last %d max %08x",
pci_data.sig, pci_data.pci_data_struct_len,
pci_data.image_len, pci_data.code_type,
pci_data.last_image,
pci_data.max_runtime_image_len);
/* Get Base ROM Size */
if (pci_data.code_type ==
PCI_DATA_STRUCTURE_CODE_TYPE_VBIOS_BASE) {
g->bios.base_rom_size = (u32)pci_data.image_len *
PCI_ROM_IMAGE_BLOCK_SIZE;
nvgpu_log_fn(g, "Base ROM Size: %x",
g->bios.base_rom_size);
}
/* Get Expansion ROM offset:
* In the UEFI case, the expansion ROM where the Perf tables
* are located is not necessarily immediately after the base
* VBIOS image. Some VBIOS images uses a "private image" layout,
* where the order of the images is the VBIOS base block,
* the UEFI ROM, the expansion ROM, and then the cert. So we
* need to add the UEFI ROM size to offsets within the
* expansion ROM.
*/
if (pci_data.code_type ==
PCI_DATA_STRUCTURE_CODE_TYPE_VBIOS_UEFI) {
u32 ext_offset = (offset +
pci_rom.pci_data_struct_ptr +
pci_data.pci_data_struct_len +
0xfU) & ~0xfU;
nvgpu_memcpy((u8 *)&pci_ext_data, (u8 *)(g->bios.data +
ext_offset),
sizeof(struct pci_ext_data_struct));
nvgpu_log_fn(g, "pci ext data sig %08x rev %x len %x sub_image_len %x priv_last %d flags %x",
pci_ext_data.sig,
pci_ext_data.nv_pci_data_ext_rev,
pci_ext_data.nv_pci_data_ext_len,
pci_ext_data.sub_image_len,
pci_ext_data.priv_last_image,
pci_ext_data.flags);
nvgpu_log_fn(g, "expansion rom offset %x",
pci_data.image_len *
PCI_ROM_IMAGE_BLOCK_SIZE);
g->bios.expansion_rom_offset =
(u32)pci_data.image_len *
PCI_ROM_IMAGE_BLOCK_SIZE;
offset += (u32)pci_ext_data.sub_image_len *
PCI_ROM_IMAGE_BLOCK_SIZE;
last = pci_ext_data.priv_last_image;
} else {
offset += (u32)pci_data.image_len *
PCI_ROM_IMAGE_BLOCK_SIZE;
last = pci_data.last_image;
}
}
nvgpu_log_info(g, "read bios");
for (i = 0; i < g->bios.size - 6U; i++) {
if (nvgpu_bios_rdu16(g, i) == BIT_HEADER_ID &&
nvgpu_bios_rdu32(g, i+2U) == BIT_HEADER_SIGNATURE) {
nvgpu_bios_parse_bit(g, i);
found = true;
}
}
if (!found) {
return -EINVAL;
} else {
return 0;
}
}
static void nvgpu_bios_parse_biosdata(struct gk20a *g, u32 offset)
{
struct biosdata bios_data;
nvgpu_memcpy((u8 *)&bios_data, &g->bios.data[offset],
sizeof(bios_data));
nvgpu_log_fn(g, "bios version %x, oem version %x",
bios_data.version,
bios_data.oem_version);
g->bios.vbios_version = bios_data.version;
g->bios.vbios_oem_version = bios_data.oem_version;
}
static void nvgpu_bios_parse_nvinit_ptrs(struct gk20a *g, u32 offset)
{
struct nvinit_ptrs init_ptrs;
nvgpu_memcpy((u8 *)&init_ptrs, &g->bios.data[offset],
sizeof(init_ptrs));
nvgpu_log_fn(g, "devinit ptr %x size %d", init_ptrs.devinit_tables_ptr,
init_ptrs.devinit_tables_size);
nvgpu_log_fn(g, "bootscripts ptr %x size %d", init_ptrs.bootscripts_ptr,
init_ptrs.bootscripts_size);
g->bios.devinit_tables = &g->bios.data[init_ptrs.devinit_tables_ptr];
g->bios.devinit_tables_size = init_ptrs.devinit_tables_size;
g->bios.bootscripts = &g->bios.data[init_ptrs.bootscripts_ptr];
g->bios.bootscripts_size = init_ptrs.bootscripts_size;
g->bios.condition_table_ptr = init_ptrs.condition_table_ptr;
g->bios.nvlink_config_data_offset = init_ptrs.nvlink_config_data_ptr;
}
static void nvgpu_bios_parse_memory_ptrs(struct gk20a *g, u16 offset, u8 version)
{
struct memory_ptrs_v1 v1;
struct memory_ptrs_v2 v2;
switch (version) {
case MEMORY_PTRS_V1:
nvgpu_memcpy((u8 *)&v1, &g->bios.data[offset], sizeof(v1));
g->bios.mem_strap_data_count = v1.mem_strap_data_count;
g->bios.mem_strap_xlat_tbl_ptr = v1.mem_strap_xlat_tbl_ptr;
break;
case MEMORY_PTRS_V2:
nvgpu_memcpy((u8 *)&v2, &g->bios.data[offset], sizeof(v2));
g->bios.mem_strap_data_count = v2.mem_strap_data_count;
g->bios.mem_strap_xlat_tbl_ptr = v2.mem_strap_xlat_tbl_ptr;
break;
default:
nvgpu_err(g, "unknown vbios memory table version %x", version);
break;
}
return;
}
static void nvgpu_bios_parse_devinit_appinfo(struct gk20a *g, u32 dmem_offset)
{
struct devinit_engine_interface interface;
nvgpu_memcpy((u8 *)&interface, &g->bios.devinit.dmem[dmem_offset],
sizeof(interface));
nvgpu_log_fn(g, "devinit version %x tables phys %x script phys %x size %d",
interface.version,
interface.tables_phys_base,
interface.script_phys_base,
interface.script_size);
if (interface.version != 1U) {
return;
}
g->bios.devinit_tables_phys_base = interface.tables_phys_base;
g->bios.devinit_script_phys_base = interface.script_phys_base;
}
static int nvgpu_bios_parse_appinfo_table(struct gk20a *g, u32 offset)
{
struct application_interface_table_hdr_v1 hdr;
u32 i;
nvgpu_memcpy((u8 *)&hdr, &g->bios.data[offset], sizeof(hdr));
nvgpu_log_fn(g, "appInfoHdr ver %d size %d entrySize %d entryCount %d",
hdr.version, hdr.header_size,
hdr.entry_size, hdr.entry_count);
if (hdr.version != 1U) {
return 0;
}
offset += U32(sizeof(hdr));
for (i = 0U; i < hdr.entry_count; i++) {
struct application_interface_entry_v1 entry;
nvgpu_memcpy((u8 *)&entry, &g->bios.data[offset],
sizeof(entry));
nvgpu_log_fn(g, "appInfo id %d dmem_offset %d",
entry.id, entry.dmem_offset);
if (entry.id == APPINFO_ID_DEVINIT) {
nvgpu_bios_parse_devinit_appinfo(g, entry.dmem_offset);
}
offset += hdr.entry_size;
}
return 0;
}
static int nvgpu_bios_parse_falcon_ucode_desc(struct gk20a *g,
struct nvgpu_bios_ucode *ucode, u32 offset)
{
union falcon_ucode_desc udesc;
struct falcon_ucode_desc_v2 desc;
u8 version;
u16 desc_size;
int ret = 0;
nvgpu_memcpy((u8 *)&udesc, &g->bios.data[offset], sizeof(udesc));
if (FALCON_UCODE_IS_VERSION_AVAILABLE(udesc)) {
version = FALCON_UCODE_GET_VERSION(udesc);
desc_size = FALCON_UCODE_GET_DESC_SIZE(udesc);
} else {
size_t tmp_size = sizeof(udesc.v1);
version = 1;
nvgpu_assert(tmp_size <= (size_t)U16_MAX);
desc_size = U16(tmp_size);
}
switch (version) {
case 1:
desc.stored_size = udesc.v1.hdr_size.stored_size;
desc.uncompressed_size = udesc.v1.uncompressed_size;
desc.virtual_entry = udesc.v1.virtual_entry;
desc.interface_offset = udesc.v1.interface_offset;
desc.imem_phys_base = udesc.v1.imem_phys_base;
desc.imem_load_size = udesc.v1.imem_load_size;
desc.imem_virt_base = udesc.v1.imem_virt_base;
desc.imem_sec_base = udesc.v1.imem_sec_base;
desc.imem_sec_size = udesc.v1.imem_sec_size;
desc.dmem_offset = udesc.v1.dmem_offset;
desc.dmem_phys_base = udesc.v1.dmem_phys_base;
desc.dmem_load_size = udesc.v1.dmem_load_size;
break;
case 2:
nvgpu_memcpy((u8 *)&desc, (u8 *)&udesc, sizeof(udesc.v2));
break;
default:
nvgpu_log_info(g, "invalid version");
ret = -EINVAL;
break;
}
if (ret != 0) {
return ret;
}
nvgpu_log_info(g, "falcon ucode desc version %x len %x", version, desc_size);
nvgpu_log_info(g, "falcon ucode desc stored size %x uncompressed size %x",
desc.stored_size, desc.uncompressed_size);
nvgpu_log_info(g, "falcon ucode desc virtualEntry %x, interfaceOffset %x",
desc.virtual_entry, desc.interface_offset);
nvgpu_log_info(g, "falcon ucode IMEM phys base %x, load size %x virt base %x sec base %x sec size %x",
desc.imem_phys_base, desc.imem_load_size,
desc.imem_virt_base, desc.imem_sec_base,
desc.imem_sec_size);
nvgpu_log_info(g, "falcon ucode DMEM offset %x phys base %x, load size %x",
desc.dmem_offset, desc.dmem_phys_base,
desc.dmem_load_size);
if (desc.stored_size != desc.uncompressed_size) {
nvgpu_log_info(g, "does not match");
return -EINVAL;
}
ucode->code_entry_point = desc.virtual_entry;
ucode->bootloader = &g->bios.data[offset] + desc_size;
ucode->bootloader_phys_base = desc.imem_phys_base;
ucode->bootloader_size = desc.imem_load_size - desc.imem_sec_size;
ucode->ucode = ucode->bootloader + ucode->bootloader_size;
ucode->phys_base = ucode->bootloader_phys_base + ucode->bootloader_size;
ucode->size = desc.imem_sec_size;
ucode->dmem = ucode->bootloader + desc.dmem_offset;
ucode->dmem_phys_base = desc.dmem_phys_base;
ucode->dmem_size = desc.dmem_load_size;
ret = nvgpu_bios_parse_appinfo_table(g,
offset + U32(desc_size) +
desc.dmem_offset + desc.interface_offset);
return ret;
}
static int nvgpu_bios_parse_falcon_ucode_table(struct gk20a *g, u32 offset)
{
struct falcon_ucode_table_hdr_v1 hdr;
u32 i;
nvgpu_memcpy((u8 *)&hdr, &g->bios.data[offset], sizeof(hdr));
nvgpu_log_fn(g, "falcon ucode table ver %d size %d entrySize %d entryCount %d descVer %d descSize %d",
hdr.version, hdr.header_size,
hdr.entry_size, hdr.entry_count,
hdr.desc_version, hdr.desc_size);
if (hdr.version != 1U) {
return -EINVAL;
}
offset += hdr.header_size;
for (i = 0U; i < hdr.entry_count; i++) {
struct falcon_ucode_table_entry_v1 entry;
nvgpu_memcpy((u8 *)&entry, &g->bios.data[offset],
sizeof(entry));
nvgpu_log_fn(g, "falcon ucode table entry appid %x targetId %x descPtr %x",
entry.application_id, entry.target_id,
entry.desc_ptr);
if (entry.target_id == TARGET_ID_PMU &&
entry.application_id == APPLICATION_ID_DEVINIT) {
int err;
err = nvgpu_bios_parse_falcon_ucode_desc(g,
&g->bios.devinit, entry.desc_ptr);
if (err != 0) {
err = nvgpu_bios_parse_falcon_ucode_desc(g,
&g->bios.devinit,
entry.desc_ptr +
g->bios.expansion_rom_offset);
}
if (err != 0) {
nvgpu_err(g,
"could not parse devinit ucode desc");
}
} else if (entry.target_id == TARGET_ID_PMU &&
entry.application_id == APPLICATION_ID_PRE_OS) {
int err;
err = nvgpu_bios_parse_falcon_ucode_desc(g,
&g->bios.preos, entry.desc_ptr);
if (err != 0) {
err = nvgpu_bios_parse_falcon_ucode_desc(g,
&g->bios.preos,
entry.desc_ptr +
g->bios.expansion_rom_offset);
}
if (err != 0) {
nvgpu_err(g,
"could not parse preos ucode desc");
}
} else {
nvgpu_log_info(g, "App_id: %u and target_id: %u"
" combination not supported.",
entry.application_id,
entry.target_id);
}
offset += hdr.entry_size;
}
return 0;
}
static void nvgpu_bios_parse_falcon_data_v2(struct gk20a *g, u32 offset)
{
struct falcon_data_v2 falcon_data;
int err;
nvgpu_memcpy((u8 *)&falcon_data, &g->bios.data[offset],
sizeof(falcon_data));
nvgpu_log_fn(g, "falcon ucode table ptr %x",
falcon_data.falcon_ucode_table_ptr);
err = nvgpu_bios_parse_falcon_ucode_table(g,
falcon_data.falcon_ucode_table_ptr);
if (err != 0) {
err = nvgpu_bios_parse_falcon_ucode_table(g,
falcon_data.falcon_ucode_table_ptr +
g->bios.expansion_rom_offset);
}
if (err != 0) {
nvgpu_err(g, "could not parse falcon ucode table");
}
}
void *nvgpu_bios_get_perf_table_ptrs(struct gk20a *g,
struct bit_token *ptoken, u8 table_id)
{
u32 perf_table_id_offset = 0;
u8 *perf_table_ptr = NULL;
u8 data_size = 4;
if (ptoken != NULL) {
if (ptoken->token_id == TOKEN_ID_VIRT_PTRS) {
perf_table_id_offset =
*((u16 *)((uintptr_t)g->bios.data +
ptoken->data_ptr +
(U16(table_id) *
U16(PERF_PTRS_WIDTH_16))));
data_size = PERF_PTRS_WIDTH_16;
} else {
perf_table_id_offset =
*((u32 *)((uintptr_t)g->bios.data +
ptoken->data_ptr +
(U16(table_id) *
U16(PERF_PTRS_WIDTH))));
data_size = PERF_PTRS_WIDTH;
}
} else {
return (void *)perf_table_ptr;
}
if (table_id < (ptoken->data_size/data_size)) {
nvgpu_log_info(g, "Perf_Tbl_ID-offset 0x%x Tbl_ID_Ptr-offset- 0x%x",
(ptoken->data_ptr +
(U16(table_id) * U16(data_size))),
perf_table_id_offset);
if (perf_table_id_offset != 0U) {
/* check if perf_table_id_offset is beyond base rom */
if (perf_table_id_offset > g->bios.base_rom_size) {
perf_table_ptr =
&g->bios.data[g->bios.expansion_rom_offset +
perf_table_id_offset];
} else {
perf_table_ptr =
&g->bios.data[perf_table_id_offset];
}
} else {
nvgpu_warn(g, "PERF TABLE ID %d is NULL",
table_id);
}
} else {
nvgpu_warn(g, "INVALID PERF TABLE ID - %d ", table_id);
}
return (void *)perf_table_ptr;
}
static void nvgpu_bios_parse_bit(struct gk20a *g, u32 offset)
{
struct bios_bit bit;
struct bit_token token;
u32 i;
nvgpu_log_fn(g, " ");
nvgpu_memcpy((u8 *)&bit, &g->bios.data[offset], sizeof(bit));
nvgpu_log_info(g, "BIT header: %04x %08x", bit.id, bit.signature);
nvgpu_log_info(g, "tokens: %d entries * %d bytes",
bit.token_entries, bit.token_size);
offset += bit.header_size;
for (i = 0U; i < bit.token_entries; i++) {
nvgpu_memcpy((u8 *)&token, &g->bios.data[offset],
sizeof(token));
nvgpu_log_info(g, "BIT token id %d ptr %d size %d ver %d",
token.token_id, token.data_ptr,
token.data_size, token.data_version);
switch (token.token_id) {
case TOKEN_ID_BIOSDATA:
nvgpu_bios_parse_biosdata(g, token.data_ptr);
break;
case TOKEN_ID_NVINIT_PTRS:
nvgpu_bios_parse_nvinit_ptrs(g, token.data_ptr);
break;
case TOKEN_ID_FALCON_DATA:
if (token.data_version == 2U) {
nvgpu_bios_parse_falcon_data_v2(g,
token.data_ptr);
}
break;
case TOKEN_ID_PERF_PTRS:
g->bios.perf_token =
(struct bit_token *)
((uintptr_t)g->bios.data + offset);
break;
case TOKEN_ID_CLOCK_PTRS:
g->bios.clock_token =
(struct bit_token *)
((uintptr_t)g->bios.data + offset);
break;
case TOKEN_ID_VIRT_PTRS:
g->bios.virt_token =
(struct bit_token *)
((uintptr_t)g->bios.data + offset);
break;
case TOKEN_ID_MEMORY_PTRS:
nvgpu_bios_parse_memory_ptrs(g, token.data_ptr,
token.data_version);
break;
default:
nvgpu_log_info(g, "Token id %d not supported",
token.token_id);
break;
}
offset += bit.token_size;
}
nvgpu_log_fn(g, "done");
}
static u32 nvgpu_bios_readbyte_impl(struct gk20a *g, u32 offset)
{
return g->bios.data[offset];
}
u8 nvgpu_bios_read_u8(struct gk20a *g, u32 offset)
{
return (u8)nvgpu_bios_readbyte_impl(g, offset);
}
s8 nvgpu_bios_read_s8(struct gk20a *g, u32 offset)
{
u32 val;
val = nvgpu_bios_readbyte_impl(g, offset);
val = ((val & 0x80U) != 0U) ? (val | ~0xffU) : val;
return (s8) val;
}
u16 nvgpu_bios_read_u16(struct gk20a *g, u32 offset)
{
u16 val;
val = U16(nvgpu_bios_readbyte_impl(g, offset) |
(nvgpu_bios_readbyte_impl(g, offset+1U) << 8U));
return val;
}
u32 nvgpu_bios_read_u32(struct gk20a *g, u32 offset)
{
u32 val;
val = U32(nvgpu_bios_readbyte_impl(g, offset) |
(nvgpu_bios_readbyte_impl(g, offset+1U) << 8U) |
(nvgpu_bios_readbyte_impl(g, offset+2U) << 16U) |
(nvgpu_bios_readbyte_impl(g, offset+3U) << 24U));
return val;
}