mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 01:50:07 +03:00
Move the inlined semaphore functions from semaphore.h to semaphore.c. Some of those have dependencies that we'd like to avoid in the header file, and none of them really need to be inline. Jira NVGPU-967 Change-Id: I40770b924c6eb54034c31e1a99b83daaa9e6a4b7 Signed-off-by: Konsta Holtta <kholtta@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1804610 Reviewed-by: svc-misra-checker <svc-misra-checker@nvidia.com> GVS: Gerrit_Virtual_Submit Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
627 lines
15 KiB
C
627 lines
15 KiB
C
/*
|
|
* Nvgpu Semaphores
|
|
*
|
|
* Copyright (c) 2014-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/semaphore.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/sizes.h>
|
|
#include <nvgpu/channel.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/mm_gk20a.h"
|
|
|
|
#define pool_to_gk20a(p) ((p)->sema_sea->gk20a)
|
|
|
|
#define __lock_sema_sea(s) \
|
|
do { \
|
|
gpu_sema_verbose_dbg(s->gk20a, "Acquiring sema lock..."); \
|
|
nvgpu_mutex_acquire(&s->sea_lock); \
|
|
gpu_sema_verbose_dbg(s->gk20a, "Sema lock aquried!"); \
|
|
} while (0)
|
|
|
|
#define __unlock_sema_sea(s) \
|
|
do { \
|
|
nvgpu_mutex_release(&s->sea_lock); \
|
|
gpu_sema_verbose_dbg(s->gk20a, "Released sema lock"); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Return the sema_sea pointer.
|
|
*/
|
|
struct nvgpu_semaphore_sea *nvgpu_semaphore_get_sea(struct gk20a *g)
|
|
{
|
|
return g->sema_sea;
|
|
}
|
|
|
|
static int __nvgpu_semaphore_sea_grow(struct nvgpu_semaphore_sea *sea)
|
|
{
|
|
int ret = 0;
|
|
struct gk20a *gk20a = sea->gk20a;
|
|
u32 i;
|
|
|
|
__lock_sema_sea(sea);
|
|
|
|
ret = nvgpu_dma_alloc_sys(gk20a,
|
|
PAGE_SIZE * SEMAPHORE_POOL_COUNT,
|
|
&sea->sea_mem);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
|
|
sea->size = SEMAPHORE_POOL_COUNT;
|
|
sea->map_size = SEMAPHORE_POOL_COUNT * PAGE_SIZE;
|
|
|
|
/*
|
|
* Start the semaphores at values that will soon overflow the 32-bit
|
|
* integer range. This way any buggy comparisons would start to fail
|
|
* sooner rather than later.
|
|
*/
|
|
for (i = 0; i < PAGE_SIZE * SEMAPHORE_POOL_COUNT; i += 4) {
|
|
nvgpu_mem_wr(gk20a, &sea->sea_mem, i, 0xfffffff0);
|
|
}
|
|
|
|
out:
|
|
__unlock_sema_sea(sea);
|
|
return ret;
|
|
}
|
|
|
|
void nvgpu_semaphore_sea_destroy(struct gk20a *g)
|
|
{
|
|
if (!g->sema_sea) {
|
|
return;
|
|
}
|
|
|
|
nvgpu_dma_free(g, &g->sema_sea->sea_mem);
|
|
nvgpu_mutex_destroy(&g->sema_sea->sea_lock);
|
|
nvgpu_kfree(g, g->sema_sea);
|
|
g->sema_sea = NULL;
|
|
}
|
|
|
|
/*
|
|
* Create the semaphore sea. Only create it once - subsequent calls to this will
|
|
* return the originally created sea pointer.
|
|
*/
|
|
struct nvgpu_semaphore_sea *nvgpu_semaphore_sea_create(struct gk20a *g)
|
|
{
|
|
if (g->sema_sea) {
|
|
return g->sema_sea;
|
|
}
|
|
|
|
g->sema_sea = nvgpu_kzalloc(g, sizeof(*g->sema_sea));
|
|
if (!g->sema_sea) {
|
|
return NULL;
|
|
}
|
|
|
|
g->sema_sea->size = 0;
|
|
g->sema_sea->page_count = 0;
|
|
g->sema_sea->gk20a = g;
|
|
nvgpu_init_list_node(&g->sema_sea->pool_list);
|
|
if (nvgpu_mutex_init(&g->sema_sea->sea_lock)) {
|
|
goto cleanup_free;
|
|
}
|
|
|
|
if (__nvgpu_semaphore_sea_grow(g->sema_sea)) {
|
|
goto cleanup_destroy;
|
|
}
|
|
|
|
gpu_sema_dbg(g, "Created semaphore sea!");
|
|
return g->sema_sea;
|
|
|
|
cleanup_destroy:
|
|
nvgpu_mutex_destroy(&g->sema_sea->sea_lock);
|
|
cleanup_free:
|
|
nvgpu_kfree(g, g->sema_sea);
|
|
g->sema_sea = NULL;
|
|
gpu_sema_dbg(g, "Failed to creat semaphore sea!");
|
|
return NULL;
|
|
}
|
|
|
|
static int __semaphore_bitmap_alloc(unsigned long *bitmap, unsigned long len)
|
|
{
|
|
unsigned long idx = find_first_zero_bit(bitmap, len);
|
|
|
|
if (idx == len) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
set_bit(idx, bitmap);
|
|
|
|
return (int)idx;
|
|
}
|
|
|
|
/*
|
|
* Allocate a pool from the sea.
|
|
*/
|
|
int nvgpu_semaphore_pool_alloc(struct nvgpu_semaphore_sea *sea,
|
|
struct nvgpu_semaphore_pool **pool)
|
|
{
|
|
struct nvgpu_semaphore_pool *p;
|
|
unsigned long page_idx;
|
|
int ret;
|
|
|
|
p = nvgpu_kzalloc(sea->gk20a, sizeof(*p));
|
|
if (!p) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
__lock_sema_sea(sea);
|
|
|
|
ret = nvgpu_mutex_init(&p->pool_lock);
|
|
if (ret) {
|
|
goto fail;
|
|
}
|
|
|
|
ret = __semaphore_bitmap_alloc(sea->pools_alloced,
|
|
SEMAPHORE_POOL_COUNT);
|
|
if (ret < 0) {
|
|
goto fail_alloc;
|
|
}
|
|
|
|
page_idx = (unsigned long)ret;
|
|
|
|
p->page_idx = page_idx;
|
|
p->sema_sea = sea;
|
|
nvgpu_init_list_node(&p->pool_list_entry);
|
|
nvgpu_ref_init(&p->ref);
|
|
|
|
sea->page_count++;
|
|
nvgpu_list_add(&p->pool_list_entry, &sea->pool_list);
|
|
__unlock_sema_sea(sea);
|
|
|
|
gpu_sema_dbg(sea->gk20a,
|
|
"Allocated semaphore pool: page-idx=%d", p->page_idx);
|
|
|
|
*pool = p;
|
|
return 0;
|
|
|
|
fail_alloc:
|
|
nvgpu_mutex_destroy(&p->pool_lock);
|
|
fail:
|
|
__unlock_sema_sea(sea);
|
|
nvgpu_kfree(sea->gk20a, p);
|
|
gpu_sema_dbg(sea->gk20a, "Failed to allocate semaphore pool!");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Map a pool into the passed vm's address space. This handles both the fixed
|
|
* global RO mapping and the non-fixed private RW mapping.
|
|
*/
|
|
int nvgpu_semaphore_pool_map(struct nvgpu_semaphore_pool *p,
|
|
struct vm_gk20a *vm)
|
|
{
|
|
int err = 0;
|
|
u64 addr;
|
|
|
|
if (p->mapped) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
"Mapping semaphore pool! (idx=%d)", p->page_idx);
|
|
|
|
/*
|
|
* Take the sea lock so that we don't race with a possible change to the
|
|
* nvgpu_mem in the sema sea.
|
|
*/
|
|
__lock_sema_sea(p->sema_sea);
|
|
|
|
addr = nvgpu_gmmu_map_fixed(vm, &p->sema_sea->sea_mem,
|
|
p->sema_sea->gpu_va,
|
|
p->sema_sea->map_size,
|
|
0, gk20a_mem_flag_read_only, 0,
|
|
p->sema_sea->sea_mem.aperture);
|
|
if (!addr) {
|
|
err = -ENOMEM;
|
|
goto fail_unlock;
|
|
}
|
|
|
|
p->gpu_va_ro = addr;
|
|
p->mapped = 1;
|
|
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
" %d: GPU read-only VA = 0x%llx",
|
|
p->page_idx, p->gpu_va_ro);
|
|
|
|
/*
|
|
* Now the RW mapping. This is a bit more complicated. We make a
|
|
* nvgpu_mem describing a page of the bigger RO space and then map
|
|
* that. Unlike above this does not need to be a fixed address.
|
|
*/
|
|
err = nvgpu_mem_create_from_mem(vm->mm->g,
|
|
&p->rw_mem, &p->sema_sea->sea_mem,
|
|
p->page_idx, 1);
|
|
if (err) {
|
|
goto fail_unmap;
|
|
}
|
|
|
|
addr = nvgpu_gmmu_map(vm, &p->rw_mem, SZ_4K, 0,
|
|
gk20a_mem_flag_none, 0,
|
|
p->rw_mem.aperture);
|
|
|
|
if (!addr) {
|
|
err = -ENOMEM;
|
|
goto fail_free_submem;
|
|
}
|
|
|
|
p->gpu_va = addr;
|
|
|
|
__unlock_sema_sea(p->sema_sea);
|
|
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
" %d: GPU read-write VA = 0x%llx",
|
|
p->page_idx, p->gpu_va);
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
" %d: CPU VA = 0x%p",
|
|
p->page_idx, p->rw_mem.cpu_va);
|
|
|
|
return 0;
|
|
|
|
fail_free_submem:
|
|
nvgpu_dma_free(pool_to_gk20a(p), &p->rw_mem);
|
|
fail_unmap:
|
|
nvgpu_gmmu_unmap(vm, &p->sema_sea->sea_mem, p->gpu_va_ro);
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
" %d: Failed to map semaphore pool!", p->page_idx);
|
|
fail_unlock:
|
|
__unlock_sema_sea(p->sema_sea);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unmap a semaphore_pool.
|
|
*/
|
|
void nvgpu_semaphore_pool_unmap(struct nvgpu_semaphore_pool *p,
|
|
struct vm_gk20a *vm)
|
|
{
|
|
__lock_sema_sea(p->sema_sea);
|
|
|
|
nvgpu_gmmu_unmap(vm, &p->sema_sea->sea_mem, p->gpu_va_ro);
|
|
nvgpu_gmmu_unmap(vm, &p->rw_mem, p->gpu_va);
|
|
nvgpu_dma_free(pool_to_gk20a(p), &p->rw_mem);
|
|
|
|
p->gpu_va = 0;
|
|
p->gpu_va_ro = 0;
|
|
p->mapped = 0;
|
|
|
|
__unlock_sema_sea(p->sema_sea);
|
|
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
"Unmapped semaphore pool! (idx=%d)", p->page_idx);
|
|
}
|
|
|
|
/*
|
|
* Completely free a semaphore_pool. You should make sure this pool is not
|
|
* mapped otherwise there's going to be a memory leak.
|
|
*/
|
|
static void nvgpu_semaphore_pool_free(struct nvgpu_ref *ref)
|
|
{
|
|
struct nvgpu_semaphore_pool *p =
|
|
container_of(ref, struct nvgpu_semaphore_pool, ref);
|
|
struct nvgpu_semaphore_sea *s = p->sema_sea;
|
|
|
|
/* Freeing a mapped pool is a bad idea. */
|
|
WARN_ON(p->mapped || p->gpu_va || p->gpu_va_ro);
|
|
|
|
__lock_sema_sea(s);
|
|
nvgpu_list_del(&p->pool_list_entry);
|
|
clear_bit(p->page_idx, s->pools_alloced);
|
|
s->page_count--;
|
|
__unlock_sema_sea(s);
|
|
|
|
nvgpu_mutex_destroy(&p->pool_lock);
|
|
|
|
gpu_sema_dbg(pool_to_gk20a(p),
|
|
"Freed semaphore pool! (idx=%d)", p->page_idx);
|
|
nvgpu_kfree(p->sema_sea->gk20a, p);
|
|
}
|
|
|
|
void nvgpu_semaphore_pool_get(struct nvgpu_semaphore_pool *p)
|
|
{
|
|
nvgpu_ref_get(&p->ref);
|
|
}
|
|
|
|
void nvgpu_semaphore_pool_put(struct nvgpu_semaphore_pool *p)
|
|
{
|
|
nvgpu_ref_put(&p->ref, nvgpu_semaphore_pool_free);
|
|
}
|
|
|
|
/*
|
|
* Get the address for a semaphore_pool - if global is true then return the
|
|
* global RO address instead of the RW address owned by the semaphore's VM.
|
|
*/
|
|
u64 __nvgpu_semaphore_pool_gpu_va(struct nvgpu_semaphore_pool *p, bool global)
|
|
{
|
|
if (!global) {
|
|
return p->gpu_va;
|
|
}
|
|
|
|
return p->gpu_va_ro + (PAGE_SIZE * p->page_idx);
|
|
}
|
|
|
|
static int __nvgpu_init_hw_sema(struct channel_gk20a *ch)
|
|
{
|
|
int hw_sema_idx;
|
|
int ret = 0;
|
|
struct nvgpu_semaphore_int *hw_sema;
|
|
struct nvgpu_semaphore_pool *p = ch->vm->sema_pool;
|
|
int current_value;
|
|
|
|
BUG_ON(!p);
|
|
|
|
nvgpu_mutex_acquire(&p->pool_lock);
|
|
|
|
/* Find an available HW semaphore. */
|
|
hw_sema_idx = __semaphore_bitmap_alloc(p->semas_alloced,
|
|
PAGE_SIZE / SEMAPHORE_SIZE);
|
|
if (hw_sema_idx < 0) {
|
|
ret = hw_sema_idx;
|
|
goto fail;
|
|
}
|
|
|
|
hw_sema = nvgpu_kzalloc(ch->g, sizeof(struct nvgpu_semaphore_int));
|
|
if (!hw_sema) {
|
|
ret = -ENOMEM;
|
|
goto fail_free_idx;
|
|
}
|
|
|
|
ch->hw_sema = hw_sema;
|
|
hw_sema->ch = ch;
|
|
hw_sema->location.pool = p;
|
|
hw_sema->location.offset = SEMAPHORE_SIZE * hw_sema_idx;
|
|
current_value = nvgpu_mem_rd(ch->g, &p->rw_mem,
|
|
hw_sema->location.offset);
|
|
nvgpu_atomic_set(&hw_sema->next_value, current_value);
|
|
|
|
nvgpu_mutex_release(&p->pool_lock);
|
|
|
|
return 0;
|
|
|
|
fail_free_idx:
|
|
clear_bit(hw_sema_idx, p->semas_alloced);
|
|
fail:
|
|
nvgpu_mutex_release(&p->pool_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free the channel used semaphore index
|
|
*/
|
|
void nvgpu_semaphore_free_hw_sema(struct channel_gk20a *ch)
|
|
{
|
|
struct nvgpu_semaphore_pool *p = ch->vm->sema_pool;
|
|
struct nvgpu_semaphore_int *hw_sema = ch->hw_sema;
|
|
int idx = hw_sema->location.offset / SEMAPHORE_SIZE;
|
|
|
|
BUG_ON(!p);
|
|
|
|
nvgpu_mutex_acquire(&p->pool_lock);
|
|
|
|
clear_bit(idx, p->semas_alloced);
|
|
|
|
nvgpu_kfree(ch->g, hw_sema);
|
|
ch->hw_sema = NULL;
|
|
|
|
nvgpu_mutex_release(&p->pool_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate a semaphore from the passed pool.
|
|
*
|
|
* Since semaphores are ref-counted there's no explicit free for external code
|
|
* to use. When the ref-count hits 0 the internal free will happen.
|
|
*/
|
|
struct nvgpu_semaphore *nvgpu_semaphore_alloc(struct channel_gk20a *ch)
|
|
{
|
|
struct nvgpu_semaphore *s;
|
|
int ret;
|
|
|
|
if (!ch->hw_sema) {
|
|
ret = __nvgpu_init_hw_sema(ch);
|
|
if (ret) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
s = nvgpu_kzalloc(ch->g, sizeof(*s));
|
|
if (!s) {
|
|
return NULL;
|
|
}
|
|
|
|
nvgpu_ref_init(&s->ref);
|
|
s->g = ch->g;
|
|
s->location = ch->hw_sema->location;
|
|
nvgpu_atomic_set(&s->value, 0);
|
|
|
|
/*
|
|
* Take a ref on the pool so that we can keep this pool alive for
|
|
* as long as this semaphore is alive.
|
|
*/
|
|
nvgpu_semaphore_pool_get(s->location.pool);
|
|
|
|
gpu_sema_dbg(ch->g, "Allocated semaphore (c=%d)", ch->chid);
|
|
|
|
return s;
|
|
}
|
|
|
|
static void nvgpu_semaphore_free(struct nvgpu_ref *ref)
|
|
{
|
|
struct nvgpu_semaphore *s =
|
|
container_of(ref, struct nvgpu_semaphore, ref);
|
|
|
|
nvgpu_semaphore_pool_put(s->location.pool);
|
|
|
|
nvgpu_kfree(s->g, s);
|
|
}
|
|
|
|
void nvgpu_semaphore_put(struct nvgpu_semaphore *s)
|
|
{
|
|
nvgpu_ref_put(&s->ref, nvgpu_semaphore_free);
|
|
}
|
|
|
|
void nvgpu_semaphore_get(struct nvgpu_semaphore *s)
|
|
{
|
|
nvgpu_ref_get(&s->ref);
|
|
}
|
|
|
|
/*
|
|
* Return the address of a specific semaphore.
|
|
*
|
|
* Don't call this on a semaphore you don't own - the VA returned will make no
|
|
* sense in your specific channel's VM.
|
|
*/
|
|
u64 nvgpu_semaphore_gpu_rw_va(struct nvgpu_semaphore *s)
|
|
{
|
|
return __nvgpu_semaphore_pool_gpu_va(s->location.pool, false) +
|
|
s->location.offset;
|
|
}
|
|
|
|
/*
|
|
* Get the global RO address for the semaphore. Can be called on any semaphore
|
|
* regardless of whether you own it.
|
|
*/
|
|
u64 nvgpu_semaphore_gpu_ro_va(struct nvgpu_semaphore *s)
|
|
{
|
|
return __nvgpu_semaphore_pool_gpu_va(s->location.pool, true) +
|
|
s->location.offset;
|
|
}
|
|
|
|
u64 nvgpu_hw_sema_addr(struct nvgpu_semaphore_int *hw_sema)
|
|
{
|
|
return __nvgpu_semaphore_pool_gpu_va(hw_sema->location.pool, true) +
|
|
hw_sema->location.offset;
|
|
}
|
|
|
|
u32 __nvgpu_semaphore_read(struct nvgpu_semaphore_int *hw_sema)
|
|
{
|
|
return nvgpu_mem_rd(hw_sema->ch->g, &hw_sema->location.pool->rw_mem,
|
|
hw_sema->location.offset);
|
|
}
|
|
|
|
/*
|
|
* Read the underlying value from a semaphore.
|
|
*/
|
|
u32 nvgpu_semaphore_read(struct nvgpu_semaphore *s)
|
|
{
|
|
return nvgpu_mem_rd(s->g, &s->location.pool->rw_mem,
|
|
s->location.offset);
|
|
}
|
|
|
|
/*
|
|
* Check if "racer" is over "goal" with wraparound handling.
|
|
*/
|
|
static bool __nvgpu_semaphore_value_released(u32 goal, u32 racer)
|
|
{
|
|
/*
|
|
* Handle wraparound with the same heuristic as the hardware does:
|
|
* although the integer will eventually wrap around, consider a sema
|
|
* released against a threshold if its value has passed that threshold
|
|
* but has not wrapped over half of the u32 range over that threshold;
|
|
* such wrapping is unlikely to happen during a sema lifetime.
|
|
*
|
|
* Values for [goal, goal + 0x7fffffff] are considered signaled; that's
|
|
* precisely half of the 32-bit space. If racer == goal + 0x80000000,
|
|
* then it needs 0x80000000 increments to wrap again and signal.
|
|
*
|
|
* Unsigned arithmetic is used because it's well-defined. This is
|
|
* effectively the same as: signed_racer - signed_goal > 0.
|
|
*/
|
|
|
|
return racer - goal < 0x80000000;
|
|
}
|
|
|
|
u32 nvgpu_semaphore_get_value(struct nvgpu_semaphore *s)
|
|
{
|
|
return (u32)nvgpu_atomic_read(&s->value);
|
|
}
|
|
|
|
bool nvgpu_semaphore_is_released(struct nvgpu_semaphore *s)
|
|
{
|
|
u32 sema_val = nvgpu_semaphore_read(s);
|
|
u32 wait_payload = nvgpu_semaphore_get_value(s);
|
|
|
|
return __nvgpu_semaphore_value_released(wait_payload, sema_val);
|
|
}
|
|
|
|
bool nvgpu_semaphore_is_acquired(struct nvgpu_semaphore *s)
|
|
{
|
|
return !nvgpu_semaphore_is_released(s);
|
|
}
|
|
|
|
/*
|
|
* Fast-forward the hw sema to its tracked max value.
|
|
*
|
|
* Return true if the sema wasn't at the max value and needed updating, false
|
|
* otherwise.
|
|
*/
|
|
bool nvgpu_semaphore_reset(struct nvgpu_semaphore_int *hw_sema)
|
|
{
|
|
u32 threshold = (u32)nvgpu_atomic_read(&hw_sema->next_value);
|
|
u32 current_val = __nvgpu_semaphore_read(hw_sema);
|
|
|
|
/*
|
|
* If the semaphore has already reached the value we would write then
|
|
* this is really just a NO-OP. However, the sema value shouldn't be
|
|
* more than what we expect to be the max.
|
|
*/
|
|
|
|
if (WARN_ON(__nvgpu_semaphore_value_released(threshold + 1,
|
|
current_val)))
|
|
return false;
|
|
|
|
if (current_val == threshold)
|
|
return false;
|
|
|
|
nvgpu_mem_wr(hw_sema->ch->g, &hw_sema->location.pool->rw_mem,
|
|
hw_sema->location.offset, threshold);
|
|
|
|
gpu_sema_verbose_dbg(hw_sema->ch->g, "(c=%d) RESET %u -> %u",
|
|
hw_sema->ch->chid, current_val, threshold);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Update nvgpu-tracked shadow of the value in "hw_sema" and mark the threshold
|
|
* value to "s" which represents the increment that the caller must write in a
|
|
* pushbuf. The same nvgpu_semaphore will also represent an output fence; when
|
|
* nvgpu_semaphore_is_released(s) == true, the gpu is done with this increment.
|
|
*/
|
|
void nvgpu_semaphore_prepare(struct nvgpu_semaphore *s,
|
|
struct nvgpu_semaphore_int *hw_sema)
|
|
{
|
|
int next = nvgpu_atomic_add_return(1, &hw_sema->next_value);
|
|
|
|
/* "s" should be an uninitialized sema. */
|
|
WARN_ON(s->incremented);
|
|
|
|
nvgpu_atomic_set(&s->value, next);
|
|
s->incremented = 1;
|
|
|
|
gpu_sema_verbose_dbg(s->g, "INCR sema for c=%d (%u)",
|
|
hw_sema->ch->chid, next);
|
|
}
|