Files
linux-nvgpu/drivers/gpu/nvgpu/os/linux/nvhost.c
Shashank Singh 701c0efa8d gpu: nvgpu: enable syncpoint shim when nvlink is disabled
Create an iova for syncpoint shim region in case iommu is enabled and
nvlink is disabled. This iova is then used to created nvgpu mem with
nvgpu_mem_create_from_phys. Which is then used to create gpu mappings.
Instead of creating another variable g->syncpt_mem's priv is used to
store the sgt which needs to be freed on deinit.

Jira NVGPU-5376

Change-Id: I0b5a8320fbbb68031912ae88cfe8c2c3804fb813
Signed-off-by: Shashank Singh <shashsingh@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2332643
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
2020-12-15 14:13:28 -06:00

366 lines
9.2 KiB
C

/*
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/nvhost.h>
#include <linux/nvhost_t194.h>
#include <linux/dma-mapping.h>
#include <uapi/linux/nvhost_ioctl.h>
#include <linux/of_platform.h>
#include <nvgpu/gk20a.h>
#include <nvgpu/nvhost.h>
#include <nvgpu/enabled.h>
#include <nvgpu/dma.h>
#include "nvhost_priv.h"
#include "os_linux.h"
#include "module.h"
int nvgpu_get_nvhost_dev(struct gk20a *g)
{
struct device_node *np = nvgpu_get_node(g);
struct platform_device *host1x_pdev = NULL;
const __be32 *host1x_ptr;
host1x_ptr = of_get_property(np, "nvidia,host1x", NULL);
if (host1x_ptr) {
struct device_node *host1x_node =
of_find_node_by_phandle(be32_to_cpup(host1x_ptr));
host1x_pdev = of_find_device_by_node(host1x_node);
if (!host1x_pdev) {
nvgpu_warn(g, "host1x device not available");
return -EPROBE_DEFER;
}
} else {
if (nvgpu_has_syncpoints(g)) {
nvgpu_warn(g, "host1x reference not found. assuming no syncpoints support");
nvgpu_set_enabled(g, NVGPU_HAS_SYNCPOINTS, false);
}
return 0;
}
g->nvhost = nvgpu_kzalloc(g, sizeof(struct nvgpu_nvhost_dev));
if (!g->nvhost)
return -ENOMEM;
g->nvhost->host1x_pdev = host1x_pdev;
return 0;
}
void nvgpu_free_nvhost_dev(struct gk20a *g)
{
if (nvgpu_iommuable(g) && !nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
struct device *dev = dev_from_gk20a(g);
struct nvgpu_mem *mem = &g->syncpt_mem;
dma_unmap_sg_attrs(dev, mem->priv.sgt->sgl, 1,
DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
sg_free_table(mem->priv.sgt);
nvgpu_kfree(g, mem->priv.sgt);
}
nvgpu_kfree(g, g->nvhost);
}
bool nvgpu_has_syncpoints(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
return nvgpu_is_enabled(g, NVGPU_HAS_SYNCPOINTS) &&
!l->disable_syncpoints;
}
int nvgpu_nvhost_module_busy_ext(
struct nvgpu_nvhost_dev *nvhost_dev)
{
return nvhost_module_busy_ext(nvhost_dev->host1x_pdev);
}
void nvgpu_nvhost_module_idle_ext(
struct nvgpu_nvhost_dev *nvhost_dev)
{
nvhost_module_idle_ext(nvhost_dev->host1x_pdev);
}
void nvgpu_nvhost_debug_dump_device(
struct nvgpu_nvhost_dev *nvhost_dev)
{
nvhost_debug_dump_device(nvhost_dev->host1x_pdev);
}
const char *nvgpu_nvhost_syncpt_get_name(
struct nvgpu_nvhost_dev *nvhost_dev, int id)
{
return nvhost_syncpt_get_name(nvhost_dev->host1x_pdev, id);
}
bool nvgpu_nvhost_syncpt_is_valid_pt_ext(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id)
{
return nvhost_syncpt_is_valid_pt_ext(nvhost_dev->host1x_pdev, id);
}
bool nvgpu_nvhost_syncpt_is_expired_ext(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id, u32 thresh)
{
return nvhost_syncpt_is_expired_ext(nvhost_dev->host1x_pdev,
id, thresh);
}
u32 nvgpu_nvhost_syncpt_incr_max_ext(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id, u32 incrs)
{
return nvhost_syncpt_incr_max_ext(nvhost_dev->host1x_pdev, id, incrs);
}
int nvgpu_nvhost_intr_register_notifier(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id, u32 thresh,
void (*callback)(void *, int), void *private_data)
{
return nvhost_intr_register_notifier(nvhost_dev->host1x_pdev,
id, thresh,
callback, private_data);
}
void nvgpu_nvhost_syncpt_set_min_eq_max_ext(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id)
{
nvhost_syncpt_set_min_eq_max_ext(nvhost_dev->host1x_pdev, id);
}
void nvgpu_nvhost_syncpt_put_ref_ext(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id)
{
nvhost_syncpt_put_ref_ext(nvhost_dev->host1x_pdev, id);
}
u32 nvgpu_nvhost_get_syncpt_host_managed(
struct nvgpu_nvhost_dev *nvhost_dev,
u32 param, const char *syncpt_name)
{
return nvhost_get_syncpt_host_managed(nvhost_dev->host1x_pdev,
param, syncpt_name);
}
u32 nvgpu_nvhost_get_syncpt_client_managed(
struct nvgpu_nvhost_dev *nvhost_dev,
const char *syncpt_name)
{
return nvhost_get_syncpt_client_managed(nvhost_dev->host1x_pdev,
syncpt_name);
}
int nvgpu_nvhost_syncpt_wait_timeout_ext(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id,
u32 thresh, u32 timeout, u32 waiter_index)
{
return nvhost_syncpt_wait_timeout_ext(nvhost_dev->host1x_pdev,
id, thresh, timeout, NULL, NULL);
}
int nvgpu_nvhost_syncpt_read_ext_check(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id, u32 *val)
{
return nvhost_syncpt_read_ext_check(nvhost_dev->host1x_pdev, id, val);
}
u32 nvgpu_nvhost_syncpt_read_maxval(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id)
{
return nvhost_syncpt_read_maxval(nvhost_dev->host1x_pdev, id);
}
void nvgpu_nvhost_syncpt_set_safe_state(
struct nvgpu_nvhost_dev *nvhost_dev, u32 id)
{
u32 val = 0;
int err;
/*
* Add large number of increments to current value
* so that all waiters on this syncpoint are released
*
* We don't expect any case where more than 0x10000 increments
* are pending
*/
err = nvhost_syncpt_read_ext_check(nvhost_dev->host1x_pdev,
id, &val);
if (err != 0) {
pr_err("%s: syncpt id read failed, cannot reset for safe state",
__func__);
} else {
val += 0x10000;
nvhost_syncpt_set_minval(nvhost_dev->host1x_pdev, id, val);
nvhost_syncpt_set_maxval(nvhost_dev->host1x_pdev, id, val);
}
}
int nvgpu_nvhost_create_symlink(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
int err = 0;
if (g->nvhost &&
(dev->parent != &g->nvhost->host1x_pdev->dev)) {
err = sysfs_create_link(&g->nvhost->host1x_pdev->dev.kobj,
&dev->kobj,
dev_name(dev));
}
return err;
}
void nvgpu_nvhost_remove_symlink(struct gk20a *g)
{
struct device *dev = dev_from_gk20a(g);
if (g->nvhost &&
(dev->parent != &g->nvhost->host1x_pdev->dev)) {
sysfs_remove_link(&g->nvhost->host1x_pdev->dev.kobj,
dev_name(dev));
}
}
#ifndef CONFIG_NVGPU_SYNCFD_NONE
u32 nvgpu_nvhost_sync_pt_id(struct sync_pt *pt)
{
return nvhost_sync_pt_id(pt);
}
u32 nvgpu_nvhost_sync_pt_thresh(struct sync_pt *pt)
{
return nvhost_sync_pt_thresh(pt);
}
struct sync_fence *nvgpu_nvhost_sync_fdget(int fd)
{
return nvhost_sync_fdget(fd);
}
int nvgpu_nvhost_sync_num_pts(struct sync_fence *fence)
{
return nvhost_sync_num_pts(fence);
}
struct sync_fence *nvgpu_nvhost_sync_create_fence(
struct nvgpu_nvhost_dev *nvhost_dev,
u32 id, u32 thresh, const char *name)
{
struct nvhost_ctrl_sync_fence_info pt = {
.id = id,
.thresh = thresh,
};
return nvhost_sync_create_fence(nvhost_dev->host1x_pdev, &pt, 1, name);
}
#endif /* !CONFIG_NVGPU_SYNCFD_NONE */
#ifdef CONFIG_TEGRA_T19X_GRHOST
int nvgpu_nvhost_get_syncpt_aperture(
struct nvgpu_nvhost_dev *nvhost_dev,
u64 *base, size_t *size)
{
return nvhost_syncpt_unit_interface_get_aperture(
nvhost_dev->host1x_pdev, (phys_addr_t *)base, size);
}
u32 nvgpu_nvhost_syncpt_unit_interface_get_byte_offset(u32 syncpt_id)
{
return nvhost_syncpt_unit_interface_get_byte_offset(syncpt_id);
}
int nvgpu_nvhost_syncpt_init(struct gk20a *g)
{
int err = 0;
struct nvgpu_mem *mem = &g->syncpt_mem;
if (!nvgpu_has_syncpoints(g))
return -ENOSYS;
err = nvgpu_get_nvhost_dev(g);
if (err) {
nvgpu_err(g, "host1x device not available");
err = -ENOSYS;
goto fail_sync;
}
err = nvgpu_nvhost_get_syncpt_aperture(
g->nvhost,
&g->syncpt_unit_base,
&g->syncpt_unit_size);
if (err) {
nvgpu_err(g, "Failed to get syncpt interface");
err = -ENOSYS;
goto fail_sync;
}
/*
* If IOMMU is enabled, create iova for syncpt region. This iova is then
* used to create nvgpu_mem for syncpt by nvgpu_mem_create_from_phys.
* For entire syncpt shim read-only mapping full iova range is used and
* for a given syncpt read-write mapping only a part of iova range is
* used. Instead of creating another variable to store the sgt,
* g->syncpt_mem's priv field is used which later on is needed for
* freeing the mapping in deinit.
*/
if (nvgpu_iommuable(g) && !nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
struct device *dev = dev_from_gk20a(g);
struct scatterlist *sg;
mem->priv.sgt = nvgpu_kzalloc(g, sizeof(struct sg_table));
if (!mem->priv.sgt) {
err = -ENOMEM;
goto fail_sync;
}
err = sg_alloc_table(mem->priv.sgt, 1, GFP_KERNEL);
if (err) {
err = -ENOMEM;
goto fail_kfree;
}
sg = mem->priv.sgt->sgl;
sg_set_page(sg, phys_to_page(g->syncpt_unit_base),
g->syncpt_unit_size, 0);
err = dma_map_sg_attrs(dev, sg, 1,
DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
/* dma_map_sg_attrs returns 0 on errors */
if (err == 0) {
nvgpu_err(g, "iova creation for syncpoint failed");
err = -ENOMEM;
goto fail_sgt;
}
g->syncpt_unit_base = sg_dma_address(sg);
}
g->syncpt_size =
nvgpu_nvhost_syncpt_unit_interface_get_byte_offset(1);
nvgpu_info(g, "syncpt_unit_base %llx syncpt_unit_size %zx size %x\n",
g->syncpt_unit_base, g->syncpt_unit_size,
g->syncpt_size);
return 0;
fail_sgt:
sg_free_table(mem->priv.sgt);
fail_kfree:
nvgpu_kfree(g, mem->priv.sgt);
fail_sync:
nvgpu_set_enabled(g, NVGPU_HAS_SYNCPOINTS, false);
return err;
}
#endif