Files
linux-nvgpu/drivers/gpu/nvgpu/common/pmu/pmu_ipc.c
Mahantesh Kumbar 4bb9b0b987 gpu: nvgpu: use support_ls_pmu flag to check LS PMU support
Currently PMU support enable check is done with multiple
methods which added complexity to know status of PMU
support.

Changed to replace multiple methods with support_pmu
flag to know the PMU support, support_pmu will be updated
at init stage based on platform/chip specific settings
to know the PMU support status.

Cleaned up support_pmu flag check with platform specific
PMU members in multiple places & moved check to
public functions

JIRA NVGPU-173

Change-Id: Ief2c64250d1f78e3b054203be56499e4d1d9b046
Signed-off-by: Mahantesh Kumbar <mkumbar@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2024024
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: svc-misra-checker <svc-misra-checker@nvidia.com>
GVS: Gerrit_Virtual_Submit
Reviewed-by: Vijayakumar Subbu <vsubbu@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2019-03-04 03:33:16 -08:00

1473 lines
36 KiB
C

/*
* Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/enabled.h>
#include <nvgpu/pmu.h>
#include <nvgpu/log.h>
#include <nvgpu/timers.h>
#include <nvgpu/bug.h>
#include <nvgpu/pmuif/nvgpu_gpmu_cmdif.h>
#include <nvgpu/pmuif/gpmu_super_surf_if.h>
#include <nvgpu/falcon.h>
#include <nvgpu/engine_queue.h>
#include <nvgpu/engine_fb_queue.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/string.h>
void nvgpu_pmu_seq_init(struct nvgpu_pmu *pmu)
{
u32 i;
(void) memset(pmu->seq, 0,
sizeof(struct pmu_sequence) * PMU_MAX_NUM_SEQUENCES);
(void) memset(pmu->pmu_seq_tbl, 0,
sizeof(pmu->pmu_seq_tbl));
for (i = 0; i < PMU_MAX_NUM_SEQUENCES; i++) {
pmu->seq[i].id = (u8)i;
}
}
static int pmu_seq_acquire(struct nvgpu_pmu *pmu,
struct pmu_sequence **pseq)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct pmu_sequence *seq;
unsigned long index;
nvgpu_mutex_acquire(&pmu->pmu_seq_lock);
index = find_first_zero_bit(pmu->pmu_seq_tbl,
sizeof(pmu->pmu_seq_tbl));
if (index >= sizeof(pmu->pmu_seq_tbl)) {
nvgpu_err(g, "no free sequence available");
nvgpu_mutex_release(&pmu->pmu_seq_lock);
return -EAGAIN;
}
nvgpu_assert(index <= INT_MAX);
set_bit((int)index, pmu->pmu_seq_tbl);
nvgpu_mutex_release(&pmu->pmu_seq_lock);
seq = &pmu->seq[index];
seq->state = PMU_SEQ_STATE_PENDING;
*pseq = seq;
return 0;
}
static void pmu_seq_release(struct nvgpu_pmu *pmu,
struct pmu_sequence *seq)
{
struct gk20a *g = gk20a_from_pmu(pmu);
seq->state = PMU_SEQ_STATE_FREE;
seq->desc = PMU_INVALID_SEQ_DESC;
seq->callback = NULL;
seq->cb_params = NULL;
seq->msg = NULL;
seq->out_payload = NULL;
g->ops.pmu_ver.pmu_allocation_set_dmem_size(pmu,
g->ops.pmu_ver.get_pmu_seq_in_a_ptr(seq), 0);
g->ops.pmu_ver.pmu_allocation_set_dmem_size(pmu,
g->ops.pmu_ver.get_pmu_seq_out_a_ptr(seq), 0);
clear_bit((int)seq->id, pmu->pmu_seq_tbl);
}
/* mutex */
int nvgpu_pmu_mutex_acquire(struct nvgpu_pmu *pmu, u32 id, u32 *token)
{
struct gk20a *g = gk20a_from_pmu(pmu);
if (!g->support_ls_pmu) {
return 0;
}
return g->ops.pmu.pmu_mutex_acquire(pmu, id, token);
}
int nvgpu_pmu_mutex_release(struct nvgpu_pmu *pmu, u32 id, u32 *token)
{
struct gk20a *g = gk20a_from_pmu(pmu);
if (!g->support_ls_pmu) {
return 0;
}
return g->ops.pmu.pmu_mutex_release(pmu, id, token);
}
/* FB queue init */
int nvgpu_pmu_queue_init_fb(struct nvgpu_pmu *pmu,
u32 id, union pmu_init_msg_pmu *init)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_engine_fb_queue_params params = {0};
u32 oflag = 0;
int err = 0;
u32 tmp_id = id;
/* init queue parameters */
if (PMU_IS_COMMAND_QUEUE(id)) {
/* currently PMU FBQ support SW command queue only */
if (!PMU_IS_SW_COMMAND_QUEUE(id)) {
pmu->queue[id] = NULL;
err = 0;
goto exit;
}
/*
* set OFLAG_WRITE for command queue
* i.e, push from nvgpu &
* pop form falcon ucode
*/
oflag = OFLAG_WRITE;
params.super_surface_mem =
&pmu->super_surface_buf;
params.fbq_offset = (u32)offsetof(
struct nv_pmu_super_surface,
fbq.cmd_queues.queue[id]);
params.size = NV_PMU_FBQ_CMD_NUM_ELEMENTS;
params.fbq_element_size = NV_PMU_FBQ_CMD_ELEMENT_SIZE;
} else if (PMU_IS_MESSAGE_QUEUE(id)) {
/*
* set OFLAG_READ for message queue
* i.e, push from falcon ucode &
* pop form nvgpu
*/
oflag = OFLAG_READ;
params.super_surface_mem =
&pmu->super_surface_buf;
params.fbq_offset = (u32)offsetof(
struct nv_pmu_super_surface,
fbq.msg_queue);
params.size = NV_PMU_FBQ_MSG_NUM_ELEMENTS;
params.fbq_element_size = NV_PMU_FBQ_MSG_ELEMENT_SIZE;
} else {
nvgpu_err(g, "invalid queue-id %d", id);
err = -EINVAL;
goto exit;
}
params.g = g;
params.flcn_id = FALCON_ID_PMU;
params.id = id;
params.oflag = oflag;
params.queue_head = g->ops.pmu.pmu_queue_head;
params.queue_tail = g->ops.pmu.pmu_queue_tail;
if (tmp_id == PMU_COMMAND_QUEUE_HPQ) {
tmp_id = PMU_QUEUE_HPQ_IDX_FOR_V3;
} else if (tmp_id == PMU_COMMAND_QUEUE_LPQ) {
tmp_id = PMU_QUEUE_LPQ_IDX_FOR_V3;
} else if (tmp_id == PMU_MESSAGE_QUEUE) {
tmp_id = PMU_QUEUE_MSG_IDX_FOR_V5;
} else {
/* return if queue id not supported*/
goto exit;
}
params.index = init->v5.queue_index[tmp_id];
err = nvgpu_engine_fb_queue_init(&pmu->fb_queue[id], params);
if (err != 0) {
nvgpu_err(g, "queue-%d init failed", id);
}
exit:
return err;
}
/* DMEM queue init */
int nvgpu_pmu_queue_init(struct nvgpu_pmu *pmu,
u32 id, union pmu_init_msg_pmu *init)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_engine_mem_queue_params params = {0};
u32 oflag = 0;
int err = 0;
if (PMU_IS_COMMAND_QUEUE(id)) {
/*
* set OFLAG_WRITE for command queue
* i.e, push from nvgpu &
* pop form falcon ucode
*/
oflag = OFLAG_WRITE;
} else if (PMU_IS_MESSAGE_QUEUE(id)) {
/*
* set OFLAG_READ for message queue
* i.e, push from falcon ucode &
* pop form nvgpu
*/
oflag = OFLAG_READ;
} else {
nvgpu_err(g, "invalid queue-id %d", id);
err = -EINVAL;
goto exit;
}
/* init queue parameters */
params.g = g;
params.flcn_id = FALCON_ID_PMU;
params.id = id;
params.oflag = oflag;
params.queue_head = g->ops.pmu.pmu_queue_head;
params.queue_tail = g->ops.pmu.pmu_queue_tail;
params.queue_type = QUEUE_TYPE_DMEM;
g->ops.pmu_ver.get_pmu_init_msg_pmu_queue_params(id, init,
&params.index,
&params.offset,
&params.size);
err = nvgpu_engine_mem_queue_init(&pmu->queue[id], params);
if (err != 0) {
nvgpu_err(g, "queue-%d init failed", id);
}
exit:
return err;
}
void nvgpu_pmu_queue_free(struct nvgpu_pmu *pmu, u32 id)
{
struct gk20a *g = gk20a_from_pmu(pmu);
if (!PMU_IS_COMMAND_QUEUE(id) && !PMU_IS_MESSAGE_QUEUE(id)) {
nvgpu_err(g, "invalid queue-id %d", id);
goto exit;
}
if (pmu->queue_type == QUEUE_TYPE_FB) {
if (pmu->fb_queue[id] == NULL) {
goto exit;
}
nvgpu_engine_fb_queue_free(&pmu->fb_queue[id]);
} else {
if (pmu->queue[id] == NULL) {
goto exit;
}
nvgpu_engine_mem_queue_free(&pmu->queue[id]);
}
exit:
return;
}
static bool pmu_validate_cmd(struct nvgpu_pmu *pmu, struct pmu_cmd *cmd,
struct pmu_msg *msg, struct pmu_payload *payload,
u32 queue_id)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_engine_fb_queue *fb_queue = NULL;
struct nvgpu_engine_mem_queue *queue = NULL;
u32 queue_size;
u32 in_size, out_size;
if (!PMU_IS_SW_COMMAND_QUEUE(queue_id)) {
goto invalid_cmd;
}
if (pmu->queue_type == QUEUE_TYPE_FB) {
fb_queue = pmu->fb_queue[queue_id];
queue_size = nvgpu_engine_fb_queue_get_element_size(fb_queue);
} else {
queue = pmu->queue[queue_id];
queue_size = nvgpu_engine_mem_queue_get_size(queue);
}
if (cmd->hdr.size < PMU_CMD_HDR_SIZE) {
goto invalid_cmd;
}
if (cmd->hdr.size > (queue_size >> 1)) {
goto invalid_cmd;
}
if (msg != NULL && msg->hdr.size < PMU_MSG_HDR_SIZE) {
goto invalid_cmd;
}
if (!PMU_UNIT_ID_IS_VALID(cmd->hdr.unit_id)) {
goto invalid_cmd;
}
if (payload == NULL) {
return true;
}
if (payload->in.buf == NULL && payload->out.buf == NULL &&
payload->rpc.prpc == NULL) {
goto invalid_cmd;
}
if ((payload->in.buf != NULL && payload->in.size == 0U) ||
(payload->out.buf != NULL && payload->out.size == 0U) ||
(payload->rpc.prpc != NULL && payload->rpc.size_rpc == 0U)) {
goto invalid_cmd;
}
in_size = PMU_CMD_HDR_SIZE;
if (payload->in.buf != NULL) {
in_size += payload->in.offset;
in_size += g->ops.pmu_ver.get_pmu_allocation_struct_size(pmu);
}
out_size = PMU_CMD_HDR_SIZE;
if (payload->out.buf != NULL) {
out_size += payload->out.offset;
out_size += g->ops.pmu_ver.get_pmu_allocation_struct_size(pmu);
}
if (in_size > cmd->hdr.size || out_size > cmd->hdr.size) {
goto invalid_cmd;
}
if ((payload->in.offset != 0U && payload->in.buf == NULL) ||
(payload->out.offset != 0U && payload->out.buf == NULL)) {
goto invalid_cmd;
}
return true;
invalid_cmd:
nvgpu_err(g, "invalid pmu cmd :\n"
"queue_id=%d,\n"
"cmd_size=%d, cmd_unit_id=%d, msg=%p, msg_size=%u,\n"
"payload in=%p, in_size=%d, in_offset=%d,\n"
"payload out=%p, out_size=%d, out_offset=%d",
queue_id, cmd->hdr.size, cmd->hdr.unit_id,
msg, (msg != NULL) ? msg->hdr.unit_id : ~0U,
&payload->in, payload->in.size, payload->in.offset,
&payload->out, payload->out.size, payload->out.offset);
return false;
}
static int pmu_write_cmd(struct nvgpu_pmu *pmu, struct pmu_cmd *cmd,
u32 queue_id)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_engine_fb_queue *fb_queue = NULL;
struct nvgpu_engine_mem_queue *queue = NULL;
struct nvgpu_timeout timeout;
int err;
nvgpu_log_fn(g, " ");
nvgpu_timeout_init(g, &timeout, U32_MAX, NVGPU_TIMER_CPU_TIMER);
do {
if (pmu->queue_type == QUEUE_TYPE_FB) {
fb_queue = pmu->fb_queue[queue_id];
err = nvgpu_engine_fb_queue_push(fb_queue,
cmd, cmd->hdr.size);
} else {
queue = pmu->queue[queue_id];
err = nvgpu_engine_mem_queue_push(pmu->flcn, queue,
cmd, cmd->hdr.size);
}
if (err == -EAGAIN && nvgpu_timeout_expired(&timeout) == 0) {
nvgpu_usleep_range(1000, 2000);
} else {
break;
}
} while (true);
if (err != 0) {
nvgpu_err(g, "fail to write cmd to queue %d", queue_id);
} else {
nvgpu_log_fn(g, "done");
}
return err;
}
static int pmu_payload_allocate(struct gk20a *g, struct pmu_sequence *seq,
struct falcon_payload_alloc *alloc)
{
struct nvgpu_pmu *pmu = &g->pmu;
u64 tmp;
int err = 0;
if (alloc->fb_surface == NULL &&
alloc->fb_size != 0x0U) {
alloc->fb_surface = nvgpu_kzalloc(g, sizeof(struct nvgpu_mem));
if (alloc->fb_surface == NULL) {
err = -ENOMEM;
goto clean_up;
}
nvgpu_pmu_vidmem_surface_alloc(g, alloc->fb_surface, alloc->fb_size);
}
if (pmu->queue_type == QUEUE_TYPE_FB) {
seq->fbq_out_offset_in_queue_element = seq->buffer_size_used;
/* Save target address in FBQ work buffer. */
alloc->dmem_offset = seq->buffer_size_used;
seq->buffer_size_used += alloc->dmem_size;
} else {
tmp = nvgpu_alloc(&pmu->dmem, alloc->dmem_size);
nvgpu_assert(tmp <= U32_MAX);
alloc->dmem_offset = (u32)tmp;
if (alloc->dmem_offset == 0U) {
err = -ENOMEM;
goto clean_up;
}
}
clean_up:
return err;
}
static int pmu_cmd_payload_setup_rpc(struct gk20a *g, struct pmu_cmd *cmd,
struct pmu_payload *payload, struct pmu_sequence *seq)
{
struct nvgpu_pmu *pmu = &g->pmu;
struct pmu_v *pv = &g->ops.pmu_ver;
struct nvgpu_engine_fb_queue *queue = seq->cmd_queue;
struct falcon_payload_alloc alloc;
int err = 0;
nvgpu_log_fn(g, " ");
memset(&alloc, 0, sizeof(struct falcon_payload_alloc));
alloc.dmem_size = payload->rpc.size_rpc +
payload->rpc.size_scratch;
err = pmu_payload_allocate(g, seq, &alloc);
if (err != 0) {
goto clean_up;
}
alloc.dmem_size = payload->rpc.size_rpc;
if (pmu->queue_type == QUEUE_TYPE_FB) {
/* copy payload to FBQ work buffer */
nvgpu_memcpy((u8 *)
nvgpu_engine_fb_queue_get_work_buffer(queue) +
alloc.dmem_offset,
(u8 *)payload->rpc.prpc, payload->rpc.size_rpc);
alloc.dmem_offset += seq->fbq_heap_offset;
seq->in_payload_fb_queue = true;
seq->out_payload_fb_queue = true;
} else {
nvgpu_falcon_copy_to_dmem(pmu->flcn, alloc.dmem_offset,
payload->rpc.prpc, payload->rpc.size_rpc, 0);
}
cmd->cmd.rpc.rpc_dmem_size = payload->rpc.size_rpc;
cmd->cmd.rpc.rpc_dmem_ptr = alloc.dmem_offset;
seq->out_payload = payload->rpc.prpc;
pv->pmu_allocation_set_dmem_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq),
payload->rpc.size_rpc);
pv->pmu_allocation_set_dmem_offset(pmu,
pv->get_pmu_seq_out_a_ptr(seq),
alloc.dmem_offset);
clean_up:
if (err != 0) {
nvgpu_log_fn(g, "fail");
} else {
nvgpu_log_fn(g, "done");
}
return err;
}
static int pmu_cmd_payload_setup(struct gk20a *g, struct pmu_cmd *cmd,
struct pmu_payload *payload, struct pmu_sequence *seq)
{
struct nvgpu_pmu *pmu = &g->pmu;
struct pmu_v *pv = &g->ops.pmu_ver;
void *in = NULL, *out = NULL;
struct falcon_payload_alloc alloc;
int err = 0;
nvgpu_log_fn(g, " ");
if (payload != NULL) {
seq->out_payload = payload->out.buf;
}
memset(&alloc, 0, sizeof(struct falcon_payload_alloc));
if (payload != NULL && payload->in.offset != 0U) {
pv->set_pmu_allocation_ptr(pmu, &in,
((u8 *)&cmd->cmd + payload->in.offset));
if (payload->in.buf != payload->out.buf) {
pv->pmu_allocation_set_dmem_size(pmu, in,
(u16)payload->in.size);
} else {
pv->pmu_allocation_set_dmem_size(pmu, in,
(u16)max(payload->in.size, payload->out.size));
}
alloc.dmem_size = pv->pmu_allocation_get_dmem_size(pmu, in);
if (payload->in.fb_size != 0x0U) {
alloc.fb_size = payload->in.fb_size;
}
err = pmu_payload_allocate(g, seq, &alloc);
if (err != 0) {
goto clean_up;
}
*(pv->pmu_allocation_get_dmem_offset_addr(pmu, in)) =
alloc.dmem_offset;
if (payload->in.fb_size != 0x0U) {
seq->in_mem = alloc.fb_surface;
nvgpu_pmu_surface_describe(g, seq->in_mem,
(struct flcn_mem_desc_v0 *)
pv->pmu_allocation_get_fb_addr(pmu, in));
nvgpu_mem_wr_n(g, seq->in_mem, 0,
payload->in.buf, payload->in.fb_size);
if (pmu->queue_type == QUEUE_TYPE_FB) {
alloc.dmem_offset += seq->fbq_heap_offset;
*(pv->pmu_allocation_get_dmem_offset_addr(pmu, in)) =
alloc.dmem_offset;
}
} else {
if (pmu->queue_type == QUEUE_TYPE_FB) {
/* copy payload to FBQ work buffer */
nvgpu_memcpy((u8 *)
nvgpu_engine_fb_queue_get_work_buffer(
seq->cmd_queue) +
alloc.dmem_offset,
(u8 *)payload->in.buf,
payload->in.size);
alloc.dmem_offset += seq->fbq_heap_offset;
*(pv->pmu_allocation_get_dmem_offset_addr(pmu, in)) =
alloc.dmem_offset;
seq->in_payload_fb_queue = true;
} else {
nvgpu_falcon_copy_to_dmem(pmu->flcn,
(pv->pmu_allocation_get_dmem_offset(pmu, in)),
payload->in.buf, payload->in.size, 0);
}
}
pv->pmu_allocation_set_dmem_size(pmu,
pv->get_pmu_seq_in_a_ptr(seq),
pv->pmu_allocation_get_dmem_size(pmu, in));
pv->pmu_allocation_set_dmem_offset(pmu,
pv->get_pmu_seq_in_a_ptr(seq),
pv->pmu_allocation_get_dmem_offset(pmu, in));
}
if (payload != NULL && payload->out.offset != 0U) {
pv->set_pmu_allocation_ptr(pmu, &out,
((u8 *)&cmd->cmd + payload->out.offset));
pv->pmu_allocation_set_dmem_size(pmu, out,
(u16)payload->out.size);
if (payload->in.buf != payload->out.buf) {
alloc.dmem_size = pv->pmu_allocation_get_dmem_size(pmu, out);
if (payload->out.fb_size != 0x0U) {
alloc.fb_size = payload->out.fb_size;
}
err = pmu_payload_allocate(g, seq, &alloc);
if (err != 0) {
goto clean_up;
}
*(pv->pmu_allocation_get_dmem_offset_addr(pmu, out)) =
alloc.dmem_offset;
seq->out_mem = alloc.fb_surface;
} else {
BUG_ON(in == NULL);
seq->out_mem = seq->in_mem;
pv->pmu_allocation_set_dmem_offset(pmu, out,
pv->pmu_allocation_get_dmem_offset(pmu, in));
}
if (payload->out.fb_size != 0x0U) {
nvgpu_pmu_surface_describe(g, seq->out_mem,
(struct flcn_mem_desc_v0 *)
pv->pmu_allocation_get_fb_addr(pmu,
out));
}
if (pmu->queue_type == QUEUE_TYPE_FB) {
if (payload->in.buf != payload->out.buf) {
*(pv->pmu_allocation_get_dmem_offset_addr(pmu,
out)) += seq->fbq_heap_offset;
}
seq->out_payload_fb_queue = true;
}
pv->pmu_allocation_set_dmem_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq),
pv->pmu_allocation_get_dmem_size(pmu, out));
pv->pmu_allocation_set_dmem_offset(pmu,
pv->get_pmu_seq_out_a_ptr(seq),
pv->pmu_allocation_get_dmem_offset(pmu, out));
}
clean_up:
if (err != 0) {
nvgpu_log_fn(g, "fail");
if (in != NULL) {
nvgpu_free(&pmu->dmem,
pv->pmu_allocation_get_dmem_offset(pmu, in));
}
if (out != NULL) {
nvgpu_free(&pmu->dmem,
pv->pmu_allocation_get_dmem_offset(pmu, out));
}
} else {
nvgpu_log_fn(g, "done");
}
return err;
}
static int pmu_fbq_cmd_setup(struct gk20a *g, struct pmu_cmd *cmd,
struct nvgpu_engine_fb_queue *queue, struct pmu_payload *payload,
struct pmu_sequence *seq)
{
struct nvgpu_pmu *pmu = &g->pmu;
struct nv_falcon_fbq_hdr *fbq_hdr = NULL;
struct pmu_cmd *flcn_cmd = NULL;
u16 fbq_size_needed = 0;
u16 heap_offset = 0;
u64 tmp;
int err = 0;
fbq_hdr = (struct nv_falcon_fbq_hdr *)
nvgpu_engine_fb_queue_get_work_buffer(queue);
flcn_cmd = (struct pmu_cmd *)
(nvgpu_engine_fb_queue_get_work_buffer(queue) +
sizeof(struct nv_falcon_fbq_hdr));
if (cmd->cmd.rpc.cmd_type == NV_PMU_RPC_CMD_ID) {
if (payload != NULL) {
fbq_size_needed = payload->rpc.size_rpc +
payload->rpc.size_scratch;
}
} else {
if (payload != NULL) {
if (payload->in.offset != 0U) {
if (payload->in.buf != payload->out.buf) {
fbq_size_needed = (u16)payload->in.size;
} else {
fbq_size_needed = (u16)max(payload->in.size,
payload->out.size);
}
}
if (payload->out.offset != 0U) {
if (payload->out.buf != payload->in.buf) {
fbq_size_needed += (u16)payload->out.size;
}
}
}
}
fbq_size_needed = fbq_size_needed +
sizeof(struct nv_falcon_fbq_hdr) +
cmd->hdr.size;
fbq_size_needed = ALIGN_UP(fbq_size_needed, 4);
tmp = nvgpu_alloc(&pmu->dmem, fbq_size_needed);
nvgpu_assert(tmp <= U32_MAX);
heap_offset = (u16) tmp;
if (heap_offset == 0U) {
err = -ENOMEM;
goto exit;
}
seq->in_payload_fb_queue = false;
seq->out_payload_fb_queue = false;
/* clear work queue buffer */
memset(nvgpu_engine_fb_queue_get_work_buffer(queue), 0,
nvgpu_engine_fb_queue_get_element_size(queue));
/* Need to save room for both FBQ hdr, and the CMD */
seq->buffer_size_used = sizeof(struct nv_falcon_fbq_hdr) +
cmd->hdr.size;
/* copy cmd into the work buffer */
nvgpu_memcpy((u8 *)flcn_cmd, (u8 *)cmd, cmd->hdr.size);
/* Fill in FBQ hdr, and offset in seq structure */
fbq_hdr->heap_size = fbq_size_needed;
fbq_hdr->heap_offset = heap_offset;
seq->fbq_heap_offset = heap_offset;
/*
* save queue index in seq structure
* so can free queue element when response is received
*/
seq->fbq_element_index = nvgpu_engine_fb_queue_get_position(queue);
exit:
return err;
}
int nvgpu_pmu_cmd_post(struct gk20a *g, struct pmu_cmd *cmd,
struct pmu_msg *msg, struct pmu_payload *payload,
u32 queue_id, pmu_callback callback, void *cb_param,
u32 *seq_desc)
{
struct nvgpu_pmu *pmu = &g->pmu;
struct pmu_sequence *seq = NULL;
struct nvgpu_engine_fb_queue *fb_queue = NULL;
int err;
nvgpu_log_fn(g, " ");
if (cmd == NULL || seq_desc == NULL || !pmu->pmu_ready) {
if (cmd == NULL) {
nvgpu_warn(g, "%s(): PMU cmd buffer is NULL", __func__);
} else if (seq_desc == NULL) {
nvgpu_warn(g, "%s(): Seq descriptor is NULL", __func__);
} else {
nvgpu_warn(g, "%s(): PMU is not ready", __func__);
}
WARN_ON(true);
return -EINVAL;
}
if (!pmu_validate_cmd(pmu, cmd, msg, payload, queue_id)) {
return -EINVAL;
}
err = pmu_seq_acquire(pmu, &seq);
if (err != 0) {
return err;
}
cmd->hdr.seq_id = seq->id;
cmd->hdr.ctrl_flags = 0;
cmd->hdr.ctrl_flags |= PMU_CMD_FLAGS_STATUS;
cmd->hdr.ctrl_flags |= PMU_CMD_FLAGS_INTR;
seq->callback = callback;
seq->cb_params = cb_param;
seq->msg = msg;
seq->out_payload = NULL;
seq->desc = pmu->next_seq_desc++;
*seq_desc = seq->desc;
if (pmu->queue_type == QUEUE_TYPE_FB) {
fb_queue = pmu->fb_queue[queue_id];
/* Save the queue in the seq structure. */
seq->cmd_queue = fb_queue;
/* Lock the FBQ work buffer */
nvgpu_engine_fb_queue_lock_work_buffer(fb_queue);
/* Create FBQ work buffer & copy cmd to FBQ work buffer */
err = pmu_fbq_cmd_setup(g, cmd, fb_queue, payload, seq);
if (err != 0) {
nvgpu_err(g, "FBQ cmd setup failed");
pmu_seq_release(pmu, seq);
goto exit;
}
/*
* change cmd pointer to point to FBQ work
* buffer as cmd copied to FBQ work buffer
* in call pmu_fgq_cmd_setup()
*/
cmd = (struct pmu_cmd *)
(nvgpu_engine_fb_queue_get_work_buffer(fb_queue) +
sizeof(struct nv_falcon_fbq_hdr));
}
if (cmd->cmd.rpc.cmd_type == NV_PMU_RPC_CMD_ID) {
err = pmu_cmd_payload_setup_rpc(g, cmd, payload, seq);
} else {
err = pmu_cmd_payload_setup(g, cmd, payload, seq);
}
if (err != 0) {
nvgpu_err(g, "payload setup failed");
pmu_seq_release(pmu, seq);
goto exit;
}
seq->state = PMU_SEQ_STATE_USED;
err = pmu_write_cmd(pmu, cmd, queue_id);
if (err != 0) {
seq->state = PMU_SEQ_STATE_PENDING;
}
exit:
if (pmu->queue_type == QUEUE_TYPE_FB) {
/* Unlock the FBQ work buffer */
nvgpu_engine_fb_queue_unlock_work_buffer(fb_queue);
}
nvgpu_log_fn(g, "Done, err %x", err);
return err;
}
static int pmu_payload_extract(struct nvgpu_pmu *pmu,
struct pmu_msg *msg, struct pmu_sequence *seq)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct pmu_v *pv = &g->ops.pmu_ver;
u32 fbq_payload_offset = 0U;
int err = 0;
nvgpu_log_fn(g, " ");
if (seq->out_payload_fb_queue) {
fbq_payload_offset =
nvgpu_engine_fb_queue_get_offset(seq->cmd_queue) +
seq->fbq_out_offset_in_queue_element +
(seq->fbq_element_index *
nvgpu_engine_fb_queue_get_element_size(seq->cmd_queue));
nvgpu_mem_rd_n(g, &pmu->super_surface_buf, fbq_payload_offset,
seq->out_payload,
pv->pmu_allocation_get_dmem_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq)));
} else {
if (pv->pmu_allocation_get_dmem_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq)) != 0U) {
err = nvgpu_falcon_copy_from_dmem(pmu->flcn,
pv->pmu_allocation_get_dmem_offset(pmu,
pv->get_pmu_seq_out_a_ptr(seq)),
seq->out_payload,
pv->pmu_allocation_get_dmem_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq)), 0);
if (err != 0) {
nvgpu_err(g, "PMU falcon DMEM copy failed");
return err;
}
}
}
return err;
}
static void pmu_payload_fbq_free(struct nvgpu_pmu *pmu,
struct pmu_sequence *seq)
{
nvgpu_log_fn(pmu->g, " ");
seq->out_payload_fb_queue = false;
seq->in_payload_fb_queue = false;
nvgpu_free(&pmu->dmem, seq->fbq_heap_offset);
seq->fbq_heap_offset = 0;
/*
* free FBQ allocated work buffer
* set FBQ element work buffer to NULL
* Clear the in use bit for the queue entry this CMD used.
*/
nvgpu_engine_fb_queue_free_element(seq->cmd_queue,
seq->fbq_element_index);
}
static void pmu_payload_free(struct nvgpu_pmu *pmu,
struct pmu_msg *msg, struct pmu_sequence *seq)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct pmu_v *pv = &g->ops.pmu_ver;
nvgpu_log_fn(g, " ");
/* free FBQ payload*/
if (pmu->queue_type == QUEUE_TYPE_FB) {
pmu_payload_fbq_free(pmu, seq);
} else {
/* free DMEM space payload*/
if (pv->pmu_allocation_get_dmem_size(pmu,
pv->get_pmu_seq_in_a_ptr(seq)) != 0U) {
nvgpu_free(&pmu->dmem,
pv->pmu_allocation_get_dmem_offset(pmu,
pv->get_pmu_seq_in_a_ptr(seq)));
}
if (pv->pmu_allocation_get_dmem_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq)) != 0U) {
nvgpu_free(&pmu->dmem,
pv->pmu_allocation_get_dmem_offset(pmu,
pv->get_pmu_seq_out_a_ptr(seq)));
}
}
/* free FB surface payload */
if (seq->out_mem != NULL) {
(void) memset(pv->pmu_allocation_get_fb_addr(pmu,
pv->get_pmu_seq_out_a_ptr(seq)), 0x0,
pv->pmu_allocation_get_fb_size(pmu,
pv->get_pmu_seq_out_a_ptr(seq)));
nvgpu_pmu_surface_free(g, seq->out_mem);
if (seq->out_mem != seq->in_mem) {
nvgpu_kfree(g, seq->out_mem);
} else {
seq->out_mem = NULL;
}
}
if (seq->in_mem != NULL) {
(void) memset(pv->pmu_allocation_get_fb_addr(pmu,
pv->get_pmu_seq_in_a_ptr(seq)), 0x0,
pv->pmu_allocation_get_fb_size(pmu,
pv->get_pmu_seq_in_a_ptr(seq)));
nvgpu_pmu_surface_free(g, seq->in_mem);
nvgpu_kfree(g, seq->in_mem);
seq->in_mem = NULL;
}
}
static int pmu_response_handle(struct nvgpu_pmu *pmu,
struct pmu_msg *msg)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct pmu_sequence *seq;
int err = 0;
nvgpu_log_fn(g, " ");
seq = &pmu->seq[msg->hdr.seq_id];
if (seq->state != PMU_SEQ_STATE_USED &&
seq->state != PMU_SEQ_STATE_CANCELLED) {
nvgpu_err(g, "msg for an unknown sequence %d", seq->id);
err = -EINVAL;
goto exit;
}
if (msg->hdr.unit_id == PMU_UNIT_RC &&
msg->msg.rc.msg_type == PMU_RC_MSG_TYPE_UNHANDLED_CMD) {
nvgpu_err(g, "unhandled cmd: seq %d", seq->id);
err = -EINVAL;
} else if (seq->state != PMU_SEQ_STATE_CANCELLED) {
if (msg->hdr.size > PMU_MSG_HDR_SIZE &&
msg->msg.rc.msg_type == NV_PMU_RPC_MSG_ID) {
err = pmu_payload_extract(pmu, msg, seq);
} else {
if (seq->msg != NULL) {
if (seq->msg->hdr.size >= msg->hdr.size) {
nvgpu_memcpy((u8 *)seq->msg, (u8 *)msg,
msg->hdr.size);
} else {
nvgpu_err(g, "sequence %d msg buffer too small",
seq->id);
err = -EINVAL;
goto exit;
}
}
err = pmu_payload_extract(pmu, msg, seq);
}
} else {
seq->callback = NULL;
}
exit:
/*
* free allocated space for payload in
* DMEM/FB-surface/FB_QUEUE as data is
* copied to buffer pointed by
* seq->out_payload
*/
pmu_payload_free(pmu, msg, seq);
if (seq->callback != NULL) {
seq->callback(g, msg, seq->cb_params, seq->desc, err);
}
pmu_seq_release(pmu, seq);
/* TBD: notify client waiting for available dmem */
nvgpu_log_fn(g, "done err %d", err);
return err;
}
static int pmu_handle_event(struct nvgpu_pmu *pmu, struct pmu_msg *msg)
{
int err = 0;
struct gk20a *g = gk20a_from_pmu(pmu);
nvgpu_log_fn(g, " ");
switch (msg->hdr.unit_id) {
case PMU_UNIT_PERFMON:
case PMU_UNIT_PERFMON_T18X:
err = nvgpu_pmu_handle_perfmon_event(pmu, &msg->msg.perfmon);
break;
case PMU_UNIT_PERF:
if (g->ops.pmu_perf.handle_pmu_perf_event != NULL) {
err = g->ops.pmu_perf.handle_pmu_perf_event(g,
(void *)&msg->msg.perf);
} else {
WARN_ON(true);
}
break;
case PMU_UNIT_THERM:
err = nvgpu_pmu_handle_therm_event(pmu, &msg->msg.therm);
break;
default:
break;
}
return err;
}
static bool pmu_engine_mem_queue_read(struct nvgpu_pmu *pmu,
u32 queue_id, void *data,
u32 bytes_to_read, int *status)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_engine_fb_queue *fb_queue = NULL;
struct nvgpu_engine_mem_queue *queue = NULL;
u32 bytes_read;
int err;
if (pmu->queue_type == QUEUE_TYPE_FB) {
fb_queue = pmu->fb_queue[queue_id];
err = nvgpu_engine_fb_queue_pop(fb_queue, data,
bytes_to_read, &bytes_read);
} else {
queue = pmu->queue[queue_id];
err = nvgpu_engine_mem_queue_pop(pmu->flcn, queue, data,
bytes_to_read, &bytes_read);
}
if (err != 0) {
nvgpu_err(g, "fail to read msg: err %d", err);
*status = err;
return false;
}
if (bytes_read != bytes_to_read) {
nvgpu_err(g, "fail to read requested bytes: 0x%x != 0x%x",
bytes_to_read, bytes_read);
*status = -EINVAL;
return false;
}
return true;
}
bool nvgpu_pmu_queue_is_empty(struct nvgpu_pmu *pmu, u32 queue_id)
{
struct nvgpu_engine_mem_queue *queue = NULL;
struct nvgpu_engine_fb_queue *fb_queue = NULL;
bool empty = true;
if (pmu->queue_type == QUEUE_TYPE_FB) {
fb_queue = pmu->fb_queue[queue_id];
empty = nvgpu_engine_fb_queue_is_empty(fb_queue);
} else {
queue = pmu->queue[queue_id];
empty = nvgpu_engine_mem_queue_is_empty(queue);
}
return empty;
}
static bool pmu_read_message(struct nvgpu_pmu *pmu, u32 queue_id,
struct pmu_msg *msg, int *status)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_engine_mem_queue *queue = NULL;
u32 read_size;
int err;
*status = 0;
if (nvgpu_pmu_queue_is_empty(pmu, queue_id)) {
return false;
}
if (!pmu_engine_mem_queue_read(pmu, queue_id, &msg->hdr,
PMU_MSG_HDR_SIZE, status)) {
nvgpu_err(g, "fail to read msg from queue %d", queue_id);
goto clean_up;
}
if (msg->hdr.unit_id == PMU_UNIT_REWIND) {
if (pmu->queue_type != QUEUE_TYPE_FB) {
queue = pmu->queue[queue_id];
err = nvgpu_engine_mem_queue_rewind(pmu->flcn, queue);
if (err != 0) {
nvgpu_err(g, "fail to rewind queue %d",
queue_id);
*status = err;
goto clean_up;
}
}
/* read again after rewind */
if (!pmu_engine_mem_queue_read(pmu, queue_id, &msg->hdr,
PMU_MSG_HDR_SIZE, status)) {
nvgpu_err(g, "fail to read msg from queue %d",
queue_id);
goto clean_up;
}
}
if (!PMU_UNIT_ID_IS_VALID(msg->hdr.unit_id)) {
nvgpu_err(g, "read invalid unit_id %d from queue %d",
msg->hdr.unit_id, queue_id);
*status = -EINVAL;
goto clean_up;
}
if (msg->hdr.size > PMU_MSG_HDR_SIZE) {
read_size = msg->hdr.size - PMU_MSG_HDR_SIZE;
if (!pmu_engine_mem_queue_read(pmu, queue_id, &msg->msg,
read_size, status)) {
nvgpu_err(g, "fail to read msg from queue %d",
queue_id);
goto clean_up;
}
}
return true;
clean_up:
return false;
}
int nvgpu_pmu_process_message(struct nvgpu_pmu *pmu)
{
struct pmu_msg msg;
int status;
struct gk20a *g = gk20a_from_pmu(pmu);
if (unlikely(!pmu->pmu_ready)) {
nvgpu_pmu_process_init_msg(pmu, &msg);
if (g->ops.pmu.init_wpr_region != NULL) {
g->ops.pmu.init_wpr_region(g);
}
if (nvgpu_is_enabled(g, NVGPU_PMU_PERFMON)) {
g->ops.pmu.pmu_init_perfmon(pmu);
}
return 0;
}
while (pmu_read_message(pmu, PMU_MESSAGE_QUEUE, &msg, &status)) {
nvgpu_pmu_dbg(g, "read msg hdr: ");
nvgpu_pmu_dbg(g, "unit_id = 0x%08x, size = 0x%08x",
msg.hdr.unit_id, msg.hdr.size);
nvgpu_pmu_dbg(g, "ctrl_flags = 0x%08x, seq_id = 0x%08x",
msg.hdr.ctrl_flags, msg.hdr.seq_id);
msg.hdr.ctrl_flags &= ~PMU_CMD_FLAGS_PMU_MASK;
if (msg.hdr.ctrl_flags == PMU_CMD_FLAGS_EVENT) {
pmu_handle_event(pmu, &msg);
} else {
pmu_response_handle(pmu, &msg);
}
}
return 0;
}
int pmu_wait_message_cond_status(struct nvgpu_pmu *pmu, u32 timeout_ms,
void *var, u8 val)
{
struct gk20a *g = gk20a_from_pmu(pmu);
struct nvgpu_timeout timeout;
int err;
unsigned int delay = GR_IDLE_CHECK_DEFAULT;
err = nvgpu_timeout_init(g, &timeout, timeout_ms,
NVGPU_TIMER_CPU_TIMER);
if (err != 0) {
nvgpu_err(g, "PMU wait timeout init failed.");
return err;
}
do {
nvgpu_rmb();
if (*(volatile u8 *)var == val) {
return 0;
}
if (g->ops.pmu.pmu_is_interrupted(pmu)) {
g->ops.pmu.pmu_isr(g);
}
nvgpu_usleep_range(delay, delay * 2U);
delay = min_t(u32, delay << 1, GR_IDLE_CHECK_MAX);
} while (nvgpu_timeout_expired(&timeout) == 0);
return -ETIMEDOUT;
}
void pmu_wait_message_cond(struct nvgpu_pmu *pmu, u32 timeout_ms,
void *var, u8 val)
{
struct gk20a *g = gk20a_from_pmu(pmu);
if (pmu_wait_message_cond_status(pmu, timeout_ms, var, val) != 0) {
nvgpu_err(g, "PMU wait timeout expired.");
}
}
static void pmu_rpc_handler(struct gk20a *g, struct pmu_msg *msg,
void *param, u32 handle, u32 status)
{
struct nv_pmu_rpc_header rpc;
struct nvgpu_pmu *pmu = &g->pmu;
struct rpc_handler_payload *rpc_payload =
(struct rpc_handler_payload *)param;
struct nv_pmu_rpc_struct_perfmon_query *rpc_param;
(void) memset(&rpc, 0, sizeof(struct nv_pmu_rpc_header));
nvgpu_memcpy((u8 *)&rpc, (u8 *)rpc_payload->rpc_buff,
sizeof(struct nv_pmu_rpc_header));
if (rpc.flcn_status != 0U) {
nvgpu_err(g, " failed RPC response, status=0x%x, func=0x%x",
rpc.flcn_status, rpc.function);
goto exit;
}
switch (msg->hdr.unit_id) {
case PMU_UNIT_ACR:
switch (rpc.function) {
case NV_PMU_RPC_ID_ACR_INIT_WPR_REGION:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_ACR_INIT_WPR_REGION");
g->pmu_lsf_pmu_wpr_init_done = true;
break;
case NV_PMU_RPC_ID_ACR_BOOTSTRAP_GR_FALCONS:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_ACR_BOOTSTRAP_GR_FALCONS");
g->pmu_lsf_loaded_falcon_id = 1;
break;
}
break;
case PMU_UNIT_PERFMON_T18X:
case PMU_UNIT_PERFMON:
switch (rpc.function) {
case NV_PMU_RPC_ID_PERFMON_T18X_INIT:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_PERFMON_INIT");
pmu->perfmon_ready = true;
break;
case NV_PMU_RPC_ID_PERFMON_T18X_START:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_PERFMON_START");
break;
case NV_PMU_RPC_ID_PERFMON_T18X_STOP:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_PERFMON_STOP");
break;
case NV_PMU_RPC_ID_PERFMON_T18X_QUERY:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_PERFMON_QUERY");
rpc_param = (struct nv_pmu_rpc_struct_perfmon_query *)
rpc_payload->rpc_buff;
pmu->load = rpc_param->sample_buffer[0];
pmu->perfmon_query = 1;
/* set perfmon_query to 1 after load is copied */
break;
}
break;
case PMU_UNIT_VOLT:
switch (rpc.function) {
case NV_PMU_RPC_ID_VOLT_BOARD_OBJ_GRP_CMD:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_VOLT_BOARD_OBJ_GRP_CMD");
break;
case NV_PMU_RPC_ID_VOLT_VOLT_SET_VOLTAGE:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_VOLT_VOLT_SET_VOLTAGE");
break;
case NV_PMU_RPC_ID_VOLT_VOLT_RAIL_GET_VOLTAGE:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_VOLT_VOLT_RAIL_GET_VOLTAGE");
break;
case NV_PMU_RPC_ID_VOLT_LOAD:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_VOLT_LOAD");
}
break;
case PMU_UNIT_CLK:
nvgpu_pmu_dbg(g, "reply PMU_UNIT_CLK");
break;
case PMU_UNIT_PERF:
nvgpu_pmu_dbg(g, "reply PMU_UNIT_PERF");
break;
case PMU_UNIT_THERM:
switch (rpc.function) {
case NV_PMU_RPC_ID_THERM_BOARD_OBJ_GRP_CMD:
nvgpu_pmu_dbg(g,
"reply NV_PMU_RPC_ID_THERM_BOARD_OBJ_GRP_CMD");
break;
default:
nvgpu_pmu_dbg(g, "reply PMU_UNIT_THERM");
break;
}
break;
/* TBD case will be added */
default:
nvgpu_err(g, " Invalid RPC response, stats 0x%x",
rpc.flcn_status);
break;
}
exit:
rpc_payload->complete = true;
/* free allocated memory */
if (rpc_payload->is_mem_free_set) {
nvgpu_kfree(g, rpc_payload);
}
}
int nvgpu_pmu_rpc_execute(struct nvgpu_pmu *pmu, struct nv_pmu_rpc_header *rpc,
u16 size_rpc, u16 size_scratch, pmu_callback caller_cb,
void *caller_cb_param, bool is_copy_back)
{
struct gk20a *g = pmu->g;
struct pmu_cmd cmd;
struct pmu_payload payload;
struct rpc_handler_payload *rpc_payload = NULL;
pmu_callback callback = NULL;
void *rpc_buff = NULL;
u32 seq = 0;
int status = 0;
if (!pmu->pmu_ready) {
nvgpu_warn(g, "PMU is not ready to process RPC");
status = EINVAL;
goto exit;
}
if (caller_cb == NULL) {
rpc_payload = nvgpu_kzalloc(g,
sizeof(struct rpc_handler_payload) + size_rpc);
if (rpc_payload == NULL) {
status = ENOMEM;
goto exit;
}
rpc_payload->rpc_buff = (u8 *)rpc_payload +
sizeof(struct rpc_handler_payload);
rpc_payload->is_mem_free_set =
is_copy_back ? false : true;
/* assign default RPC handler*/
callback = pmu_rpc_handler;
} else {
if (caller_cb_param == NULL) {
nvgpu_err(g, "Invalid cb param addr");
status = EINVAL;
goto exit;
}
rpc_payload = nvgpu_kzalloc(g,
sizeof(struct rpc_handler_payload));
if (rpc_payload == NULL) {
status = ENOMEM;
goto exit;
}
rpc_payload->rpc_buff = caller_cb_param;
rpc_payload->is_mem_free_set = true;
callback = caller_cb;
WARN_ON(is_copy_back);
}
rpc_buff = rpc_payload->rpc_buff;
(void) memset(&cmd, 0, sizeof(struct pmu_cmd));
(void) memset(&payload, 0, sizeof(struct pmu_payload));
cmd.hdr.unit_id = rpc->unit_id;
cmd.hdr.size = (u8)(PMU_CMD_HDR_SIZE + sizeof(struct nv_pmu_rpc_cmd));
cmd.cmd.rpc.cmd_type = NV_PMU_RPC_CMD_ID;
cmd.cmd.rpc.flags = rpc->flags;
nvgpu_memcpy((u8 *)rpc_buff, (u8 *)rpc, size_rpc);
payload.rpc.prpc = rpc_buff;
payload.rpc.size_rpc = size_rpc;
payload.rpc.size_scratch = size_scratch;
status = nvgpu_pmu_cmd_post(g, &cmd, NULL, &payload,
PMU_COMMAND_QUEUE_LPQ, callback,
rpc_payload, &seq);
if (status != 0) {
nvgpu_err(g, "Failed to execute RPC status=0x%x, func=0x%x",
status, rpc->function);
goto exit;
}
/*
* Option act like blocking call, which waits till RPC request
* executes on PMU & copy back processed data to rpc_buff
* to read data back in nvgpu
*/
if (is_copy_back) {
/* wait till RPC execute in PMU & ACK */
pmu_wait_message_cond(pmu, gk20a_get_gr_idle_timeout(g),
&rpc_payload->complete, 1);
/* copy back data to caller */
nvgpu_memcpy((u8 *)rpc, (u8 *)rpc_buff, size_rpc);
/* free allocated memory */
nvgpu_kfree(g, rpc_payload);
}
exit:
if (status != 0) {
if (rpc_payload != NULL) {
nvgpu_kfree(g, rpc_payload);
}
}
return status;
}