mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 09:57:08 +03:00
Add below rc_types to be passed to gk20a_fifo_recover MMU_FAULT PBDMA_FAULT GR_FAULT PREEMPT_TIMEOUT CTXSW_TIMEOUT RUNLIST_UPDATE_TIMEOUT FORCE_RESET SCHED_ERR This is nice to have to know what triggered recovery. Bug 2065990 Change-Id: I202268c5f237be2180b438e8ba027fce684967b6 Signed-off-by: Seema Khowala <seemaj@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1662619 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
1938 lines
55 KiB
C
1938 lines
55 KiB
C
/*
|
|
* GV11B fifo
|
|
*
|
|
* Copyright (c) 2015-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/semaphore.h>
|
|
#include <nvgpu/timers.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/soc.h>
|
|
#include <nvgpu/debug.h>
|
|
#include <nvgpu/nvhost.h>
|
|
#include <nvgpu/barrier.h>
|
|
#include <nvgpu/mm.h>
|
|
#include <nvgpu/log2.h>
|
|
#include <nvgpu/ctxsw_trace.h>
|
|
#include <nvgpu/io_usermode.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/fifo_gk20a.h"
|
|
#include "gk20a/channel_gk20a.h"
|
|
|
|
#include "gp10b/fifo_gp10b.h"
|
|
|
|
#include <nvgpu/hw/gv11b/hw_pbdma_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_fifo_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_ram_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_ccsr_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_usermode_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_top_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_gmmu_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_mc_gv11b.h>
|
|
#include <nvgpu/hw/gv11b/hw_gr_gv11b.h>
|
|
|
|
#include "fifo_gv11b.h"
|
|
#include "subctx_gv11b.h"
|
|
#include "gr_gv11b.h"
|
|
#include "mc_gv11b.h"
|
|
|
|
void gv11b_get_tsg_runlist_entry(struct tsg_gk20a *tsg, u32 *runlist)
|
|
{
|
|
|
|
u32 runlist_entry_0 = ram_rl_entry_type_tsg_v();
|
|
|
|
if (tsg->timeslice_timeout)
|
|
runlist_entry_0 |=
|
|
ram_rl_entry_tsg_timeslice_scale_f(tsg->timeslice_scale) |
|
|
ram_rl_entry_tsg_timeslice_timeout_f(tsg->timeslice_timeout);
|
|
else
|
|
runlist_entry_0 |=
|
|
ram_rl_entry_tsg_timeslice_scale_f(
|
|
ram_rl_entry_tsg_timeslice_scale_3_v()) |
|
|
ram_rl_entry_tsg_timeslice_timeout_f(
|
|
ram_rl_entry_tsg_timeslice_timeout_128_v());
|
|
|
|
runlist[0] = runlist_entry_0;
|
|
runlist[1] = ram_rl_entry_tsg_length_f(tsg->num_active_channels);
|
|
runlist[2] = ram_rl_entry_tsg_tsgid_f(tsg->tsgid);
|
|
runlist[3] = 0;
|
|
|
|
gk20a_dbg_info("gv11b tsg runlist [0] %x [1] %x [2] %x [3] %x\n",
|
|
runlist[0], runlist[1], runlist[2], runlist[3]);
|
|
|
|
}
|
|
|
|
void gv11b_get_ch_runlist_entry(struct channel_gk20a *c, u32 *runlist)
|
|
{
|
|
struct gk20a *g = c->g;
|
|
u32 addr_lo, addr_hi;
|
|
u32 runlist_entry;
|
|
|
|
/* Time being use 0 pbdma sequencer */
|
|
runlist_entry = ram_rl_entry_type_channel_v() |
|
|
ram_rl_entry_chan_runqueue_selector_f(
|
|
c->runqueue_sel) |
|
|
ram_rl_entry_chan_userd_target_f(
|
|
nvgpu_aperture_mask(g, &g->fifo.userd,
|
|
ram_rl_entry_chan_userd_target_sys_mem_ncoh_v(),
|
|
ram_rl_entry_chan_userd_target_sys_mem_coh_v(),
|
|
ram_rl_entry_chan_userd_target_vid_mem_v())) |
|
|
ram_rl_entry_chan_inst_target_f(
|
|
nvgpu_aperture_mask(g, &c->inst_block,
|
|
ram_rl_entry_chan_inst_target_sys_mem_ncoh_v(),
|
|
ram_rl_entry_chan_inst_target_sys_mem_coh_v(),
|
|
ram_rl_entry_chan_inst_target_vid_mem_v()));
|
|
|
|
addr_lo = u64_lo32(c->userd_iova) >>
|
|
ram_rl_entry_chan_userd_ptr_align_shift_v();
|
|
addr_hi = u64_hi32(c->userd_iova);
|
|
runlist[0] = runlist_entry | ram_rl_entry_chan_userd_ptr_lo_f(addr_lo);
|
|
runlist[1] = ram_rl_entry_chan_userd_ptr_hi_f(addr_hi);
|
|
|
|
addr_lo = u64_lo32(nvgpu_inst_block_addr(g, &c->inst_block)) >>
|
|
ram_rl_entry_chan_inst_ptr_align_shift_v();
|
|
addr_hi = u64_hi32(nvgpu_inst_block_addr(g, &c->inst_block));
|
|
|
|
runlist[2] = ram_rl_entry_chan_inst_ptr_lo_f(addr_lo) |
|
|
ram_rl_entry_chid_f(c->chid);
|
|
runlist[3] = ram_rl_entry_chan_inst_ptr_hi_f(addr_hi);
|
|
|
|
gk20a_dbg_info("gv11b channel runlist [0] %x [1] %x [2] %x [3] %x\n",
|
|
runlist[0], runlist[1], runlist[2], runlist[3]);
|
|
}
|
|
|
|
void gv11b_userd_writeback_config(struct gk20a *g)
|
|
{
|
|
gk20a_writel(g, fifo_userd_writeback_r(), fifo_userd_writeback_timer_f(
|
|
fifo_userd_writeback_timer_100us_v()));
|
|
|
|
|
|
}
|
|
|
|
int channel_gv11b_setup_ramfc(struct channel_gk20a *c,
|
|
u64 gpfifo_base, u32 gpfifo_entries,
|
|
unsigned long acquire_timeout, u32 flags)
|
|
{
|
|
struct gk20a *g = c->g;
|
|
struct nvgpu_mem *mem = &c->inst_block;
|
|
u32 data;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
nvgpu_memset(g, mem, 0, 0, ram_fc_size_val_v());
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_gp_base_w(),
|
|
pbdma_gp_base_offset_f(
|
|
u64_lo32(gpfifo_base >> pbdma_gp_base_rsvd_s())));
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_gp_base_hi_w(),
|
|
pbdma_gp_base_hi_offset_f(u64_hi32(gpfifo_base)) |
|
|
pbdma_gp_base_hi_limit2_f(ilog2(gpfifo_entries)));
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_signature_w(),
|
|
c->g->ops.fifo.get_pbdma_signature(c->g));
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_pb_header_w(),
|
|
pbdma_pb_header_method_zero_f() |
|
|
pbdma_pb_header_subchannel_zero_f() |
|
|
pbdma_pb_header_level_main_f() |
|
|
pbdma_pb_header_first_true_f() |
|
|
pbdma_pb_header_type_inc_f());
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_subdevice_w(),
|
|
pbdma_subdevice_id_f(PBDMA_SUBDEVICE_ID) |
|
|
pbdma_subdevice_status_active_f() |
|
|
pbdma_subdevice_channel_dma_enable_f());
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_target_w(),
|
|
pbdma_target_eng_ctx_valid_true_f() |
|
|
pbdma_target_ce_ctx_valid_true_f() |
|
|
pbdma_target_engine_sw_f());
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_acquire_w(),
|
|
g->ops.fifo.pbdma_acquire_val(acquire_timeout));
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_runlist_timeslice_w(),
|
|
pbdma_runlist_timeslice_timeout_128_f() |
|
|
pbdma_runlist_timeslice_timescale_3_f() |
|
|
pbdma_runlist_timeslice_enable_true_f());
|
|
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_chid_w(), ram_fc_chid_id_f(c->chid));
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_fc_set_channel_info_w(),
|
|
pbdma_set_channel_info_veid_f(c->subctx_id));
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_in_engine_wfi_veid_w(),
|
|
ram_in_engine_wfi_veid_f(c->subctx_id));
|
|
|
|
gv11b_fifo_init_ramfc_eng_method_buffer(g, c, mem);
|
|
|
|
if (c->is_privileged_channel) {
|
|
/* Set privilege level for channel */
|
|
nvgpu_mem_wr32(g, mem, ram_fc_config_w(),
|
|
pbdma_config_auth_level_privileged_f());
|
|
|
|
gk20a_fifo_setup_ramfc_for_privileged_channel(c);
|
|
}
|
|
|
|
/* Enable userd writeback */
|
|
data = nvgpu_mem_rd32(g, mem, ram_fc_config_w());
|
|
data = data | pbdma_config_userd_writeback_enable_f();
|
|
nvgpu_mem_wr32(g, mem, ram_fc_config_w(),data);
|
|
|
|
gv11b_userd_writeback_config(g);
|
|
|
|
return channel_gp10b_commit_userd(c);
|
|
}
|
|
|
|
|
|
void gv11b_ring_channel_doorbell(struct channel_gk20a *c)
|
|
{
|
|
struct fifo_gk20a *f = &c->g->fifo;
|
|
u32 hw_chid = f->channel_base + c->chid;
|
|
|
|
gk20a_dbg_info("channel ring door bell %d\n", c->chid);
|
|
|
|
nvgpu_usermode_writel(c->g, usermode_notify_channel_pending_r(),
|
|
usermode_notify_channel_pending_id_f(hw_chid));
|
|
}
|
|
|
|
u32 gv11b_userd_gp_get(struct gk20a *g, struct channel_gk20a *c)
|
|
{
|
|
struct nvgpu_mem *userd_mem = &g->fifo.userd;
|
|
u32 offset = c->chid * (g->fifo.userd_entry_size / sizeof(u32));
|
|
|
|
return nvgpu_mem_rd32(g, userd_mem,
|
|
offset + ram_userd_gp_get_w());
|
|
}
|
|
|
|
u64 gv11b_userd_pb_get(struct gk20a *g, struct channel_gk20a *c)
|
|
{
|
|
struct nvgpu_mem *userd_mem = &g->fifo.userd;
|
|
u32 offset = c->chid * (g->fifo.userd_entry_size / sizeof(u32));
|
|
u32 lo = nvgpu_mem_rd32(g, userd_mem, offset + ram_userd_get_w());
|
|
u32 hi = nvgpu_mem_rd32(g, userd_mem, offset + ram_userd_get_hi_w());
|
|
|
|
return ((u64)hi << 32) | lo;
|
|
}
|
|
|
|
void gv11b_userd_gp_put(struct gk20a *g, struct channel_gk20a *c)
|
|
{
|
|
struct nvgpu_mem *userd_mem = &g->fifo.userd;
|
|
u32 offset = c->chid * (g->fifo.userd_entry_size / sizeof(u32));
|
|
|
|
nvgpu_mem_wr32(g, userd_mem, offset + ram_userd_gp_put_w(),
|
|
c->gpfifo.put);
|
|
/* Commit everything to GPU. */
|
|
nvgpu_mb();
|
|
|
|
g->ops.fifo.ring_channel_doorbell(c);
|
|
}
|
|
|
|
void channel_gv11b_unbind(struct channel_gk20a *ch)
|
|
{
|
|
struct gk20a *g = ch->g;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
if (nvgpu_atomic_cmpxchg(&ch->bound, true, false)) {
|
|
gk20a_writel(g, ccsr_channel_inst_r(ch->chid),
|
|
ccsr_channel_inst_ptr_f(0) |
|
|
ccsr_channel_inst_bind_false_f());
|
|
|
|
gk20a_writel(g, ccsr_channel_r(ch->chid),
|
|
ccsr_channel_enable_clr_true_f() |
|
|
ccsr_channel_pbdma_faulted_reset_f() |
|
|
ccsr_channel_eng_faulted_reset_f());
|
|
}
|
|
}
|
|
|
|
u32 gv11b_fifo_get_num_fifos(struct gk20a *g)
|
|
{
|
|
return ccsr_channel__size_1_v();
|
|
}
|
|
|
|
bool gv11b_is_fault_engine_subid_gpc(struct gk20a *g, u32 engine_subid)
|
|
{
|
|
return (engine_subid == gmmu_fault_client_type_gpc_v());
|
|
}
|
|
|
|
void gv11b_dump_channel_status_ramfc(struct gk20a *g,
|
|
struct gk20a_debug_output *o,
|
|
u32 chid,
|
|
struct ch_state *ch_state)
|
|
{
|
|
u32 channel = gk20a_readl(g, ccsr_channel_r(chid));
|
|
u32 status = ccsr_channel_status_v(channel);
|
|
u32 *inst_mem;
|
|
struct channel_gk20a *c = g->fifo.channel + chid;
|
|
struct nvgpu_semaphore_int *hw_sema = NULL;
|
|
|
|
if (c->hw_sema)
|
|
hw_sema = c->hw_sema;
|
|
|
|
if (!ch_state)
|
|
return;
|
|
|
|
inst_mem = &ch_state->inst_block[0];
|
|
|
|
gk20a_debug_output(o, "%d-%s, pid %d, refs: %d: ", chid,
|
|
g->name,
|
|
ch_state->pid,
|
|
ch_state->refs);
|
|
gk20a_debug_output(o, "channel status: %s in use %s %s\n",
|
|
ccsr_channel_enable_v(channel) ? "" : "not",
|
|
gk20a_decode_ccsr_chan_status(status),
|
|
ccsr_channel_busy_v(channel) ? "busy" : "not busy");
|
|
gk20a_debug_output(o, "RAMFC : TOP: %016llx PUT: %016llx GET: %016llx "
|
|
"FETCH: %016llx\nHEADER: %08x COUNT: %08x\n"
|
|
"SEMAPHORE: addr hi: %08x addr lo: %08x\n"
|
|
"payload %08x execute %08x\n",
|
|
(u64)inst_mem[ram_fc_pb_top_level_get_w()] +
|
|
((u64)inst_mem[ram_fc_pb_top_level_get_hi_w()] << 32ULL),
|
|
(u64)inst_mem[ram_fc_pb_put_w()] +
|
|
((u64)inst_mem[ram_fc_pb_put_hi_w()] << 32ULL),
|
|
(u64)inst_mem[ram_fc_pb_get_w()] +
|
|
((u64)inst_mem[ram_fc_pb_get_hi_w()] << 32ULL),
|
|
(u64)inst_mem[ram_fc_pb_fetch_w()] +
|
|
((u64)inst_mem[ram_fc_pb_fetch_hi_w()] << 32ULL),
|
|
inst_mem[ram_fc_pb_header_w()],
|
|
inst_mem[ram_fc_pb_count_w()],
|
|
inst_mem[ram_fc_sem_addr_hi_w()],
|
|
inst_mem[ram_fc_sem_addr_lo_w()],
|
|
inst_mem[ram_fc_sem_payload_lo_w()],
|
|
inst_mem[ram_fc_sem_execute_w()]);
|
|
if (hw_sema)
|
|
gk20a_debug_output(o, "SEMA STATE: value: 0x%08x next_val: 0x%08x addr: 0x%010llx\n",
|
|
__nvgpu_semaphore_read(hw_sema),
|
|
nvgpu_atomic_read(&hw_sema->next_value),
|
|
nvgpu_hw_sema_addr(hw_sema));
|
|
gk20a_debug_output(o, "\n");
|
|
}
|
|
|
|
void gv11b_dump_eng_status(struct gk20a *g,
|
|
struct gk20a_debug_output *o)
|
|
{
|
|
u32 i, host_num_engines;
|
|
|
|
host_num_engines = nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_ENGINES);
|
|
|
|
for (i = 0; i < host_num_engines; i++) {
|
|
u32 status = gk20a_readl(g, fifo_engine_status_r(i));
|
|
u32 ctx_status = fifo_engine_status_ctx_status_v(status);
|
|
|
|
gk20a_debug_output(o, "%s eng %d: ", g->name, i);
|
|
gk20a_debug_output(o,
|
|
"id: %d (%s), next_id: %d (%s), ctx status: %s ",
|
|
fifo_engine_status_id_v(status),
|
|
fifo_engine_status_id_type_v(status) ?
|
|
"tsg" : "channel",
|
|
fifo_engine_status_next_id_v(status),
|
|
fifo_engine_status_next_id_type_v(status) ?
|
|
"tsg" : "channel",
|
|
gk20a_decode_pbdma_chan_eng_ctx_status(ctx_status));
|
|
|
|
if (fifo_engine_status_eng_reload_v(status))
|
|
gk20a_debug_output(o, "ctx_reload ");
|
|
if (fifo_engine_status_faulted_v(status))
|
|
gk20a_debug_output(o, "faulted ");
|
|
if (fifo_engine_status_engine_v(status))
|
|
gk20a_debug_output(o, "busy ");
|
|
gk20a_debug_output(o, "\n");
|
|
}
|
|
gk20a_debug_output(o, "\n");
|
|
}
|
|
|
|
u32 gv11b_fifo_intr_0_error_mask(struct gk20a *g)
|
|
{
|
|
u32 intr_0_error_mask =
|
|
fifo_intr_0_bind_error_pending_f() |
|
|
fifo_intr_0_sched_error_pending_f() |
|
|
fifo_intr_0_chsw_error_pending_f() |
|
|
fifo_intr_0_fb_flush_timeout_pending_f() |
|
|
fifo_intr_0_lb_error_pending_f();
|
|
|
|
return intr_0_error_mask;
|
|
}
|
|
|
|
u32 gv11b_fifo_get_preempt_timeout(struct gk20a *g)
|
|
{
|
|
return gk20a_get_gr_idle_timeout(g);
|
|
}
|
|
|
|
static int gv11b_fifo_poll_pbdma_chan_status(struct gk20a *g, u32 id,
|
|
u32 pbdma_id, unsigned int timeout_rc_type)
|
|
{
|
|
struct nvgpu_timeout timeout;
|
|
unsigned long delay = GR_IDLE_CHECK_DEFAULT; /* in micro seconds */
|
|
u32 pbdma_stat;
|
|
u32 chan_stat;
|
|
int ret = -EBUSY;
|
|
|
|
/* timeout in milli seconds */
|
|
nvgpu_timeout_init(g, &timeout, g->ops.fifo.get_preempt_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
nvgpu_log(g, gpu_dbg_info, "wait preempt pbdma %d", pbdma_id);
|
|
/* Verify that ch/tsg is no longer on the pbdma */
|
|
do {
|
|
/*
|
|
* If the PBDMA has a stalling interrupt and receives a NACK,
|
|
* the PBDMA won't save out until the STALLING interrupt is
|
|
* cleared. Stalling interrupt need not be directly addressed,
|
|
* as simply clearing of the interrupt bit will be sufficient
|
|
* to allow the PBDMA to save out. If the stalling interrupt
|
|
* was due to a SW method or another deterministic failure,
|
|
* the PBDMA will assert it when the channel is reloaded
|
|
* or resumed. Note that the fault will still be
|
|
* reported to SW.
|
|
*/
|
|
|
|
gk20a_fifo_handle_pbdma_intr(g, &g->fifo, pbdma_id, RC_NO);
|
|
|
|
pbdma_stat = gk20a_readl(g, fifo_pbdma_status_r(pbdma_id));
|
|
chan_stat = fifo_pbdma_status_chan_status_v(pbdma_stat);
|
|
|
|
if (chan_stat ==
|
|
fifo_pbdma_status_chan_status_valid_v() ||
|
|
chan_stat ==
|
|
fifo_pbdma_status_chan_status_chsw_save_v()) {
|
|
|
|
if (id != fifo_pbdma_status_id_v(pbdma_stat)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
} else if (chan_stat ==
|
|
fifo_pbdma_status_chan_status_chsw_load_v()) {
|
|
|
|
if (id != fifo_pbdma_status_next_id_v(pbdma_stat)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
} else if (chan_stat ==
|
|
fifo_pbdma_status_chan_status_chsw_switch_v()) {
|
|
|
|
if ((id != fifo_pbdma_status_next_id_v(pbdma_stat)) &&
|
|
(id != fifo_pbdma_status_id_v(pbdma_stat))) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
/* pbdma status is invalid i.e. it is not loaded */
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
nvgpu_usleep_range(delay, delay * 2);
|
|
delay = min_t(unsigned long,
|
|
delay << 1, GR_IDLE_CHECK_MAX);
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"preempt timeout pbdma"));
|
|
return ret;
|
|
}
|
|
|
|
static int gv11b_fifo_poll_eng_ctx_status(struct gk20a *g, u32 id,
|
|
u32 act_eng_id, u32 *reset_eng_bitmask,
|
|
unsigned int timeout_rc_type)
|
|
{
|
|
struct nvgpu_timeout timeout;
|
|
unsigned long delay = GR_IDLE_CHECK_DEFAULT; /* in micro seconds */
|
|
u32 eng_stat;
|
|
u32 ctx_stat;
|
|
int ret = -EBUSY;
|
|
bool stall_intr = false;
|
|
|
|
/* timeout in milli seconds */
|
|
nvgpu_timeout_init(g, &timeout, g->ops.fifo.get_preempt_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
nvgpu_log(g, gpu_dbg_info, "wait preempt act engine id: %u",
|
|
act_eng_id);
|
|
/* Check if ch/tsg has saved off the engine or if ctxsw is hung */
|
|
do {
|
|
eng_stat = gk20a_readl(g, fifo_engine_status_r(act_eng_id));
|
|
ctx_stat = fifo_engine_status_ctx_status_v(eng_stat);
|
|
|
|
if (g->ops.mc.is_stall_and_eng_intr_pending(g, act_eng_id)) {
|
|
stall_intr = true;
|
|
nvgpu_log(g, gpu_dbg_info | gpu_dbg_intr,
|
|
"stall intr set, "
|
|
"preemption will not finish");
|
|
}
|
|
if (ctx_stat ==
|
|
fifo_engine_status_ctx_status_ctxsw_switch_v()) {
|
|
/* Eng save hasn't started yet. Continue polling */
|
|
if (stall_intr) {
|
|
/* if stall intr stop polling */
|
|
*reset_eng_bitmask |= BIT(act_eng_id);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
} else if (ctx_stat ==
|
|
fifo_engine_status_ctx_status_valid_v() ||
|
|
ctx_stat ==
|
|
fifo_engine_status_ctx_status_ctxsw_save_v()) {
|
|
|
|
if (id == fifo_engine_status_id_v(eng_stat)) {
|
|
if (stall_intr ||
|
|
timeout_rc_type == PREEMPT_TIMEOUT_NORC) {
|
|
/* preemption will not finish */
|
|
*reset_eng_bitmask |= BIT(act_eng_id);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
/* context is not running on the engine */
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
} else if (ctx_stat ==
|
|
fifo_engine_status_ctx_status_ctxsw_load_v()) {
|
|
|
|
if (id == fifo_engine_status_next_id_v(eng_stat)) {
|
|
|
|
if (stall_intr ||
|
|
timeout_rc_type == PREEMPT_TIMEOUT_NORC) {
|
|
/* preemption will not finish */
|
|
*reset_eng_bitmask |= BIT(act_eng_id);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
/* context is not running on the engine */
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
/* Preempt should be finished */
|
|
ret = 0;
|
|
break;
|
|
}
|
|
nvgpu_usleep_range(delay, delay * 2);
|
|
delay = min_t(unsigned long,
|
|
delay << 1, GR_IDLE_CHECK_MAX);
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"preempt timeout eng"));
|
|
return ret;
|
|
}
|
|
|
|
static void gv11b_reset_eng_faulted_ch(struct gk20a *g, u32 chid)
|
|
{
|
|
u32 reg_val;
|
|
|
|
reg_val = gk20a_readl(g, ccsr_channel_r(chid));
|
|
reg_val |= ccsr_channel_eng_faulted_reset_f();
|
|
gk20a_writel(g, ccsr_channel_r(chid), reg_val);
|
|
}
|
|
|
|
static void gv11b_reset_eng_faulted_tsg(struct tsg_gk20a *tsg)
|
|
{
|
|
struct gk20a *g = tsg->g;
|
|
struct channel_gk20a *ch;
|
|
|
|
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
|
|
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
|
|
gv11b_reset_eng_faulted_ch(g, ch->chid);
|
|
}
|
|
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
|
|
}
|
|
|
|
static void gv11b_reset_pbdma_faulted_ch(struct gk20a *g, u32 chid)
|
|
{
|
|
u32 reg_val;
|
|
|
|
reg_val = gk20a_readl(g, ccsr_channel_r(chid));
|
|
reg_val |= ccsr_channel_pbdma_faulted_reset_f();
|
|
gk20a_writel(g, ccsr_channel_r(chid), reg_val);
|
|
}
|
|
|
|
static void gv11b_reset_pbdma_faulted_tsg(struct tsg_gk20a *tsg)
|
|
{
|
|
struct gk20a *g = tsg->g;
|
|
struct channel_gk20a *ch;
|
|
|
|
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
|
|
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
|
|
gv11b_reset_pbdma_faulted_ch(g, ch->chid);
|
|
}
|
|
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
|
|
}
|
|
|
|
void gv11b_fifo_reset_pbdma_and_eng_faulted(struct gk20a *g,
|
|
struct channel_gk20a *refch,
|
|
u32 faulted_pbdma, u32 faulted_engine)
|
|
{
|
|
struct tsg_gk20a *tsg;
|
|
|
|
nvgpu_log(g, gpu_dbg_intr, "reset faulted pbdma:0x%x eng:0x%x",
|
|
faulted_pbdma, faulted_engine);
|
|
|
|
if (gk20a_is_channel_marked_as_tsg(refch)) {
|
|
tsg = &g->fifo.tsg[refch->tsgid];
|
|
if (faulted_pbdma != FIFO_INVAL_PBDMA_ID)
|
|
gv11b_reset_pbdma_faulted_tsg(tsg);
|
|
if (faulted_engine != FIFO_INVAL_ENGINE_ID)
|
|
gv11b_reset_eng_faulted_tsg(tsg);
|
|
} else {
|
|
if (faulted_pbdma != FIFO_INVAL_PBDMA_ID)
|
|
gv11b_reset_pbdma_faulted_ch(g, refch->chid);
|
|
if (faulted_engine != FIFO_INVAL_ENGINE_ID)
|
|
gv11b_reset_eng_faulted_ch(g, refch->chid);
|
|
}
|
|
}
|
|
|
|
static u32 gv11b_fifo_get_runlists_mask(struct gk20a *g, u32 act_eng_bitmask,
|
|
u32 id, unsigned int id_type, unsigned int rc_type,
|
|
struct mmu_fault_info *mmfault)
|
|
{
|
|
u32 runlists_mask = 0;
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
struct fifo_runlist_info_gk20a *runlist;
|
|
u32 pbdma_bitmask = 0;
|
|
|
|
if (id_type != ID_TYPE_UNKNOWN) {
|
|
if (id_type == ID_TYPE_TSG)
|
|
runlists_mask |= fifo_sched_disable_runlist_m(
|
|
f->tsg[id].runlist_id);
|
|
else
|
|
runlists_mask |= fifo_sched_disable_runlist_m(
|
|
f->channel[id].runlist_id);
|
|
}
|
|
|
|
if (rc_type == RC_TYPE_MMU_FAULT && mmfault) {
|
|
if (mmfault->faulted_pbdma != FIFO_INVAL_PBDMA_ID)
|
|
pbdma_bitmask = BIT(mmfault->faulted_pbdma);
|
|
|
|
for (id = 0; id < f->max_runlists; id++) {
|
|
|
|
runlist = &f->runlist_info[id];
|
|
|
|
if (runlist->eng_bitmask & act_eng_bitmask)
|
|
runlists_mask |=
|
|
fifo_sched_disable_runlist_m(id);
|
|
|
|
if (runlist->pbdma_bitmask & pbdma_bitmask)
|
|
runlists_mask |=
|
|
fifo_sched_disable_runlist_m(id);
|
|
}
|
|
}
|
|
|
|
if (id_type == ID_TYPE_UNKNOWN) {
|
|
for (id = 0; id < f->max_runlists; id++) {
|
|
if (act_eng_bitmask) {
|
|
/* eng ids are known */
|
|
runlist = &f->runlist_info[id];
|
|
if (runlist->eng_bitmask & act_eng_bitmask)
|
|
runlists_mask |=
|
|
fifo_sched_disable_runlist_m(id);
|
|
} else {
|
|
runlists_mask |=
|
|
fifo_sched_disable_runlist_m(id);
|
|
}
|
|
}
|
|
}
|
|
nvgpu_log(g, gpu_dbg_info, "runlists_mask = 0x%08x", runlists_mask);
|
|
return runlists_mask;
|
|
}
|
|
|
|
static void gv11b_fifo_issue_runlist_preempt(struct gk20a *g,
|
|
u32 runlists_mask)
|
|
{
|
|
u32 reg_val;
|
|
|
|
/* issue runlist preempt */
|
|
reg_val = gk20a_readl(g, fifo_runlist_preempt_r());
|
|
reg_val |= runlists_mask;
|
|
gk20a_writel(g, fifo_runlist_preempt_r(), reg_val);
|
|
}
|
|
|
|
static int gv11b_fifo_poll_runlist_preempt_pending(struct gk20a *g,
|
|
u32 runlists_mask)
|
|
{
|
|
struct nvgpu_timeout timeout;
|
|
u32 delay = GR_IDLE_CHECK_DEFAULT;
|
|
int ret = -EBUSY;
|
|
|
|
nvgpu_timeout_init(g, &timeout, g->ops.fifo.get_preempt_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
do {
|
|
if (!((gk20a_readl(g, fifo_runlist_preempt_r())) &
|
|
runlists_mask)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
nvgpu_usleep_range(delay, delay * 2);
|
|
delay = min_t(unsigned long,
|
|
delay << 1, GR_IDLE_CHECK_MAX);
|
|
} while (!nvgpu_timeout_expired_msg(&timeout,
|
|
"runlist preempt timeout"));
|
|
return ret;
|
|
}
|
|
|
|
int gv11b_fifo_is_preempt_pending(struct gk20a *g, u32 id,
|
|
unsigned int id_type, unsigned int timeout_rc_type)
|
|
{
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
unsigned long runlist_served_pbdmas;
|
|
unsigned long runlist_served_engines;
|
|
u32 pbdma_id;
|
|
u32 act_eng_id;
|
|
u32 runlist_id;
|
|
int func_ret;
|
|
int ret = 0;
|
|
u32 tsgid;
|
|
|
|
if (id_type == ID_TYPE_TSG) {
|
|
runlist_id = f->tsg[id].runlist_id;
|
|
tsgid = id;
|
|
} else {
|
|
runlist_id = f->channel[id].runlist_id;
|
|
tsgid = f->channel[id].tsgid;
|
|
}
|
|
|
|
nvgpu_log_info(g, "Check preempt pending for tsgid = %u", tsgid);
|
|
|
|
runlist_served_pbdmas = f->runlist_info[runlist_id].pbdma_bitmask;
|
|
runlist_served_engines = f->runlist_info[runlist_id].eng_bitmask;
|
|
|
|
for_each_set_bit(pbdma_id, &runlist_served_pbdmas, f->num_pbdma) {
|
|
|
|
func_ret = gv11b_fifo_poll_pbdma_chan_status(g, tsgid, pbdma_id,
|
|
timeout_rc_type);
|
|
if (func_ret != 0) {
|
|
gk20a_dbg_info("preempt timeout pbdma %d", pbdma_id);
|
|
ret |= func_ret;
|
|
}
|
|
}
|
|
|
|
f->runlist_info[runlist_id].reset_eng_bitmask = 0;
|
|
|
|
for_each_set_bit(act_eng_id, &runlist_served_engines, f->max_engines) {
|
|
|
|
func_ret = gv11b_fifo_poll_eng_ctx_status(g, tsgid, act_eng_id,
|
|
&f->runlist_info[runlist_id].reset_eng_bitmask,
|
|
timeout_rc_type);
|
|
|
|
if (func_ret != 0) {
|
|
gk20a_dbg_info("preempt timeout engine %d", act_eng_id);
|
|
ret |= func_ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int gv11b_fifo_preempt_channel(struct gk20a *g, u32 chid)
|
|
{
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
u32 tsgid;
|
|
|
|
tsgid = f->channel[chid].tsgid;
|
|
nvgpu_log_info(g, "chid:%d tsgid:%d", chid, tsgid);
|
|
|
|
/* Preempt tsg. Channel preempt is NOOP */
|
|
return g->ops.fifo.preempt_tsg(g, tsgid);
|
|
}
|
|
|
|
static int __locked_fifo_preempt_runlists(struct gk20a *g, u32 runlists_mask)
|
|
{
|
|
int ret;
|
|
|
|
/* issue runlist preempt */
|
|
gv11b_fifo_issue_runlist_preempt(g, runlists_mask);
|
|
|
|
/* poll for runlist preempt done */
|
|
ret = gv11b_fifo_poll_runlist_preempt_pending(g, runlists_mask);
|
|
|
|
/*
|
|
* Even if runlist_event intr is not enabled in fifo_intr_en_0 , it gets
|
|
* set in fifo_intr_0 status reg. Current fifo stall interrupt handler
|
|
* is checking all set bits in fifo_intr_0 and handling runlist_event
|
|
* too while handling other fifo interrupts e.g. pbdma fifo intr or
|
|
* ctxsw timeout interrupt. It is better to clear this after runlist
|
|
* preempt is done. Clearing runlist_event interrupt makes no
|
|
* difference to pending runlist_preempt.
|
|
*/
|
|
|
|
if (!ret)
|
|
gk20a_fifo_handle_runlist_event(g);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* TSG enable sequence applicable for Volta and onwards */
|
|
int gv11b_fifo_enable_tsg(struct tsg_gk20a *tsg)
|
|
{
|
|
struct gk20a *g = tsg->g;
|
|
struct channel_gk20a *ch;
|
|
|
|
nvgpu_rwsem_down_read(&tsg->ch_list_lock);
|
|
nvgpu_list_for_each_entry(ch, &tsg->ch_list, channel_gk20a, ch_entry) {
|
|
g->ops.fifo.enable_channel(ch);
|
|
}
|
|
nvgpu_rwsem_up_read(&tsg->ch_list_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gv11b_fifo_preempt_tsg(struct gk20a *g, u32 tsgid)
|
|
{
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
u32 ret = 0;
|
|
u32 token = PMU_INVALID_MUTEX_OWNER_ID;
|
|
u32 mutex_ret = 0;
|
|
u32 runlist_id;
|
|
|
|
gk20a_dbg_fn("%d", tsgid);
|
|
|
|
runlist_id = f->tsg[tsgid].runlist_id;
|
|
gk20a_dbg_fn("runlist_id %d", runlist_id);
|
|
|
|
nvgpu_mutex_acquire(&f->runlist_info[runlist_id].runlist_lock);
|
|
|
|
mutex_ret = nvgpu_pmu_mutex_acquire(&g->pmu, PMU_MUTEX_ID_FIFO, &token);
|
|
|
|
ret = __locked_fifo_preempt(g, tsgid, true);
|
|
|
|
if (!mutex_ret)
|
|
nvgpu_pmu_mutex_release(&g->pmu, PMU_MUTEX_ID_FIFO, &token);
|
|
|
|
nvgpu_mutex_release(&f->runlist_info[runlist_id].runlist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int gv11b_fifo_preempt_runlists(struct gk20a *g, u32 runlists_mask)
|
|
{
|
|
int ret = 0;
|
|
u32 token = PMU_INVALID_MUTEX_OWNER_ID;
|
|
u32 mutex_ret = 0;
|
|
u32 runlist_id;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
for (runlist_id = 0; runlist_id < g->fifo.max_runlists; runlist_id++) {
|
|
if (runlists_mask & fifo_runlist_preempt_runlist_m(runlist_id))
|
|
nvgpu_mutex_acquire(&g->fifo.
|
|
runlist_info[runlist_id].runlist_lock);
|
|
}
|
|
|
|
mutex_ret = nvgpu_pmu_mutex_acquire(&g->pmu, PMU_MUTEX_ID_FIFO, &token);
|
|
|
|
ret = __locked_fifo_preempt_runlists(g, runlists_mask);
|
|
|
|
if (!mutex_ret)
|
|
nvgpu_pmu_mutex_release(&g->pmu, PMU_MUTEX_ID_FIFO, &token);
|
|
|
|
for (runlist_id = 0; runlist_id < g->fifo.max_runlists; runlist_id++) {
|
|
if (runlists_mask &
|
|
fifo_runlist_preempt_runlist_m(runlist_id)) {
|
|
/* during recovery reset engs served by this runlist */
|
|
g->fifo.runlist_info[runlist_id].reset_eng_bitmask =
|
|
g->fifo.runlist_info[runlist_id].eng_bitmask;
|
|
nvgpu_mutex_release(&g->fifo.
|
|
runlist_info[runlist_id].runlist_lock);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __locked_fifo_preempt_ch_tsg(struct gk20a *g, u32 id,
|
|
unsigned int id_type, unsigned int timeout_rc_type)
|
|
{
|
|
int ret;
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
|
|
nvgpu_log_fn(g, "id:%d id_type:%d", id, id_type);
|
|
|
|
/* Issue tsg preempt. Channel preempt is noop */
|
|
if (id_type == ID_TYPE_CHANNEL)
|
|
gk20a_fifo_issue_preempt(g, f->channel[id].tsgid, true);
|
|
else
|
|
gk20a_fifo_issue_preempt(g, id, true);
|
|
|
|
/* wait for preempt */
|
|
ret = g->ops.fifo.is_preempt_pending(g, id, id_type,
|
|
timeout_rc_type);
|
|
|
|
if (ret && (timeout_rc_type == PREEMPT_TIMEOUT_RC))
|
|
__locked_fifo_preempt_timeout_rc(g, id, id_type);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int gv11b_fifo_preempt_ch_tsg(struct gk20a *g, u32 id,
|
|
unsigned int id_type, unsigned int timeout_rc_type)
|
|
{
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
u32 ret = 0;
|
|
u32 token = PMU_INVALID_MUTEX_OWNER_ID;
|
|
u32 mutex_ret = 0;
|
|
u32 runlist_id;
|
|
|
|
if (id_type == ID_TYPE_TSG)
|
|
runlist_id = f->tsg[id].runlist_id;
|
|
else if (id_type == ID_TYPE_CHANNEL)
|
|
runlist_id = f->channel[id].runlist_id;
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (runlist_id >= g->fifo.max_runlists) {
|
|
gk20a_dbg_info("runlist_id = %d", runlist_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
gk20a_dbg_fn("preempt id = %d, runlist_id = %d", id, runlist_id);
|
|
|
|
nvgpu_mutex_acquire(&f->runlist_info[runlist_id].runlist_lock);
|
|
|
|
mutex_ret = nvgpu_pmu_mutex_acquire(&g->pmu, PMU_MUTEX_ID_FIFO, &token);
|
|
|
|
ret = __locked_fifo_preempt_ch_tsg(g, id, id_type, timeout_rc_type);
|
|
|
|
if (!mutex_ret)
|
|
nvgpu_pmu_mutex_release(&g->pmu, PMU_MUTEX_ID_FIFO, &token);
|
|
|
|
nvgpu_mutex_release(&f->runlist_info[runlist_id].runlist_lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
void gv11b_fifo_teardown_ch_tsg(struct gk20a *g, u32 act_eng_bitmask,
|
|
u32 id, unsigned int id_type, unsigned int rc_type,
|
|
struct mmu_fault_info *mmfault)
|
|
{
|
|
struct tsg_gk20a *tsg = NULL;
|
|
struct channel_gk20a *refch = NULL;
|
|
u32 runlists_mask, runlist_id;
|
|
struct fifo_runlist_info_gk20a *runlist = NULL;
|
|
u32 engine_id, client_type = ~0;
|
|
|
|
nvgpu_log(g, gpu_dbg_info, "id = %d, id_type = %d, rc_type = %d, "
|
|
"act_eng_bitmask = 0x%x, mmfault ptr = 0x%p",
|
|
id, id_type, rc_type, act_eng_bitmask, mmfault);
|
|
|
|
runlists_mask = gv11b_fifo_get_runlists_mask(g, act_eng_bitmask, id,
|
|
id_type, rc_type, mmfault);
|
|
|
|
gk20a_fifo_set_runlist_state(g, runlists_mask, RUNLIST_DISABLED);
|
|
|
|
g->fifo.deferred_reset_pending = false;
|
|
|
|
/* Disable power management */
|
|
if (g->support_pmu && g->elpg_enabled) {
|
|
if (nvgpu_pmu_disable_elpg(g))
|
|
nvgpu_err(g, "failed to set disable elpg");
|
|
}
|
|
if (g->ops.clock_gating.slcg_gr_load_gating_prod)
|
|
g->ops.clock_gating.slcg_gr_load_gating_prod(g,
|
|
false);
|
|
if (g->ops.clock_gating.slcg_perf_load_gating_prod)
|
|
g->ops.clock_gating.slcg_perf_load_gating_prod(g,
|
|
false);
|
|
if (g->ops.clock_gating.slcg_ltc_load_gating_prod)
|
|
g->ops.clock_gating.slcg_ltc_load_gating_prod(g,
|
|
false);
|
|
|
|
gr_gk20a_init_cg_mode(g, ELCG_MODE, ELCG_RUN);
|
|
|
|
/* Get tsg/ch */
|
|
if (rc_type == RC_TYPE_MMU_FAULT) {
|
|
gk20a_debug_dump(g);
|
|
refch = mmfault->refch;
|
|
client_type = mmfault->client_type;
|
|
gv11b_fifo_reset_pbdma_and_eng_faulted(g, refch,
|
|
mmfault->faulted_pbdma,
|
|
mmfault->faulted_engine);
|
|
}
|
|
|
|
if (id_type == ID_TYPE_TSG) {
|
|
tsg = &g->fifo.tsg[id];
|
|
} else if (id_type == ID_TYPE_CHANNEL) {
|
|
if (refch == NULL)
|
|
refch = gk20a_channel_get(&g->fifo.channel[id]);
|
|
}
|
|
/* Disable tsg/ch */
|
|
if (tsg)
|
|
gk20a_disable_tsg(tsg);
|
|
else if (refch)
|
|
g->ops.fifo.disable_channel(refch);
|
|
|
|
/* Preempt tsg/ch */
|
|
if (id_type == ID_TYPE_TSG || id_type == ID_TYPE_CHANNEL) {
|
|
g->ops.fifo.preempt_ch_tsg(g, id, id_type,
|
|
PREEMPT_TIMEOUT_NORC);
|
|
} else {
|
|
gv11b_fifo_preempt_runlists(g, runlists_mask);
|
|
}
|
|
|
|
/* check if engine reset should be deferred */
|
|
for (runlist_id = 0; runlist_id < g->fifo.max_runlists; runlist_id++) {
|
|
|
|
runlist = &g->fifo.runlist_info[runlist_id];
|
|
if ((runlists_mask & BIT(runlist_id)) &&
|
|
runlist->reset_eng_bitmask) {
|
|
|
|
unsigned long __reset_eng_bitmask =
|
|
runlist->reset_eng_bitmask;
|
|
|
|
for_each_set_bit(engine_id, &__reset_eng_bitmask,
|
|
g->fifo.max_engines) {
|
|
if ((refch || tsg) &&
|
|
gk20a_fifo_should_defer_engine_reset(g,
|
|
engine_id, client_type, false)) {
|
|
|
|
g->fifo.deferred_fault_engines |=
|
|
BIT(engine_id);
|
|
|
|
/* handled during channel free */
|
|
g->fifo.deferred_reset_pending = true;
|
|
nvgpu_log(g, gpu_dbg_intr | gpu_dbg_gpu_dbg,
|
|
"sm debugger attached,"
|
|
" deferring channel recovery to channel free");
|
|
} else {
|
|
/*
|
|
* if lock is already taken, a reset is
|
|
* taking place so no need to repeat
|
|
*/
|
|
if (nvgpu_mutex_tryacquire(
|
|
&g->fifo.gr_reset_mutex)) {
|
|
|
|
gk20a_fifo_reset_engine(g,
|
|
engine_id);
|
|
|
|
nvgpu_mutex_release(
|
|
&g->fifo.gr_reset_mutex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_GK20A_CTXSW_TRACE
|
|
/* tsg and refch both could be valid for mmu fault. Check tsg first */
|
|
if (tsg)
|
|
gk20a_ctxsw_trace_tsg_reset(g, tsg);
|
|
else if (refch)
|
|
gk20a_ctxsw_trace_channel_reset(g, refch);
|
|
#endif
|
|
|
|
if (tsg) {
|
|
if (g->fifo.deferred_reset_pending) {
|
|
gk20a_disable_tsg(tsg);
|
|
} else {
|
|
if (rc_type == RC_TYPE_MMU_FAULT)
|
|
gk20a_fifo_set_ctx_mmu_error_tsg(g, tsg);
|
|
|
|
gk20a_fifo_abort_tsg(g, tsg->tsgid, false);
|
|
}
|
|
if (refch)
|
|
gk20a_channel_put(refch);
|
|
} else if (refch) {
|
|
if (g->fifo.deferred_reset_pending) {
|
|
g->ops.fifo.disable_channel(refch);
|
|
} else {
|
|
if (rc_type == RC_TYPE_MMU_FAULT)
|
|
gk20a_fifo_set_ctx_mmu_error_ch(g, refch);
|
|
|
|
gk20a_channel_abort(refch, false);
|
|
}
|
|
gk20a_channel_put(refch);
|
|
} else {
|
|
nvgpu_err(g, "id unknown, abort runlist");
|
|
for (runlist_id = 0; runlist_id < g->fifo.max_runlists;
|
|
runlist_id++) {
|
|
if (runlists_mask & BIT(runlist_id))
|
|
g->ops.fifo.update_runlist(g, runlist_id,
|
|
FIFO_INVAL_CHANNEL_ID, false, true);
|
|
}
|
|
}
|
|
|
|
gk20a_fifo_set_runlist_state(g, runlists_mask, RUNLIST_ENABLED);
|
|
|
|
/* It is safe to enable ELPG again. */
|
|
if (g->support_pmu && g->elpg_enabled)
|
|
nvgpu_pmu_enable_elpg(g);
|
|
}
|
|
|
|
void gv11b_fifo_init_pbdma_intr_descs(struct fifo_gk20a *f)
|
|
{
|
|
/*
|
|
* These are all errors which indicate something really wrong
|
|
* going on in the device
|
|
*/
|
|
f->intr.pbdma.device_fatal_0 =
|
|
pbdma_intr_0_memreq_pending_f() |
|
|
pbdma_intr_0_memack_timeout_pending_f() |
|
|
pbdma_intr_0_memack_extra_pending_f() |
|
|
pbdma_intr_0_memdat_timeout_pending_f() |
|
|
pbdma_intr_0_memdat_extra_pending_f() |
|
|
pbdma_intr_0_memflush_pending_f() |
|
|
pbdma_intr_0_memop_pending_f() |
|
|
pbdma_intr_0_lbconnect_pending_f() |
|
|
pbdma_intr_0_lback_timeout_pending_f() |
|
|
pbdma_intr_0_lback_extra_pending_f() |
|
|
pbdma_intr_0_lbdat_timeout_pending_f() |
|
|
pbdma_intr_0_lbdat_extra_pending_f() |
|
|
pbdma_intr_0_pri_pending_f();
|
|
|
|
/*
|
|
* These are data parsing, framing errors or others which can be
|
|
* recovered from with intervention... or just resetting the
|
|
* channel
|
|
*/
|
|
f->intr.pbdma.channel_fatal_0 =
|
|
pbdma_intr_0_gpfifo_pending_f() |
|
|
pbdma_intr_0_gpptr_pending_f() |
|
|
pbdma_intr_0_gpentry_pending_f() |
|
|
pbdma_intr_0_gpcrc_pending_f() |
|
|
pbdma_intr_0_pbptr_pending_f() |
|
|
pbdma_intr_0_pbentry_pending_f() |
|
|
pbdma_intr_0_pbcrc_pending_f() |
|
|
pbdma_intr_0_method_pending_f() |
|
|
pbdma_intr_0_methodcrc_pending_f() |
|
|
pbdma_intr_0_pbseg_pending_f() |
|
|
pbdma_intr_0_clear_faulted_error_pending_f() |
|
|
pbdma_intr_0_eng_reset_pending_f() |
|
|
pbdma_intr_0_semaphore_pending_f() |
|
|
pbdma_intr_0_signature_pending_f();
|
|
|
|
/* Can be used for sw-methods, or represents a recoverable timeout. */
|
|
f->intr.pbdma.restartable_0 =
|
|
pbdma_intr_0_device_pending_f();
|
|
}
|
|
|
|
static u32 gv11b_fifo_intr_0_en_mask(struct gk20a *g)
|
|
{
|
|
u32 intr_0_en_mask;
|
|
|
|
intr_0_en_mask = g->ops.fifo.intr_0_error_mask(g);
|
|
|
|
intr_0_en_mask |= fifo_intr_0_pbdma_intr_pending_f() |
|
|
fifo_intr_0_ctxsw_timeout_pending_f();
|
|
|
|
return intr_0_en_mask;
|
|
}
|
|
|
|
int gv11b_init_fifo_reset_enable_hw(struct gk20a *g)
|
|
{
|
|
u32 intr_stall;
|
|
u32 mask;
|
|
u32 timeout;
|
|
unsigned int i;
|
|
u32 host_num_pbdma = nvgpu_get_litter_value(g, GPU_LIT_HOST_NUM_PBDMA);
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
/* enable pmc pfifo */
|
|
g->ops.mc.reset(g, mc_enable_pfifo_enabled_f());
|
|
|
|
if (g->ops.clock_gating.slcg_ce2_load_gating_prod)
|
|
g->ops.clock_gating.slcg_ce2_load_gating_prod(g,
|
|
g->slcg_enabled);
|
|
if (g->ops.clock_gating.slcg_fifo_load_gating_prod)
|
|
g->ops.clock_gating.slcg_fifo_load_gating_prod(g,
|
|
g->slcg_enabled);
|
|
if (g->ops.clock_gating.blcg_fifo_load_gating_prod)
|
|
g->ops.clock_gating.blcg_fifo_load_gating_prod(g,
|
|
g->blcg_enabled);
|
|
|
|
/* enable pbdma */
|
|
mask = 0;
|
|
for (i = 0; i < host_num_pbdma; ++i)
|
|
mask |= mc_enable_pb_sel_f(mc_enable_pb_0_enabled_v(), i);
|
|
gk20a_writel(g, mc_enable_pb_r(), mask);
|
|
|
|
|
|
timeout = gk20a_readl(g, fifo_fb_timeout_r());
|
|
nvgpu_log_info(g, "fifo_fb_timeout reg val = 0x%08x", timeout);
|
|
if (!nvgpu_platform_is_silicon(g)) {
|
|
timeout = set_field(timeout, fifo_fb_timeout_period_m(),
|
|
fifo_fb_timeout_period_max_f());
|
|
timeout = set_field(timeout, fifo_fb_timeout_detection_m(),
|
|
fifo_fb_timeout_detection_disabled_f());
|
|
nvgpu_log_info(g, "new fifo_fb_timeout reg val = 0x%08x",
|
|
timeout);
|
|
gk20a_writel(g, fifo_fb_timeout_r(), timeout);
|
|
}
|
|
|
|
for (i = 0; i < host_num_pbdma; i++) {
|
|
timeout = gk20a_readl(g, pbdma_timeout_r(i));
|
|
nvgpu_log_info(g, "pbdma_timeout reg val = 0x%08x",
|
|
timeout);
|
|
if (!nvgpu_platform_is_silicon(g)) {
|
|
timeout = set_field(timeout, pbdma_timeout_period_m(),
|
|
pbdma_timeout_period_max_f());
|
|
nvgpu_log_info(g, "new pbdma_timeout reg val = 0x%08x",
|
|
timeout);
|
|
gk20a_writel(g, pbdma_timeout_r(i), timeout);
|
|
}
|
|
}
|
|
|
|
/* clear and enable pbdma interrupt */
|
|
for (i = 0; i < host_num_pbdma; i++) {
|
|
gk20a_writel(g, pbdma_intr_0_r(i), 0xFFFFFFFF);
|
|
gk20a_writel(g, pbdma_intr_1_r(i), 0xFFFFFFFF);
|
|
|
|
intr_stall = gk20a_readl(g, pbdma_intr_stall_r(i));
|
|
gk20a_dbg_info("pbdma id:%u, intr_en_0 0x%08x", i, intr_stall);
|
|
gk20a_writel(g, pbdma_intr_en_0_r(i), intr_stall);
|
|
|
|
intr_stall = gk20a_readl(g, pbdma_intr_stall_1_r(i));
|
|
gk20a_dbg_info("pbdma id:%u, intr_en_1 0x%08x", i, intr_stall);
|
|
gk20a_writel(g, pbdma_intr_en_1_r(i), intr_stall);
|
|
}
|
|
|
|
/* clear ctxsw timeout interrupts */
|
|
gk20a_writel(g, fifo_intr_ctxsw_timeout_r(), ~0);
|
|
|
|
if (nvgpu_platform_is_silicon(g)) {
|
|
/* enable ctxsw timeout */
|
|
timeout = GRFIFO_TIMEOUT_CHECK_PERIOD_US;
|
|
timeout = scale_ptimer(timeout,
|
|
ptimer_scalingfactor10x(g->ptimer_src_freq));
|
|
timeout |= fifo_eng_ctxsw_timeout_detection_enabled_f();
|
|
gk20a_writel(g, fifo_eng_ctxsw_timeout_r(), timeout);
|
|
} else {
|
|
timeout = gk20a_readl(g, fifo_eng_ctxsw_timeout_r());
|
|
nvgpu_log_info(g, "fifo_eng_ctxsw_timeout reg val = 0x%08x",
|
|
timeout);
|
|
timeout = set_field(timeout, fifo_eng_ctxsw_timeout_period_m(),
|
|
fifo_eng_ctxsw_timeout_period_max_f());
|
|
timeout = set_field(timeout,
|
|
fifo_eng_ctxsw_timeout_detection_m(),
|
|
fifo_eng_ctxsw_timeout_detection_disabled_f());
|
|
nvgpu_log_info(g, "new fifo_eng_ctxsw_timeout reg val = 0x%08x",
|
|
timeout);
|
|
gk20a_writel(g, fifo_eng_ctxsw_timeout_r(), timeout);
|
|
}
|
|
|
|
/* clear runlist interrupts */
|
|
gk20a_writel(g, fifo_intr_runlist_r(), ~0);
|
|
|
|
/* clear and enable pfifo interrupt */
|
|
gk20a_writel(g, fifo_intr_0_r(), 0xFFFFFFFF);
|
|
mask = gv11b_fifo_intr_0_en_mask(g);
|
|
gk20a_dbg_info("fifo_intr_en_0 0x%08x", mask);
|
|
gk20a_writel(g, fifo_intr_en_0_r(), mask);
|
|
gk20a_dbg_info("fifo_intr_en_1 = 0x80000000");
|
|
gk20a_writel(g, fifo_intr_en_1_r(), 0x80000000);
|
|
|
|
gk20a_dbg_fn("done");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char *const gv11b_sched_error_str[] = {
|
|
"xxx-0",
|
|
"xxx-1",
|
|
"xxx-2",
|
|
"xxx-3",
|
|
"xxx-4",
|
|
"engine_reset",
|
|
"rl_ack_timeout",
|
|
"rl_ack_extra",
|
|
"rl_rdat_timeout",
|
|
"rl_rdat_extra",
|
|
"eng_ctxsw_timeout",
|
|
"xxx-b",
|
|
"rl_req_timeout",
|
|
"new_runlist",
|
|
"code_config_while_busy",
|
|
"xxx-f",
|
|
"xxx-0x10",
|
|
"xxx-0x11",
|
|
"xxx-0x12",
|
|
"xxx-0x13",
|
|
"xxx-0x14",
|
|
"xxx-0x15",
|
|
"xxx-0x16",
|
|
"xxx-0x17",
|
|
"xxx-0x18",
|
|
"xxx-0x19",
|
|
"xxx-0x1a",
|
|
"xxx-0x1b",
|
|
"xxx-0x1c",
|
|
"xxx-0x1d",
|
|
"xxx-0x1e",
|
|
"xxx-0x1f",
|
|
"bad_tsg",
|
|
};
|
|
|
|
bool gv11b_fifo_handle_sched_error(struct gk20a *g)
|
|
{
|
|
u32 sched_error;
|
|
|
|
sched_error = gk20a_readl(g, fifo_intr_sched_error_r());
|
|
|
|
if (sched_error < ARRAY_SIZE(gv11b_sched_error_str))
|
|
nvgpu_err(g, "fifo sched error :%s",
|
|
gv11b_sched_error_str[sched_error]);
|
|
else
|
|
nvgpu_err(g, "fifo sched error code not supported");
|
|
|
|
if (sched_error == SCHED_ERROR_CODE_BAD_TSG ) {
|
|
/* id is unknown, preempt all runlists and do recovery */
|
|
gk20a_fifo_recover(g, 0, 0, false, false, false,
|
|
RC_TYPE_SCHED_ERR);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const char * const invalid_str = "invalid";
|
|
|
|
static const char *const ctxsw_timeout_status_desc[] = {
|
|
"awaiting ack",
|
|
"eng was reset",
|
|
"ack received",
|
|
"dropped timeout"
|
|
};
|
|
|
|
static u32 gv11b_fifo_ctxsw_timeout_info(struct gk20a *g, u32 active_eng_id,
|
|
u32 *info_status)
|
|
{
|
|
u32 tsgid = FIFO_INVAL_TSG_ID;
|
|
u32 timeout_info;
|
|
u32 ctx_status;
|
|
|
|
timeout_info = gk20a_readl(g,
|
|
fifo_intr_ctxsw_timeout_info_r(active_eng_id));
|
|
|
|
/*
|
|
* ctxsw_state and tsgid are snapped at the point of the timeout and
|
|
* will not change while the corresponding INTR_CTXSW_TIMEOUT_ENGINE bit
|
|
* is PENDING.
|
|
*/
|
|
ctx_status = fifo_intr_ctxsw_timeout_info_ctxsw_state_v(timeout_info);
|
|
if (ctx_status ==
|
|
fifo_intr_ctxsw_timeout_info_ctxsw_state_load_v()) {
|
|
|
|
tsgid = fifo_intr_ctxsw_timeout_info_next_tsgid_v(timeout_info);
|
|
|
|
} else if (ctx_status ==
|
|
fifo_intr_ctxsw_timeout_info_ctxsw_state_switch_v() ||
|
|
ctx_status ==
|
|
fifo_intr_ctxsw_timeout_info_ctxsw_state_save_v()) {
|
|
|
|
tsgid = fifo_intr_ctxsw_timeout_info_prev_tsgid_v(timeout_info);
|
|
}
|
|
gk20a_dbg_info("ctxsw timeout info: tsgid = %d", tsgid);
|
|
|
|
/*
|
|
* STATUS indicates whether the context request ack was eventually
|
|
* received and whether a subsequent request timed out. This field is
|
|
* updated live while the corresponding INTR_CTXSW_TIMEOUT_ENGINE bit
|
|
* is PENDING. STATUS starts in AWAITING_ACK, and progresses to
|
|
* ACK_RECEIVED and finally ends with DROPPED_TIMEOUT.
|
|
*
|
|
* AWAITING_ACK - context request ack still not returned from engine.
|
|
* ENG_WAS_RESET - The engine was reset via a PRI write to NV_PMC_ENABLE
|
|
* or NV_PMC_ELPG_ENABLE prior to receiving the ack. Host will not
|
|
* expect ctx ack to return, but if it is already in flight, STATUS will
|
|
* transition shortly to ACK_RECEIVED unless the interrupt is cleared
|
|
* first. Once the engine is reset, additional context switches can
|
|
* occur; if one times out, STATUS will transition to DROPPED_TIMEOUT
|
|
* if the interrupt isn't cleared first.
|
|
* ACK_RECEIVED - The ack for the timed-out context request was
|
|
* received between the point of the timeout and this register being
|
|
* read. Note this STATUS can be reported during the load stage of the
|
|
* same context switch that timed out if the timeout occurred during the
|
|
* save half of a context switch. Additional context requests may have
|
|
* completed or may be outstanding, but no further context timeout has
|
|
* occurred. This simplifies checking for spurious context switch
|
|
* timeouts.
|
|
* DROPPED_TIMEOUT - The originally timed-out context request acked,
|
|
* but a subsequent context request then timed out.
|
|
* Information about the subsequent timeout is not stored; in fact, that
|
|
* context request may also have already been acked by the time SW
|
|
* SW reads this register. If not, there is a chance SW can get the
|
|
* dropped information by clearing the corresponding
|
|
* INTR_CTXSW_TIMEOUT_ENGINE bit and waiting for the timeout to occur
|
|
* again. Note, however, that if the engine does time out again,
|
|
* it may not be from the original request that caused the
|
|
* DROPPED_TIMEOUT state, as that request may
|
|
* be acked in the interim.
|
|
*/
|
|
*info_status = fifo_intr_ctxsw_timeout_info_status_v(timeout_info);
|
|
if (*info_status ==
|
|
fifo_intr_ctxsw_timeout_info_status_ack_received_v()) {
|
|
|
|
gk20a_dbg_info("ctxsw timeout info : ack received");
|
|
/* no need to recover */
|
|
tsgid = FIFO_INVAL_TSG_ID;
|
|
|
|
} else if (*info_status ==
|
|
fifo_intr_ctxsw_timeout_info_status_dropped_timeout_v()) {
|
|
|
|
gk20a_dbg_info("ctxsw timeout info : dropped timeout");
|
|
/* no need to recover */
|
|
tsgid = FIFO_INVAL_TSG_ID;
|
|
|
|
}
|
|
return tsgid;
|
|
}
|
|
|
|
bool gv11b_fifo_handle_ctxsw_timeout(struct gk20a *g, u32 fifo_intr)
|
|
{
|
|
bool ret = false;
|
|
u32 tsgid = FIFO_INVAL_TSG_ID;
|
|
u32 engine_id, active_eng_id;
|
|
u32 timeout_val, ctxsw_timeout_engines;
|
|
u32 info_status;
|
|
const char *info_status_str;
|
|
|
|
|
|
if (!(fifo_intr & fifo_intr_0_ctxsw_timeout_pending_f()))
|
|
return ret;
|
|
|
|
/* get ctxsw timedout engines */
|
|
ctxsw_timeout_engines = gk20a_readl(g, fifo_intr_ctxsw_timeout_r());
|
|
if (ctxsw_timeout_engines == 0) {
|
|
nvgpu_err(g, "no eng ctxsw timeout pending");
|
|
return ret;
|
|
}
|
|
|
|
timeout_val = gk20a_readl(g, fifo_eng_ctxsw_timeout_r());
|
|
timeout_val = fifo_eng_ctxsw_timeout_period_v(timeout_val);
|
|
|
|
gk20a_dbg_info("eng ctxsw timeout period = 0x%x", timeout_val);
|
|
|
|
for (engine_id = 0; engine_id < g->fifo.num_engines; engine_id++) {
|
|
active_eng_id = g->fifo.active_engines_list[engine_id];
|
|
|
|
if (ctxsw_timeout_engines &
|
|
fifo_intr_ctxsw_timeout_engine_pending_f(
|
|
active_eng_id)) {
|
|
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
u32 ms = 0;
|
|
bool verbose = false;
|
|
|
|
tsgid = gv11b_fifo_ctxsw_timeout_info(g, active_eng_id,
|
|
&info_status);
|
|
|
|
if (tsgid == FIFO_INVAL_TSG_ID)
|
|
continue;
|
|
|
|
if (gk20a_fifo_check_tsg_ctxsw_timeout(
|
|
&f->tsg[tsgid], &verbose, &ms)) {
|
|
ret = true;
|
|
|
|
info_status_str = invalid_str;
|
|
if (info_status <
|
|
ARRAY_SIZE(ctxsw_timeout_status_desc))
|
|
info_status_str =
|
|
ctxsw_timeout_status_desc[info_status];
|
|
|
|
nvgpu_err(g, "ctxsw timeout error: "
|
|
"active engine id =%u, %s=%d, info: %s ms=%u",
|
|
active_eng_id, "tsg", tsgid, info_status_str,
|
|
ms);
|
|
|
|
/* Cancel all channels' timeout */
|
|
gk20a_channel_timeout_restart_all_channels(g);
|
|
gk20a_fifo_recover(g, BIT(active_eng_id), tsgid,
|
|
true, true, verbose,
|
|
RC_TYPE_CTXSW_TIMEOUT);
|
|
} else {
|
|
gk20a_dbg_info(
|
|
"fifo is waiting for ctx switch: "
|
|
"for %d ms, %s=%d", ms, "tsg", tsgid);
|
|
}
|
|
}
|
|
}
|
|
/* clear interrupt */
|
|
gk20a_writel(g, fifo_intr_ctxsw_timeout_r(), ctxsw_timeout_engines);
|
|
return ret;
|
|
}
|
|
|
|
unsigned int gv11b_fifo_handle_pbdma_intr_0(struct gk20a *g,
|
|
u32 pbdma_id, u32 pbdma_intr_0,
|
|
u32 *handled, u32 *error_notifier)
|
|
{
|
|
unsigned int rc_type = RC_TYPE_NO_RC;
|
|
|
|
rc_type = gk20a_fifo_handle_pbdma_intr_0(g, pbdma_id,
|
|
pbdma_intr_0, handled, error_notifier);
|
|
|
|
if (pbdma_intr_0 & pbdma_intr_0_clear_faulted_error_pending_f()) {
|
|
gk20a_dbg(gpu_dbg_intr, "clear faulted error on pbdma id %d",
|
|
pbdma_id);
|
|
gk20a_fifo_reset_pbdma_method(g, pbdma_id, 0);
|
|
*handled |= pbdma_intr_0_clear_faulted_error_pending_f();
|
|
rc_type = RC_TYPE_PBDMA_FAULT;
|
|
}
|
|
|
|
if (pbdma_intr_0 & pbdma_intr_0_eng_reset_pending_f()) {
|
|
gk20a_dbg(gpu_dbg_intr, "eng reset intr on pbdma id %d",
|
|
pbdma_id);
|
|
*handled |= pbdma_intr_0_eng_reset_pending_f();
|
|
rc_type = RC_TYPE_PBDMA_FAULT;
|
|
}
|
|
|
|
return rc_type;
|
|
}
|
|
|
|
/*
|
|
* Pbdma which encountered the ctxnotvalid interrupt will stall and
|
|
* prevent the channel which was loaded at the time the interrupt fired
|
|
* from being swapped out until the interrupt is cleared.
|
|
* CTXNOTVALID pbdma interrupt indicates error conditions related
|
|
* to the *_CTX_VALID fields for a channel. The following
|
|
* conditions trigger the interrupt:
|
|
* * CTX_VALID bit for the targeted engine is FALSE
|
|
* * At channel start/resume, all preemptible eng have CTX_VALID FALSE but:
|
|
* - CTX_RELOAD is set in CCSR_CHANNEL_STATUS,
|
|
* - PBDMA_TARGET_SHOULD_SEND_HOST_TSG_EVENT is TRUE, or
|
|
* - PBDMA_TARGET_NEEDS_HOST_TSG_EVENT is TRUE
|
|
* The field is left NOT_PENDING and the interrupt is not raised if the PBDMA is
|
|
* currently halted. This allows SW to unblock the PBDMA and recover.
|
|
* SW may read METHOD0, CHANNEL_STATUS and TARGET to determine whether the
|
|
* interrupt was due to an engine method, CTX_RELOAD, SHOULD_SEND_HOST_TSG_EVENT
|
|
* or NEEDS_HOST_TSG_EVENT. If METHOD0 VALID is TRUE, lazy context creation
|
|
* can be used or the TSG may be destroyed.
|
|
* If METHOD0 VALID is FALSE, the error is likely a bug in SW, and the TSG
|
|
* will have to be destroyed.
|
|
*/
|
|
|
|
unsigned int gv11b_fifo_handle_pbdma_intr_1(struct gk20a *g,
|
|
u32 pbdma_id, u32 pbdma_intr_1,
|
|
u32 *handled, u32 *error_notifier)
|
|
{
|
|
unsigned int rc_type = RC_TYPE_PBDMA_FAULT;
|
|
u32 pbdma_intr_1_current = gk20a_readl(g, pbdma_intr_1_r(pbdma_id));
|
|
|
|
/* minimize race with the gpu clearing the pending interrupt */
|
|
if (!(pbdma_intr_1_current &
|
|
pbdma_intr_1_ctxnotvalid_pending_f()))
|
|
pbdma_intr_1 &= ~pbdma_intr_1_ctxnotvalid_pending_f();
|
|
|
|
if (pbdma_intr_1 == 0)
|
|
return RC_TYPE_NO_RC;
|
|
|
|
if (pbdma_intr_1 & pbdma_intr_1_ctxnotvalid_pending_f()) {
|
|
gk20a_dbg(gpu_dbg_intr, "ctxnotvalid intr on pbdma id %d",
|
|
pbdma_id);
|
|
nvgpu_err(g, "pbdma_intr_1(%d)= 0x%08x ",
|
|
pbdma_id, pbdma_intr_1);
|
|
*handled |= pbdma_intr_1_ctxnotvalid_pending_f();
|
|
} else{
|
|
/*
|
|
* rest of the interrupts in _intr_1 are "host copy engine"
|
|
* related, which is not supported. For now just make them
|
|
* channel fatal.
|
|
*/
|
|
nvgpu_err(g, "hce err: pbdma_intr_1(%d):0x%08x",
|
|
pbdma_id, pbdma_intr_1);
|
|
*handled |= pbdma_intr_1;
|
|
}
|
|
|
|
return rc_type;
|
|
}
|
|
|
|
void gv11b_fifo_init_ramfc_eng_method_buffer(struct gk20a *g,
|
|
struct channel_gk20a *ch, struct nvgpu_mem *mem)
|
|
{
|
|
struct tsg_gk20a *tsg;
|
|
struct nvgpu_mem *method_buffer_per_runque;
|
|
|
|
tsg = tsg_gk20a_from_ch(ch);
|
|
if (tsg == NULL) {
|
|
nvgpu_err(g, "channel is not part of tsg");
|
|
return;
|
|
}
|
|
if (tsg->eng_method_buffers == NULL) {
|
|
nvgpu_log_info(g, "eng method buffer NULL");
|
|
return;
|
|
}
|
|
if (tsg->runlist_id == gk20a_fifo_get_fast_ce_runlist_id(g))
|
|
method_buffer_per_runque =
|
|
&tsg->eng_method_buffers[ASYNC_CE_RUNQUE];
|
|
else
|
|
method_buffer_per_runque =
|
|
&tsg->eng_method_buffers[GR_RUNQUE];
|
|
|
|
nvgpu_mem_wr32(g, mem, ram_in_eng_method_buffer_addr_lo_w(),
|
|
u64_lo32(method_buffer_per_runque->gpu_va));
|
|
nvgpu_mem_wr32(g, mem, ram_in_eng_method_buffer_addr_hi_w(),
|
|
u64_hi32(method_buffer_per_runque->gpu_va));
|
|
|
|
nvgpu_log_info(g, "init ramfc with method buffer");
|
|
}
|
|
|
|
static unsigned int gv11b_fifo_get_eng_method_buffer_size(struct gk20a *g)
|
|
{
|
|
unsigned int buffer_size;
|
|
|
|
buffer_size = ((9 + 1 + 3) * g->ops.ce2.get_num_pce(g)) + 2;
|
|
buffer_size = (27 * 5 * buffer_size);
|
|
buffer_size = roundup(buffer_size, PAGE_SIZE);
|
|
nvgpu_log_info(g, "method buffer size in bytes %d", buffer_size);
|
|
|
|
return buffer_size;
|
|
}
|
|
|
|
void gv11b_fifo_init_eng_method_buffers(struct gk20a *g,
|
|
struct tsg_gk20a *tsg)
|
|
{
|
|
struct vm_gk20a *vm = g->mm.bar2.vm;
|
|
int err = 0;
|
|
int i;
|
|
unsigned int runque, method_buffer_size;
|
|
unsigned int num_pbdma = g->fifo.num_pbdma;
|
|
|
|
if (tsg->eng_method_buffers != NULL)
|
|
return;
|
|
|
|
method_buffer_size = gv11b_fifo_get_eng_method_buffer_size(g);
|
|
if (method_buffer_size == 0) {
|
|
nvgpu_info(g, "ce will hit MTHD_BUFFER_FAULT");
|
|
return;
|
|
}
|
|
|
|
tsg->eng_method_buffers = nvgpu_kzalloc(g,
|
|
num_pbdma * sizeof(struct nvgpu_mem));
|
|
|
|
for (runque = 0; runque < num_pbdma; runque++) {
|
|
err = nvgpu_dma_alloc_map_sys(vm, method_buffer_size,
|
|
&tsg->eng_method_buffers[runque]);
|
|
if (err)
|
|
break;
|
|
}
|
|
if (err) {
|
|
for (i = (runque - 1); i >= 0; i--)
|
|
nvgpu_dma_unmap_free(vm,
|
|
&tsg->eng_method_buffers[i]);
|
|
|
|
nvgpu_kfree(g, tsg->eng_method_buffers);
|
|
tsg->eng_method_buffers = NULL;
|
|
nvgpu_err(g, "could not alloc eng method buffers");
|
|
return;
|
|
}
|
|
nvgpu_log_info(g, "eng method buffers allocated");
|
|
|
|
}
|
|
|
|
void gv11b_fifo_deinit_eng_method_buffers(struct gk20a *g,
|
|
struct tsg_gk20a *tsg)
|
|
{
|
|
struct vm_gk20a *vm = g->mm.bar2.vm;
|
|
unsigned int runque;
|
|
|
|
if (tsg->eng_method_buffers == NULL)
|
|
return;
|
|
|
|
for (runque = 0; runque < g->fifo.num_pbdma; runque++)
|
|
nvgpu_dma_unmap_free(vm, &tsg->eng_method_buffers[runque]);
|
|
|
|
nvgpu_kfree(g, tsg->eng_method_buffers);
|
|
tsg->eng_method_buffers = NULL;
|
|
|
|
nvgpu_log_info(g, "eng method buffers de-allocated");
|
|
}
|
|
|
|
#ifdef CONFIG_TEGRA_GK20A_NVHOST
|
|
static int set_syncpt_ro_map_gpu_va_locked(struct vm_gk20a *vm)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
if (vm->syncpt_ro_map_gpu_va)
|
|
return 0;
|
|
|
|
vm->syncpt_ro_map_gpu_va = nvgpu_gmmu_map(vm,
|
|
&g->syncpt_mem, g->syncpt_unit_size,
|
|
0, gk20a_mem_flag_read_only,
|
|
false, APERTURE_SYSMEM);
|
|
|
|
if (!vm->syncpt_ro_map_gpu_va) {
|
|
nvgpu_err(g, "failed to ro map syncpt buffer");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gv11b_fifo_alloc_syncpt_buf(struct channel_gk20a *c,
|
|
u32 syncpt_id, struct nvgpu_mem *syncpt_buf)
|
|
{
|
|
u32 nr_pages;
|
|
int err = 0;
|
|
struct gk20a *g = c->g;
|
|
|
|
/*
|
|
* Add ro map for complete sync point shim range in vm
|
|
* All channels sharing same vm will share same ro mapping.
|
|
* Create rw map for current channel sync point
|
|
*/
|
|
nvgpu_mutex_acquire(&c->vm->syncpt_ro_map_lock);
|
|
err = set_syncpt_ro_map_gpu_va_locked(c->vm);
|
|
nvgpu_mutex_release(&c->vm->syncpt_ro_map_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
nr_pages = DIV_ROUND_UP(g->syncpt_size, PAGE_SIZE);
|
|
__nvgpu_mem_create_from_phys(g, syncpt_buf,
|
|
(g->syncpt_unit_base +
|
|
nvgpu_nvhost_syncpt_unit_interface_get_byte_offset(syncpt_id)),
|
|
nr_pages);
|
|
syncpt_buf->gpu_va = nvgpu_gmmu_map(c->vm, syncpt_buf,
|
|
g->syncpt_size, 0, gk20a_mem_flag_none,
|
|
false, APERTURE_SYSMEM);
|
|
|
|
if (!syncpt_buf->gpu_va) {
|
|
nvgpu_err(g, "failed to map syncpt buffer");
|
|
nvgpu_dma_free(g, syncpt_buf);
|
|
err = -ENOMEM;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void gv11b_fifo_free_syncpt_buf(struct channel_gk20a *c,
|
|
struct nvgpu_mem *syncpt_buf)
|
|
{
|
|
nvgpu_gmmu_unmap(c->vm, syncpt_buf, syncpt_buf->gpu_va);
|
|
nvgpu_dma_free(c->g, syncpt_buf);
|
|
}
|
|
|
|
int gv11b_fifo_get_sync_ro_map(struct vm_gk20a *vm,
|
|
u64 *base_gpuva, u32 *sync_size)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
int err;
|
|
|
|
nvgpu_mutex_acquire(&vm->syncpt_ro_map_lock);
|
|
err = set_syncpt_ro_map_gpu_va_locked(vm);
|
|
nvgpu_mutex_release(&vm->syncpt_ro_map_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
*base_gpuva = vm->syncpt_ro_map_gpu_va;
|
|
*sync_size = g->syncpt_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void gv11b_fifo_add_syncpt_wait_cmd(struct gk20a *g,
|
|
struct priv_cmd_entry *cmd, u32 off,
|
|
u32 id, u32 thresh, u64 gpu_va_base)
|
|
{
|
|
u64 gpu_va = gpu_va_base +
|
|
nvgpu_nvhost_syncpt_unit_interface_get_byte_offset(id);
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
off = cmd->off + off;
|
|
|
|
/* semaphore_a */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010004);
|
|
nvgpu_mem_wr32(g, cmd->mem, off++,
|
|
(gpu_va >> 32) & 0xff);
|
|
/* semaphore_b */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010005);
|
|
/* offset */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, gpu_va & 0xffffffff);
|
|
|
|
/* semaphore_c */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010006);
|
|
/* payload */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, thresh);
|
|
/* semaphore_d */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010007);
|
|
/* operation: acq_geq, switch_en */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x4 | (0x1 << 12));
|
|
}
|
|
|
|
u32 gv11b_fifo_get_syncpt_wait_cmd_size(void)
|
|
{
|
|
return 8;
|
|
}
|
|
|
|
u32 gv11b_fifo_get_syncpt_incr_per_release(void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void gv11b_fifo_add_syncpt_incr_cmd(struct gk20a *g,
|
|
bool wfi_cmd, struct priv_cmd_entry *cmd,
|
|
u32 id, u64 gpu_va)
|
|
{
|
|
u32 off = cmd->off;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
/* semaphore_a */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010004);
|
|
nvgpu_mem_wr32(g, cmd->mem, off++,
|
|
(gpu_va >> 32) & 0xff);
|
|
/* semaphore_b */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010005);
|
|
/* offset */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, gpu_va & 0xffffffff);
|
|
|
|
/* semaphore_c */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010006);
|
|
/* payload */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x0);
|
|
/* semaphore_d */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++, 0x20010007);
|
|
|
|
/* operation: 4 byte payload, release, wfi */
|
|
nvgpu_mem_wr32(g, cmd->mem, off++,
|
|
(0x1 << 24) | 0x2 | ((wfi_cmd ? 0x0 : 0x1) << 20));
|
|
}
|
|
|
|
u32 gv11b_fifo_get_syncpt_incr_cmd_size(bool wfi_cmd)
|
|
{
|
|
return 8;
|
|
}
|
|
#endif /* CONFIG_TEGRA_GK20A_NVHOST */
|
|
|
|
int gv11b_init_fifo_setup_hw(struct gk20a *g)
|
|
{
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
|
|
f->max_subctx_count = gr_pri_fe_chip_def_info_max_veid_count_init_v();
|
|
return 0;
|
|
}
|
|
|
|
static u32 gv11b_mmu_fault_id_to_gr_veid(struct gk20a *g, u32 gr_eng_fault_id,
|
|
u32 mmu_fault_id)
|
|
{
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
u32 num_subctx;
|
|
u32 veid = FIFO_INVAL_VEID;
|
|
|
|
num_subctx = f->max_subctx_count;
|
|
|
|
if (mmu_fault_id >= gr_eng_fault_id &&
|
|
mmu_fault_id < (gr_eng_fault_id + num_subctx))
|
|
veid = mmu_fault_id - gr_eng_fault_id;
|
|
|
|
return veid;
|
|
}
|
|
|
|
static u32 gv11b_mmu_fault_id_to_eng_id_and_veid(struct gk20a *g,
|
|
u32 mmu_fault_id, u32 *veid)
|
|
{
|
|
u32 engine_id;
|
|
u32 active_engine_id;
|
|
struct fifo_engine_info_gk20a *engine_info;
|
|
struct fifo_gk20a *f = &g->fifo;
|
|
|
|
|
|
for (engine_id = 0; engine_id < f->num_engines; engine_id++) {
|
|
active_engine_id = f->active_engines_list[engine_id];
|
|
engine_info = &g->fifo.engine_info[active_engine_id];
|
|
|
|
if (active_engine_id == ENGINE_GR_GK20A) {
|
|
/* get faulted subctx id */
|
|
*veid = gv11b_mmu_fault_id_to_gr_veid(g,
|
|
engine_info->fault_id, mmu_fault_id);
|
|
if (*veid != FIFO_INVAL_VEID)
|
|
break;
|
|
} else {
|
|
if (engine_info->fault_id == mmu_fault_id)
|
|
break;
|
|
}
|
|
|
|
active_engine_id = FIFO_INVAL_ENGINE_ID;
|
|
}
|
|
return active_engine_id;
|
|
}
|
|
|
|
static u32 gv11b_mmu_fault_id_to_pbdma_id(struct gk20a *g, u32 mmu_fault_id)
|
|
{
|
|
u32 num_pbdma, reg_val, fault_id_pbdma0;
|
|
|
|
reg_val = gk20a_readl(g, fifo_cfg0_r());
|
|
num_pbdma = fifo_cfg0_num_pbdma_v(reg_val);
|
|
fault_id_pbdma0 = fifo_cfg0_pbdma_fault_id_v(reg_val);
|
|
|
|
if (mmu_fault_id >= fault_id_pbdma0 &&
|
|
mmu_fault_id <= fault_id_pbdma0 + num_pbdma - 1)
|
|
return mmu_fault_id - fault_id_pbdma0;
|
|
|
|
return FIFO_INVAL_PBDMA_ID;
|
|
}
|
|
|
|
void gv11b_mmu_fault_id_to_eng_pbdma_id_and_veid(struct gk20a *g,
|
|
u32 mmu_fault_id, u32 *active_engine_id, u32 *veid, u32 *pbdma_id)
|
|
{
|
|
*active_engine_id = gv11b_mmu_fault_id_to_eng_id_and_veid(g,
|
|
mmu_fault_id, veid);
|
|
|
|
if (*active_engine_id == FIFO_INVAL_ENGINE_ID)
|
|
*pbdma_id = gv11b_mmu_fault_id_to_pbdma_id(g, mmu_fault_id);
|
|
else
|
|
*pbdma_id = FIFO_INVAL_PBDMA_ID;
|
|
}
|
|
|
|
static bool gk20a_fifo_channel_status_is_eng_faulted(struct gk20a *g, u32 chid)
|
|
{
|
|
u32 channel = gk20a_readl(g, ccsr_channel_r(chid));
|
|
|
|
return ccsr_channel_eng_faulted_v(channel) ==
|
|
ccsr_channel_eng_faulted_true_v();
|
|
}
|
|
|
|
void gv11b_fifo_tsg_verify_status_faulted(struct channel_gk20a *ch)
|
|
{
|
|
struct gk20a *g = ch->g;
|
|
struct tsg_gk20a *tsg = &g->fifo.tsg[ch->tsgid];
|
|
|
|
/*
|
|
* If channel has FAULTED set, clear the CE method buffer
|
|
* if saved out channel is same as faulted channel
|
|
*/
|
|
if (!gk20a_fifo_channel_status_is_eng_faulted(g, ch->chid))
|
|
return;
|
|
|
|
if (tsg->eng_method_buffers == NULL)
|
|
return;
|
|
|
|
/*
|
|
* CE method buffer format :
|
|
* DWord0 = method count
|
|
* DWord1 = channel id
|
|
*
|
|
* It is sufficient to write 0 to method count to invalidate
|
|
*/
|
|
if ((u32)ch->chid ==
|
|
nvgpu_mem_rd32(g, &tsg->eng_method_buffers[ASYNC_CE_RUNQUE], 1))
|
|
nvgpu_mem_wr32(g, &tsg->eng_method_buffers[ASYNC_CE_RUNQUE], 0, 0);
|
|
}
|