Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/vgpu/vgpu_linux.c
Sagar Kamble 6c3c360462 gpu: nvgpu: protect nvgpu power state access using spinlock
IRQs can get triggered during nvgpu power-on due to MMU fault, invalid
PRIV ring or bus access etc. Handlers for those IRQs can't access the
full state related to the IRQ unless nvgpu is fully powered on.

In order to let the IRQ handlers know about the nvgpu power-on state
gk20a.power_on_state variable has to be protected through spinlock
to avoid the deadlock due to usage of earlier power_lock mutex.

Further the IRQs need to be disabled on local CPU while updating the
power state variable hence use spin_lock_irqsave and spin_unlock_-
irqrestore APIs for protecting the access.

JIRA NVGPU-1592

Change-Id: If5d1b5e2617ad90a68faa56ff47f62bb3f0b232b
Signed-off-by: Sagar Kamble <skamble@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/2203860
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-12-15 14:05:52 -06:00

536 lines
12 KiB
C

/*
* Virtualized GPU for Linux
*
* Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/pm_qos.h>
#include <linux/platform_device.h>
#include <soc/tegra/chip-id.h>
#include <nvgpu/kmem.h>
#include <nvgpu/bug.h>
#include <nvgpu/enabled.h>
#include <nvgpu/debug.h>
#include <nvgpu/soc.h>
#include <nvgpu/defaults.h>
#include <nvgpu/ltc.h>
#include <nvgpu/channel.h>
#include <nvgpu/regops.h>
#include <nvgpu/clk_arb.h>
#include <nvgpu/gr/gr.h>
#include <nvgpu/nvgpu_init.h>
#include <nvgpu/vgpu/os_init_hal_vgpu.h>
#include "vgpu_linux.h"
#include "common/vgpu/gr/fecs_trace_vgpu.h"
#include "common/vgpu/clk_vgpu.h"
#include "common/vgpu/ivc/comm_vgpu.h"
#include "common/vgpu/intr/intr_vgpu.h"
#include "common/vgpu/init/init_vgpu.h"
#include "os/linux/module.h"
#include "os/linux/os_linux.h"
#include "os/linux/ioctl.h"
#include "os/linux/scale.h"
#include "os/linux/driver_common.h"
#include "os/linux/platform_gk20a.h"
#include "os/linux/vgpu/platform_vgpu_tegra.h"
struct vgpu_priv_data *vgpu_get_priv_data(struct gk20a *g)
{
struct gk20a_platform *plat = gk20a_get_platform(dev_from_gk20a(g));
return (struct vgpu_priv_data *)plat->vgpu_priv;
}
static void vgpu_remove_support(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
vgpu_remove_support_common(g);
/* free mappings to registers, etc*/
if (l->bar1) {
iounmap(l->bar1);
l->bar1 = NULL;
}
}
static void vgpu_init_vars(struct gk20a *g, struct gk20a_platform *platform)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
struct vgpu_priv_data *priv = vgpu_get_priv_data(g);
nvgpu_spinlock_init(&g->power_spinlock);
nvgpu_mutex_init(&g->power_lock);
nvgpu_mutex_init(&g->clk_arb_enable_lock);
nvgpu_mutex_init(&g->cg_pg_lock);
nvgpu_mutex_init(&priv->vgpu_clk_get_freq_lock);
nvgpu_mutex_init(&l->ctrl.privs_lock);
nvgpu_init_list_node(&l->ctrl.privs);
l->regs_saved = l->regs;
l->bar1_saved = l->bar1;
nvgpu_atomic_set(&g->clk_arb_global_nr, 0);
g->aggressive_sync_destroy = platform->aggressive_sync_destroy;
g->aggressive_sync_destroy_thresh = platform->aggressive_sync_destroy_thresh;
nvgpu_set_enabled(g, NVGPU_HAS_SYNCPOINTS, platform->has_syncpoints);
g->ptimer_src_freq = platform->ptimer_src_freq;
nvgpu_set_enabled(g, NVGPU_CAN_RAILGATE, platform->can_railgate_init);
g->railgate_delay = platform->railgate_delay_init;
g->mm.disable_bigpage = true;
nvgpu_set_enabled(g, NVGPU_MM_UNIFIED_MEMORY,
platform->unified_memory);
nvgpu_set_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES,
platform->unify_address_spaces);
}
static int vgpu_init_support(struct platform_device *pdev)
{
struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct gk20a *g = get_gk20a(&pdev->dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
void __iomem *regs;
int err = 0;
if (!r) {
nvgpu_err(g, "failed to get gk20a bar1");
err = -ENXIO;
goto fail;
}
if (r->name && !strcmp(r->name, "/vgpu")) {
regs = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(regs)) {
nvgpu_err(g, "failed to remap gk20a bar1");
err = PTR_ERR(regs);
goto fail;
}
l->bar1 = regs;
l->bar1_mem = r;
}
nvgpu_mutex_init(&g->dbg_sessions_lock);
nvgpu_mutex_init(&g->client_lock);
#if defined(CONFIG_NVGPU_CYCLESTATS)
nvgpu_mutex_init(&g->cs_lock);
#endif
nvgpu_init_list_node(&g->profiler_objects);
#ifdef CONFIG_NVGPU_DEBUGGER
g->dbg_regops_tmp_buf = nvgpu_kzalloc(g, SZ_4K);
if (!g->dbg_regops_tmp_buf) {
nvgpu_err(g, "couldn't allocate regops tmp buf");
err = -ENOMEM;
}
g->dbg_regops_tmp_buf_ops =
SZ_4K / sizeof(g->dbg_regops_tmp_buf[0]);
#endif
err = nvgpu_gr_alloc(g);
if (err != 0) {
nvgpu_err(g, "couldn't allocate gr memory");
goto fail;
}
g->remove_support = vgpu_remove_support;
return 0;
fail:
vgpu_remove_support(g);
return err;
}
int vgpu_pm_prepare_poweroff(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
int ret = 0;
nvgpu_log_fn(g, " ");
nvgpu_mutex_acquire(&g->power_lock);
if (nvgpu_is_powered_off(g))
goto done;
if (g->ops.channel.suspend_all_serviceable_ch != NULL) {
ret = g->ops.channel.suspend_all_serviceable_ch(g);
}
if (ret != 0) {
goto done;
}
nvgpu_set_power_state(g, NVGPU_STATE_POWERED_OFF);
done:
nvgpu_mutex_release(&g->power_lock);
return ret;
}
int vgpu_pm_finalize_poweron(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
int err = 0;
nvgpu_log_fn(g, " ");
nvgpu_mutex_acquire(&g->power_lock);
if (nvgpu_is_powered_on(g))
goto done;
nvgpu_set_power_state(g, NVGPU_STATE_POWERING_ON);
err = vgpu_finalize_poweron_common(g);
if (err)
goto done;
/* Initialize linux specific flags */
gk20a_init_linux_characteristics(g);
err = nvgpu_finalize_poweron_linux(l);
if (err)
goto done;
gk20a_sched_ctrl_init(g);
g->sw_ready = true;
nvgpu_set_power_state(g, NVGPU_STATE_POWERED_ON);
done:
nvgpu_mutex_release(&g->power_lock);
return err;
}
static int vgpu_qos_notify(struct notifier_block *nb,
unsigned long n, void *data)
{
struct gk20a_scale_profile *profile =
container_of(nb, struct gk20a_scale_profile,
qos_notify_block);
struct gk20a *g = get_gk20a(profile->dev);
u64 max_freq;
int err;
nvgpu_log_fn(g, " ");
max_freq = (u64)pm_qos_read_max_bound(PM_QOS_GPU_FREQ_BOUNDS) * 1000UL;
err = vgpu_plat_clk_cap_rate(profile->dev, max_freq);
if (err)
nvgpu_err(g, "%s failed, err=%d", __func__, err);
return NOTIFY_OK; /* need notify call further */
}
static int vgpu_pm_qos_init(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
struct gk20a_scale_profile *profile = g->scale_profile;
if (IS_ENABLED(CONFIG_GK20A_DEVFREQ)) {
if (!profile)
return -EINVAL;
} else {
profile = nvgpu_kzalloc(g, sizeof(*profile));
if (!profile)
return -ENOMEM;
g->scale_profile = profile;
}
profile->dev = dev;
profile->qos_notify_block.notifier_call = vgpu_qos_notify;
pm_qos_add_max_notifier(PM_QOS_GPU_FREQ_BOUNDS,
&profile->qos_notify_block);
return 0;
}
static void vgpu_pm_qos_remove(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
pm_qos_remove_max_notifier(PM_QOS_GPU_FREQ_BOUNDS,
&g->scale_profile->qos_notify_block);
nvgpu_kfree(g, g->scale_profile);
g->scale_profile = NULL;
}
static int vgpu_pm_init(struct device *dev)
{
struct gk20a *g = get_gk20a(dev);
struct gk20a_platform *platform = gk20a_get_platform(dev);
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
unsigned long *freqs;
int num_freqs;
int err = 0;
nvgpu_log_fn(g, " ");
if (nvgpu_platform_is_simulation(g))
return 0;
__pm_runtime_disable(dev, false);
if (IS_ENABLED(CONFIG_GK20A_DEVFREQ))
gk20a_scale_init(dev);
if (l->devfreq) {
/* set min/max frequency based on frequency table */
err = platform->get_clk_freqs(dev, &freqs, &num_freqs);
if (err)
return err;
if (num_freqs < 1)
return -EINVAL;
l->devfreq->min_freq = freqs[0];
l->devfreq->max_freq = freqs[num_freqs - 1];
}
err = vgpu_pm_qos_init(dev);
if (err)
return err;
return err;
}
int vgpu_probe(struct platform_device *pdev)
{
struct nvgpu_os_linux *l;
struct gk20a *gk20a;
int err;
struct device *dev = &pdev->dev;
struct gk20a_platform *platform = gk20a_get_platform(dev);
struct vgpu_priv_data *priv;
if (!platform) {
dev_err(dev, "no platform data\n");
return -ENODATA;
}
l = kzalloc(sizeof(*l), GFP_KERNEL);
if (!l) {
dev_err(dev, "couldn't allocate gk20a support");
return -ENOMEM;
}
gk20a = &l->g;
nvgpu_log_fn(gk20a, " ");
nvgpu_init_gk20a(gk20a);
nvgpu_kmem_init(gk20a);
err = nvgpu_init_enabled_flags(gk20a);
if (err) {
kfree(gk20a);
return err;
}
l->dev = dev;
if (tegra_platform_is_vdk())
nvgpu_set_enabled(gk20a, NVGPU_IS_FMODEL, true);
gk20a->is_virtual = true;
priv = nvgpu_kzalloc(gk20a, sizeof(*priv));
if (!priv) {
kfree(gk20a);
return -ENOMEM;
}
platform->g = gk20a;
platform->vgpu_priv = priv;
err = gk20a_user_init(dev, INTERFACE_NAME, &nvgpu_class);
if (err)
return err;
err = vgpu_init_support(pdev);
if (err != 0) {
kfree(l);
return -ENOMEM;
}
vgpu_init_vars(gk20a, platform);
init_rwsem(&l->busy_lock);
nvgpu_spinlock_init(&gk20a->mc_enable_lock);
gk20a->ch_wdt_init_limit_ms = platform->ch_wdt_init_limit_ms;
/* Initialize the platform interface. */
err = platform->probe(dev);
if (err) {
nvgpu_gr_free(gk20a);
if (err == -EPROBE_DEFER)
nvgpu_info(gk20a, "platform probe failed");
else
nvgpu_err(gk20a, "platform probe failed");
return err;
}
if (platform->late_probe) {
err = platform->late_probe(dev);
if (err) {
nvgpu_err(gk20a, "late probe failed");
nvgpu_gr_free(gk20a);
return err;
}
}
err = vgpu_comm_init(gk20a);
if (err) {
nvgpu_err(gk20a, "failed to init comm interface");
nvgpu_gr_free(gk20a);
return -ENOSYS;
}
priv->virt_handle = vgpu_connect();
if (!priv->virt_handle) {
nvgpu_err(gk20a, "failed to connect to server node");
nvgpu_gr_free(gk20a);
vgpu_comm_deinit();
return -ENOSYS;
}
err = vgpu_get_constants(gk20a);
if (err) {
vgpu_comm_deinit();
nvgpu_gr_free(gk20a);
return err;
}
err = vgpu_pm_init(dev);
if (err) {
nvgpu_err(gk20a, "pm init failed");
nvgpu_gr_free(gk20a);
return err;
}
err = nvgpu_thread_create(&priv->intr_handler, gk20a,
vgpu_intr_thread, "gk20a");
if (err) {
nvgpu_gr_free(gk20a);
return err;
}
gk20a_debug_init(gk20a, "gpu.0");
/* Set DMA parameters to allow larger sgt lists */
dev->dma_parms = &l->dma_parms;
dma_set_max_seg_size(dev, UINT_MAX);
/*
* A default of 16GB is the largest supported DMA size that is
* acceptable to all currently supported Tegra SoCs.
*/
if (!platform->dma_mask)
platform->dma_mask = DMA_BIT_MASK(34);
dma_set_mask(dev, platform->dma_mask);
dma_set_coherent_mask(dev, platform->dma_mask);
gk20a->poll_timeout_default = NVGPU_DEFAULT_POLL_TIMEOUT_MS;
gk20a->timeouts_disabled_by_user = false;
nvgpu_atomic_set(&gk20a->timeouts_disabled_refcount, 0);
vgpu_create_sysfs(dev);
nvgpu_gr_init(gk20a);
nvgpu_log_info(gk20a, "total ram pages : %lu", totalram_pages);
gk20a->max_comptag_mem = totalram_size_in_mb;
nvgpu_ref_init(&gk20a->refcount);
return 0;
}
int vgpu_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct gk20a *g = get_gk20a(dev);
nvgpu_log_fn(g, " ");
vgpu_pm_qos_remove(dev);
if (g->remove_support)
g->remove_support(g);
vgpu_comm_deinit();
gk20a_sched_ctrl_cleanup(g);
gk20a_user_deinit(dev, &nvgpu_class);
vgpu_remove_sysfs(dev);
gk20a_get_platform(dev)->g = NULL;
nvgpu_put(g);
return 0;
}
int vgpu_tegra_suspend(struct device *dev)
{
struct tegra_vgpu_cmd_msg msg = {};
struct gk20a *g = get_gk20a(dev);
int err = 0;
msg.cmd = TEGRA_VGPU_CMD_SUSPEND;
msg.handle = vgpu_get_handle(g);
err = vgpu_comm_sendrecv(&msg, sizeof(msg), sizeof(msg));
err = err ? err : msg.ret;
if (err)
nvgpu_err(g, "vGPU suspend failed\n");
return err;
}
int vgpu_tegra_resume(struct device *dev)
{
struct tegra_vgpu_cmd_msg msg = {};
struct gk20a *g = get_gk20a(dev);
int err = 0;
msg.cmd = TEGRA_VGPU_CMD_RESUME;
msg.handle = vgpu_get_handle(g);
err = vgpu_comm_sendrecv(&msg, sizeof(msg), sizeof(msg));
err = err ? err : msg.ret;
if (err)
nvgpu_err(g, "vGPU resume failed\n");
return err;
}
int vgpu_init_hal_os(struct gk20a *g)
{
return 0;
}