Files
linux-nvgpu/drivers/gpu/nvgpu/common/linux/nvgpu_mem.c
Sunny He 17c581d755 gpu: nvgpu: SGL passthrough implementation
The basic nvgpu_mem_sgl implementation provides support
for OS specific scatter-gather list implementations by
simply copying them node by node. This is inefficient,
taking extra time and memory.

This patch implements an nvgpu_mem_sgt struct to act as
a header which is inserted at the front of any scatter-
gather list implementation. This labels every struct
with a set of ops which can be used to interact with
the attached scatter gather list.

Since nvgpu common code only has to interact with these
function pointers, any sgl implementation can be used.
Initialization only requires the allocation of a single
struct, removing the need to copy or iterate through the
sgl being converted.

Jira NVGPU-186

Change-Id: I2994f804a4a4cc141b702e987e9081d8560ba2e8
Signed-off-by: Sunny He <suhe@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1541426
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2017-09-22 12:55:24 -07:00

490 lines
12 KiB
C

/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/log.h>
#include <nvgpu/bug.h>
#include <nvgpu/enabled.h>
#include <nvgpu/kmem.h>
#include <nvgpu/linux/dma.h>
#include "os_linux.h"
#include "gk20a/gk20a.h"
#include "gk20a/mm_gk20a.h"
u32 __nvgpu_aperture_mask(struct gk20a *g, enum nvgpu_aperture aperture,
u32 sysmem_mask, u32 vidmem_mask)
{
switch (aperture) {
case APERTURE_SYSMEM:
/* some igpus consider system memory vidmem */
return nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)
? sysmem_mask : vidmem_mask;
case APERTURE_VIDMEM:
/* for dgpus only */
return vidmem_mask;
case APERTURE_INVALID:
WARN_ON("Bad aperture");
}
return 0;
}
u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
u32 sysmem_mask, u32 vidmem_mask)
{
return __nvgpu_aperture_mask(g, mem->aperture,
sysmem_mask, vidmem_mask);
}
int nvgpu_mem_begin(struct gk20a *g, struct nvgpu_mem *mem)
{
void *cpu_va;
if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
return 0;
/*
* A CPU mapping is implicitly made for all SYSMEM DMA allocations that
* don't have NVGPU_DMA_NO_KERNEL_MAPPING. Thus we don't need to make
* another CPU mapping.
*/
if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
return 0;
if (WARN_ON(mem->cpu_va)) {
nvgpu_warn(g, "nested");
return -EBUSY;
}
cpu_va = vmap(mem->priv.pages,
PAGE_ALIGN(mem->size) >> PAGE_SHIFT,
0, pgprot_writecombine(PAGE_KERNEL));
if (WARN_ON(!cpu_va))
return -ENOMEM;
mem->cpu_va = cpu_va;
return 0;
}
void nvgpu_mem_end(struct gk20a *g, struct nvgpu_mem *mem)
{
if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
return;
/*
* Similar to nvgpu_mem_begin() we don't need to unmap the CPU mapping
* already made by the DMA API.
*/
if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
return;
vunmap(mem->cpu_va);
mem->cpu_va = NULL;
}
u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
{
u32 data = 0;
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u32 *ptr = mem->cpu_va;
WARN_ON(!ptr);
data = ptr[w];
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
#endif
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 value;
u32 *p = &value;
nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
sizeof(u32), pramin_access_batch_rd_n, &p);
data = value;
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
return data;
}
u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
{
WARN_ON(offset & 3);
return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
}
void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
u32 offset, void *dest, u32 size)
{
WARN_ON(offset & 3);
WARN_ON(size & 3);
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u8 *src = (u8 *)mem->cpu_va + offset;
WARN_ON(!mem->cpu_va);
memcpy(dest, src, size);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
if (size)
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
src, *dest, size);
#endif
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 *dest_u32 = dest;
nvgpu_pramin_access_batched(g, mem, offset, size,
pramin_access_batch_rd_n, &dest_u32);
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
{
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u32 *ptr = mem->cpu_va;
WARN_ON(!ptr);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
#endif
ptr[w] = data;
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 value = data;
u32 *p = &value;
nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
sizeof(u32), pramin_access_batch_wr_n, &p);
if (!mem->skip_wmb)
wmb();
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
{
WARN_ON(offset & 3);
nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
}
void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
void *src, u32 size)
{
WARN_ON(offset & 3);
WARN_ON(size & 3);
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(!mem->cpu_va);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
if (size)
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
dest, *src, size);
#endif
memcpy(dest, src, size);
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 *src_u32 = src;
nvgpu_pramin_access_batched(g, mem, offset, size,
pramin_access_batch_wr_n, &src_u32);
if (!mem->skip_wmb)
wmb();
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
u32 c, u32 size)
{
WARN_ON(offset & 3);
WARN_ON(size & 3);
WARN_ON(c & ~0xff);
c &= 0xff;
if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
u8 *dest = (u8 *)mem->cpu_va + offset;
WARN_ON(!mem->cpu_va);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
if (size)
gk20a_dbg(gpu_dbg_mem, " %p = 0x%x [times %d]",
dest, c, size);
#endif
memset(dest, c, size);
} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
u32 *p = &repeat_value;
nvgpu_pramin_access_batched(g, mem, offset, size,
pramin_access_batch_set, &p);
if (!mem->skip_wmb)
wmb();
} else {
WARN_ON("Accessing unallocated nvgpu_mem");
}
}
/*
* Obtain a SYSMEM address from a Linux SGL. This should eventually go away
* and/or become private to this file once all bad usages of Linux SGLs are
* cleaned up in the driver.
*/
u64 nvgpu_mem_get_addr_sgl(struct gk20a *g, struct scatterlist *sgl)
{
struct nvgpu_os_linux *l = container_of(g, struct nvgpu_os_linux, g);
if (!device_is_iommuable(l->dev))
return g->ops.mm.gpu_phys_addr(g, NULL, sg_phys(sgl));
if (sg_dma_address(sgl) == 0)
return g->ops.mm.gpu_phys_addr(g, NULL, sg_phys(sgl));
if (sg_dma_address(sgl) == DMA_ERROR_CODE)
return 0;
return gk20a_mm_smmu_vaddr_translate(g, sg_dma_address(sgl));
}
/*
* Obtain the address the GPU should use from the %mem assuming this is a SYSMEM
* allocation.
*/
static u64 nvgpu_mem_get_addr_sysmem(struct gk20a *g, struct nvgpu_mem *mem)
{
return nvgpu_mem_get_addr_sgl(g, mem->priv.sgt->sgl);
}
/*
* Return the base address of %mem. Handles whether this is a VIDMEM or SYSMEM
* allocation.
*
* %attrs can be NULL. If it is not NULL then it may be inspected to determine
* if the address needs to be modified before writing into a PTE.
*/
u64 nvgpu_mem_get_addr(struct gk20a *g, struct nvgpu_mem *mem)
{
struct nvgpu_page_alloc *alloc;
if (mem->aperture == APERTURE_SYSMEM)
return nvgpu_mem_get_addr_sysmem(g, mem);
/*
* Otherwise get the vidmem address.
*/
alloc = get_vidmem_page_alloc(mem->priv.sgt->sgl);
/* This API should not be used with > 1 chunks */
WARN_ON(alloc->nr_chunks != 1);
return alloc->base;
}
/*
* Be careful how you use this! You are responsible for correctly freeing this
* memory.
*/
int nvgpu_mem_create_from_mem(struct gk20a *g,
struct nvgpu_mem *dest, struct nvgpu_mem *src,
int start_page, int nr_pages)
{
int ret;
u64 start = start_page * PAGE_SIZE;
u64 size = nr_pages * PAGE_SIZE;
dma_addr_t new_iova;
if (src->aperture != APERTURE_SYSMEM)
return -EINVAL;
/* Some silly things a caller might do... */
if (size > src->size)
return -EINVAL;
if ((start + size) > src->size)
return -EINVAL;
dest->mem_flags = src->mem_flags | NVGPU_MEM_FLAG_SHADOW_COPY;
dest->aperture = src->aperture;
dest->skip_wmb = src->skip_wmb;
dest->size = size;
/*
* Re-use the CPU mapping only if the mapping was made by the DMA API.
*/
if (!(src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
dest->cpu_va = src->cpu_va + (PAGE_SIZE * start_page);
dest->priv.pages = src->priv.pages + start_page;
dest->priv.flags = src->priv.flags;
new_iova = sg_dma_address(src->priv.sgt->sgl) ?
sg_dma_address(src->priv.sgt->sgl) + start : 0;
/*
* Make a new SG table that is based only on the subset of pages that
* is passed to us. This table gets freed by the dma free routines.
*/
if (src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING)
ret = nvgpu_get_sgtable_from_pages(g, &dest->priv.sgt,
src->priv.pages + start_page,
new_iova, size);
else
ret = nvgpu_get_sgtable(g, &dest->priv.sgt, dest->cpu_va,
new_iova, size);
return ret;
}
int __nvgpu_mem_create_from_pages(struct gk20a *g, struct nvgpu_mem *dest,
struct page **pages, int nr_pages)
{
struct sg_table *sgt;
struct page **our_pages =
nvgpu_kmalloc(g, sizeof(struct page *) * nr_pages);
if (!our_pages)
return -ENOMEM;
memcpy(our_pages, pages, sizeof(struct page *) * nr_pages);
if (nvgpu_get_sgtable_from_pages(g, &sgt, pages, 0,
nr_pages * PAGE_SIZE)) {
nvgpu_kfree(g, our_pages);
return -ENOMEM;
}
/*
* If we are making an SGT from physical pages we can be reasonably
* certain that this should bypass the SMMU - thus we set the DMA (aka
* IOVA) address to 0. This tells the GMMU mapping code to not make a
* mapping directed to the SMMU.
*/
sg_dma_address(sgt->sgl) = 0;
dest->mem_flags = __NVGPU_MEM_FLAG_NO_DMA;
dest->aperture = APERTURE_SYSMEM;
dest->skip_wmb = 0;
dest->size = PAGE_SIZE * nr_pages;
dest->priv.flags = 0;
dest->priv.pages = our_pages;
dest->priv.sgt = sgt;
return 0;
}
static void *nvgpu_mem_linux_sgl_next(void *sgl)
{
return sg_next((struct scatterlist *)sgl);
}
static u64 nvgpu_mem_linux_sgl_phys(void *sgl)
{
return (u64)sg_phys((struct scatterlist *)sgl);
}
static u64 nvgpu_mem_linux_sgl_dma(void *sgl)
{
return (u64)sg_dma_address((struct scatterlist *)sgl);
}
static u64 nvgpu_mem_linux_sgl_length(void *sgl)
{
return (u64)((struct scatterlist *)sgl)->length;
}
static u64 nvgpu_mem_linux_sgl_gpu_addr(struct gk20a *g, void *sgl,
struct nvgpu_gmmu_attrs *attrs)
{
if (sg_dma_address((struct scatterlist *)sgl) == 0)
return g->ops.mm.gpu_phys_addr(g, attrs,
sg_phys((struct scatterlist *)sgl));
if (sg_dma_address((struct scatterlist *)sgl) == DMA_ERROR_CODE)
return 0;
return gk20a_mm_smmu_vaddr_translate(g,
sg_dma_address((struct scatterlist *)sgl));
}
static void nvgpu_mem_linux_sgl_free(struct gk20a *g, struct nvgpu_sgt *sgt)
{
/*
* Free this SGT. All we do is free the passed SGT. The actual Linux
* SGT/SGL needs to be freed separately.
*/
nvgpu_kfree(g, sgt);
}
static const struct nvgpu_sgt_ops nvgpu_linux_sgt_ops = {
.sgl_next = nvgpu_mem_linux_sgl_next,
.sgl_phys = nvgpu_mem_linux_sgl_phys,
.sgl_dma = nvgpu_mem_linux_sgl_dma,
.sgl_length = nvgpu_mem_linux_sgl_length,
.sgl_gpu_addr = nvgpu_mem_linux_sgl_gpu_addr,
.sgt_free = nvgpu_mem_linux_sgl_free,
};
static struct nvgpu_sgt *__nvgpu_mem_get_sgl_from_vidmem(
struct gk20a *g,
struct scatterlist *linux_sgl)
{
struct nvgpu_page_alloc *vidmem_alloc;
vidmem_alloc = get_vidmem_page_alloc(linux_sgl);
if (!vidmem_alloc)
return NULL;
return &vidmem_alloc->sgt;
}
struct nvgpu_sgt *nvgpu_linux_sgt_create(struct gk20a *g, struct sg_table *sgt)
{
struct nvgpu_sgt *nvgpu_sgt;
struct scatterlist *linux_sgl = sgt->sgl;
if (is_vidmem_page_alloc(sg_dma_address(linux_sgl)))
return __nvgpu_mem_get_sgl_from_vidmem(g, linux_sgl);
nvgpu_sgt = nvgpu_kzalloc(g, sizeof(*nvgpu_sgt));
if (!nvgpu_sgt)
return NULL;
nvgpu_log(g, gpu_dbg_sgl, "Making Linux SGL!");
nvgpu_sgt->sgl = sgt->sgl;
nvgpu_sgt->ops = &nvgpu_linux_sgt_ops;
return nvgpu_sgt;
}
struct nvgpu_sgt *nvgpu_sgt_create_from_mem(struct gk20a *g,
struct nvgpu_mem *mem)
{
return nvgpu_linux_sgt_create(g, mem->priv.sgt);
}