Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/vm.c
Alex Waterman 840e039d57 gpu: nvgpu: Update Linux side VM code for API solidification
Update the Linux specific code to match the MM API docs in the
previous patch. The user passed page size is plumbed through
the Linux VM mapping calls but is ultimately ignored once the
core VM code is called. This will be handled in the next
patch.

This also adds some code to make the CDE page size picking
happen semi-intelligently. In many cases the CDE buffers can
be mapped with large pages.

Bug 2011640

Change-Id: I20e78e7d5a841e410864b474179e71da1c2482f4
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1740610
GVS: Gerrit_Virtual_Submit
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-06-22 10:04:16 -07:00

352 lines
9.1 KiB
C

/*
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/dma-buf.h>
#include <linux/scatterlist.h>
#include <uapi/linux/nvgpu.h>
#include <nvgpu/log.h>
#include <nvgpu/lock.h>
#include <nvgpu/rbtree.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/linux/vm.h>
#include <nvgpu/linux/vidmem.h>
#include <nvgpu/linux/nvgpu_mem.h>
#include "gk20a/gk20a.h"
#include "gk20a/mm_gk20a.h"
#include "platform_gk20a.h"
#include "os_linux.h"
#include "dmabuf.h"
static u32 nvgpu_vm_translate_linux_flags(struct gk20a *g, u32 flags)
{
u32 core_flags = 0;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)
core_flags |= NVGPU_VM_MAP_FIXED_OFFSET;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_CACHEABLE)
core_flags |= NVGPU_VM_MAP_CACHEABLE;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_IO_COHERENT)
core_flags |= NVGPU_VM_MAP_IO_COHERENT;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_UNMAPPED_PTE)
core_flags |= NVGPU_VM_MAP_UNMAPPED_PTE;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_L3_ALLOC)
core_flags |= NVGPU_VM_MAP_L3_ALLOC;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_DIRECT_KIND_CTRL)
core_flags |= NVGPU_VM_MAP_DIRECT_KIND_CTRL;
if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS)
nvgpu_warn(g, "Ignoring deprecated flag: "
"NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS");
return core_flags;
}
static struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_reverse(
struct vm_gk20a *vm, struct dma_buf *dmabuf, u32 kind)
{
struct nvgpu_rbtree_node *node = NULL;
struct nvgpu_rbtree_node *root = vm->mapped_buffers;
nvgpu_rbtree_enum_start(0, &node, root);
while (node) {
struct nvgpu_mapped_buf *mapped_buffer =
mapped_buffer_from_rbtree_node(node);
if (mapped_buffer->os_priv.dmabuf == dmabuf &&
mapped_buffer->kind == kind)
return mapped_buffer;
nvgpu_rbtree_enum_next(&node, node);
}
return NULL;
}
int nvgpu_vm_find_buf(struct vm_gk20a *vm, u64 gpu_va,
struct dma_buf **dmabuf,
u64 *offset)
{
struct nvgpu_mapped_buf *mapped_buffer;
struct gk20a *g = gk20a_from_vm(vm);
nvgpu_log_fn(g, "gpu_va=0x%llx", gpu_va);
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
mapped_buffer = __nvgpu_vm_find_mapped_buf_range(vm, gpu_va);
if (!mapped_buffer) {
nvgpu_mutex_release(&vm->update_gmmu_lock);
return -EINVAL;
}
*dmabuf = mapped_buffer->os_priv.dmabuf;
*offset = gpu_va - mapped_buffer->addr;
nvgpu_mutex_release(&vm->update_gmmu_lock);
return 0;
}
u64 nvgpu_os_buf_get_size(struct nvgpu_os_buffer *os_buf)
{
return os_buf->dmabuf->size;
}
/*
* vm->update_gmmu_lock must be held. This checks to see if we already have
* mapped the passed buffer into this VM. If so, just return the existing
* mapping address.
*/
struct nvgpu_mapped_buf *nvgpu_vm_find_mapping(struct vm_gk20a *vm,
struct nvgpu_os_buffer *os_buf,
u64 map_addr,
u32 flags,
int kind)
{
struct gk20a *g = gk20a_from_vm(vm);
struct nvgpu_mapped_buf *mapped_buffer = NULL;
if (flags & NVGPU_VM_MAP_FIXED_OFFSET) {
mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, map_addr);
if (!mapped_buffer)
return NULL;
if (mapped_buffer->os_priv.dmabuf != os_buf->dmabuf ||
mapped_buffer->kind != (u32)kind)
return NULL;
} else {
mapped_buffer =
__nvgpu_vm_find_mapped_buf_reverse(vm,
os_buf->dmabuf,
kind);
if (!mapped_buffer)
return NULL;
}
if (mapped_buffer->flags != flags)
return NULL;
/*
* If we find the mapping here then that means we have mapped it already
* and the prior pin and get must be undone.
*/
gk20a_mm_unpin(os_buf->dev, os_buf->dmabuf, os_buf->attachment,
mapped_buffer->os_priv.sgt);
dma_buf_put(os_buf->dmabuf);
nvgpu_log(g, gpu_dbg_map,
"gv: 0x%04x_%08x + 0x%-7zu "
"[dma: 0x%010llx, pa: 0x%010llx] "
"pgsz=%-3dKb as=%-2d "
"flags=0x%x apt=%s (reused)",
u64_hi32(mapped_buffer->addr), u64_lo32(mapped_buffer->addr),
os_buf->dmabuf->size,
(u64)sg_dma_address(mapped_buffer->os_priv.sgt->sgl),
(u64)sg_phys(mapped_buffer->os_priv.sgt->sgl),
vm->gmmu_page_sizes[mapped_buffer->pgsz_idx] >> 10,
vm_aspace_id(vm),
mapped_buffer->flags,
nvgpu_aperture_str(g,
gk20a_dmabuf_aperture(g, os_buf->dmabuf)));
return mapped_buffer;
}
int nvgpu_vm_map_linux(struct vm_gk20a *vm,
struct dma_buf *dmabuf,
u64 map_addr,
u32 flags,
u32 page_size,
s16 compr_kind,
s16 incompr_kind,
int rw_flag,
u64 buffer_offset,
u64 mapping_size,
struct vm_gk20a_mapping_batch *batch,
u64 *gpu_va)
{
struct gk20a *g = gk20a_from_vm(vm);
struct device *dev = dev_from_gk20a(g);
struct nvgpu_os_buffer os_buf;
struct sg_table *sgt;
struct nvgpu_sgt *nvgpu_sgt = NULL;
struct nvgpu_mapped_buf *mapped_buffer = NULL;
struct dma_buf_attachment *attachment;
int err = 0;
sgt = gk20a_mm_pin(dev, dmabuf, &attachment);
if (IS_ERR(sgt)) {
nvgpu_warn(g, "Failed to pin dma_buf!");
return PTR_ERR(sgt);
}
os_buf.dmabuf = dmabuf;
os_buf.attachment = attachment;
os_buf.dev = dev;
if (gk20a_dmabuf_aperture(g, dmabuf) == APERTURE_INVALID) {
err = -EINVAL;
goto clean_up;
}
nvgpu_sgt = nvgpu_linux_sgt_create(g, sgt);
if (!nvgpu_sgt) {
err = -ENOMEM;
goto clean_up;
}
mapped_buffer = nvgpu_vm_map(vm,
&os_buf,
nvgpu_sgt,
map_addr,
mapping_size,
buffer_offset,
rw_flag,
flags,
compr_kind,
incompr_kind,
batch,
gk20a_dmabuf_aperture(g, dmabuf));
nvgpu_sgt_free(g, nvgpu_sgt);
if (IS_ERR(mapped_buffer)) {
err = PTR_ERR(mapped_buffer);
goto clean_up;
}
mapped_buffer->os_priv.dmabuf = dmabuf;
mapped_buffer->os_priv.attachment = attachment;
mapped_buffer->os_priv.sgt = sgt;
*gpu_va = mapped_buffer->addr;
return 0;
clean_up:
gk20a_mm_unpin(dev, dmabuf, attachment, sgt);
return err;
}
int nvgpu_vm_map_buffer(struct vm_gk20a *vm,
int dmabuf_fd,
u64 *map_addr,
u32 flags, /*NVGPU_AS_MAP_BUFFER_FLAGS_*/
u32 page_size,
s16 compr_kind,
s16 incompr_kind,
u64 buffer_offset,
u64 mapping_size,
struct vm_gk20a_mapping_batch *batch)
{
struct gk20a *g = gk20a_from_vm(vm);
struct dma_buf *dmabuf;
u64 ret_va;
int err = 0;
/* get ref to the mem handle (released on unmap_locked) */
dmabuf = dma_buf_get(dmabuf_fd);
if (IS_ERR(dmabuf)) {
nvgpu_warn(g, "%s: fd %d is not a dmabuf",
__func__, dmabuf_fd);
return PTR_ERR(dmabuf);
}
/*
* For regular maps we do not accept either an input address or a
* buffer_offset.
*/
if (!(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) &&
(buffer_offset || *map_addr)) {
nvgpu_err(g,
"Regular map with addr/buf offset is not supported!");
return -EINVAL;
}
/*
* Map size is always buffer size for non fixed mappings. As such map
* size should be left as zero by userspace for non-fixed maps.
*/
if (mapping_size && !(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)) {
nvgpu_err(g, "map_size && non-fixed-mapping!");
return -EINVAL;
}
/* verify that we're not overflowing the buffer, i.e.
* (buffer_offset + mapping_size) > dmabuf->size.
*
* Since buffer_offset + mapping_size could overflow, first check
* that mapping size < dmabuf_size, at which point we can subtract
* mapping_size from both sides for the final comparison.
*/
if ((mapping_size > dmabuf->size) ||
(buffer_offset > (dmabuf->size - mapping_size))) {
nvgpu_err(g,
"buf size %llx < (offset(%llx) + map_size(%llx))",
(u64)dmabuf->size, buffer_offset, mapping_size);
dma_buf_put(dmabuf);
return -EINVAL;
}
err = gk20a_dmabuf_alloc_drvdata(dmabuf, dev_from_vm(vm));
if (err) {
dma_buf_put(dmabuf);
return err;
}
err = nvgpu_vm_map_linux(vm, dmabuf, *map_addr,
nvgpu_vm_translate_linux_flags(g, flags),
page_size,
compr_kind, incompr_kind,
gk20a_mem_flag_none,
buffer_offset,
mapping_size,
batch,
&ret_va);
if (!err)
*map_addr = ret_va;
else
dma_buf_put(dmabuf);
return err;
}
/*
* This is the function call-back for freeing OS specific components of an
* nvgpu_mapped_buf. This should most likely never be called outside of the
* core MM framework!
*
* Note: the VM lock will be held.
*/
void nvgpu_vm_unmap_system(struct nvgpu_mapped_buf *mapped_buffer)
{
struct vm_gk20a *vm = mapped_buffer->vm;
gk20a_mm_unpin(dev_from_vm(vm), mapped_buffer->os_priv.dmabuf,
mapped_buffer->os_priv.attachment,
mapped_buffer->os_priv.sgt);
dma_buf_put(mapped_buffer->os_priv.dmabuf);
}