mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 09:57:08 +03:00
MISRA Rule 10.4 only allows the usage of arithmetic operations on operands of the same essential type category. Adding "U" at the end of the integer literals or casting operands to have same type of operands when an arithmetic operation is performed. This fixes violations where an arithmetic operation is performed on signed and unsigned int types. JIRA NVGPU-992 Change-Id: I27e3e59c3559c377b4bd3cbcfced90fdf90350f2 Signed-off-by: Sai Nikhil <snikhil@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1921459 Reviewed-by: svc-misra-checker <svc-misra-checker@nvidia.com> GVS: Gerrit_Virtual_Submit Reviewed-by: Adeel Raza <araza@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
589 lines
17 KiB
C
589 lines
17 KiB
C
/*
|
|
* GM20B L2
|
|
*
|
|
* Copyright (c) 2014-2018 NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <trace/events/gk20a.h>
|
|
|
|
#include <nvgpu/timers.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/ltc.h>
|
|
#include <nvgpu/io.h>
|
|
#include <nvgpu/utils.h>
|
|
#include <nvgpu/gk20a.h>
|
|
|
|
#include <nvgpu/hw/gm20b/hw_ltc_gm20b.h>
|
|
#include <nvgpu/hw/gm20b/hw_top_gm20b.h>
|
|
#include <nvgpu/hw/gm20b/hw_pri_ringmaster_gm20b.h>
|
|
|
|
#include "ltc_gm20b.h"
|
|
|
|
int gm20b_ltc_init_comptags(struct gk20a *g, struct gr_gk20a *gr)
|
|
{
|
|
/* max memory size (MB) to cover */
|
|
u32 max_size = gr->max_comptag_mem;
|
|
/* one tag line covers 128KB */
|
|
u32 max_comptag_lines = max_size << 3U;
|
|
|
|
u32 hw_max_comptag_lines =
|
|
ltc_ltcs_ltss_cbc_ctrl3_clear_upper_bound_init_v();
|
|
|
|
u32 cbc_param =
|
|
gk20a_readl(g, ltc_ltcs_ltss_cbc_param_r());
|
|
u32 comptags_per_cacheline =
|
|
ltc_ltcs_ltss_cbc_param_comptags_per_cache_line_v(cbc_param);
|
|
|
|
u32 compbit_backing_size;
|
|
|
|
int err;
|
|
|
|
nvgpu_log_fn(g, " ");
|
|
|
|
if (max_comptag_lines == 0U) {
|
|
return 0;
|
|
}
|
|
|
|
if (max_comptag_lines > hw_max_comptag_lines) {
|
|
max_comptag_lines = hw_max_comptag_lines;
|
|
}
|
|
|
|
compbit_backing_size =
|
|
DIV_ROUND_UP(max_comptag_lines, comptags_per_cacheline) *
|
|
gr->cacheline_size * gr->slices_per_ltc * g->ltc_count;
|
|
|
|
/* aligned to 2KB * ltc_count */
|
|
compbit_backing_size +=
|
|
g->ltc_count << ltc_ltcs_ltss_cbc_base_alignment_shift_v();
|
|
|
|
/* must be a multiple of 64KB */
|
|
compbit_backing_size = roundup(compbit_backing_size,
|
|
U32(64) * U32(1024));
|
|
|
|
max_comptag_lines =
|
|
(compbit_backing_size * comptags_per_cacheline) /
|
|
(gr->cacheline_size * gr->slices_per_ltc * g->ltc_count);
|
|
|
|
if (max_comptag_lines > hw_max_comptag_lines) {
|
|
max_comptag_lines = hw_max_comptag_lines;
|
|
}
|
|
|
|
nvgpu_log_info(g, "compbit backing store size : %d",
|
|
compbit_backing_size);
|
|
nvgpu_log_info(g, "max comptag lines : %d",
|
|
max_comptag_lines);
|
|
|
|
err = nvgpu_ltc_alloc_cbc(g, compbit_backing_size, false);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
err = gk20a_comptag_allocator_init(g, &gr->comp_tags, max_comptag_lines);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
|
|
gr->max_comptag_lines = max_comptag_lines;
|
|
gr->comptags_per_cacheline = comptags_per_cacheline;
|
|
gr->compbit_backing_size = compbit_backing_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gm20b_ltc_cbc_ctrl(struct gk20a *g, enum gk20a_cbc_op op,
|
|
u32 min, u32 max)
|
|
{
|
|
struct gr_gk20a *gr = &g->gr;
|
|
struct nvgpu_timeout timeout;
|
|
int err = 0;
|
|
u32 ltc, slice, ctrl1, val, hw_op = 0U;
|
|
u32 slices_per_ltc = ltc_ltcs_ltss_cbc_param_slices_per_ltc_v(
|
|
gk20a_readl(g, ltc_ltcs_ltss_cbc_param_r()));
|
|
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
|
|
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
|
|
const u32 max_lines = 16384U;
|
|
|
|
nvgpu_log_fn(g, " ");
|
|
|
|
trace_gk20a_ltc_cbc_ctrl_start(g->name, op, min, max);
|
|
|
|
if (gr->compbit_store.mem.size == 0ULL) {
|
|
return 0;
|
|
}
|
|
|
|
while (true) {
|
|
const u32 iter_max = min(min + max_lines - 1U, max);
|
|
bool full_cache_op = true;
|
|
|
|
nvgpu_mutex_acquire(&g->mm.l2_op_lock);
|
|
|
|
nvgpu_log_info(g, "clearing CBC lines %u..%u", min, iter_max);
|
|
|
|
if (op == gk20a_cbc_op_clear) {
|
|
gk20a_writel(
|
|
g, ltc_ltcs_ltss_cbc_ctrl2_r(),
|
|
ltc_ltcs_ltss_cbc_ctrl2_clear_lower_bound_f(
|
|
min));
|
|
gk20a_writel(
|
|
g, ltc_ltcs_ltss_cbc_ctrl3_r(),
|
|
ltc_ltcs_ltss_cbc_ctrl3_clear_upper_bound_f(
|
|
iter_max));
|
|
hw_op = ltc_ltcs_ltss_cbc_ctrl1_clear_active_f();
|
|
full_cache_op = false;
|
|
} else if (op == gk20a_cbc_op_clean) {
|
|
/* this is full-cache op */
|
|
hw_op = ltc_ltcs_ltss_cbc_ctrl1_clean_active_f();
|
|
} else if (op == gk20a_cbc_op_invalidate) {
|
|
/* this is full-cache op */
|
|
hw_op = ltc_ltcs_ltss_cbc_ctrl1_invalidate_active_f();
|
|
} else {
|
|
nvgpu_err(g, "Unknown op: %u", (unsigned)op);
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
gk20a_writel(g, ltc_ltcs_ltss_cbc_ctrl1_r(),
|
|
gk20a_readl(g,
|
|
ltc_ltcs_ltss_cbc_ctrl1_r()) | hw_op);
|
|
|
|
for (ltc = 0; ltc < g->ltc_count; ltc++) {
|
|
for (slice = 0; slice < slices_per_ltc; slice++) {
|
|
|
|
ctrl1 = ltc_ltc0_lts0_cbc_ctrl1_r() +
|
|
ltc * ltc_stride + slice * lts_stride;
|
|
|
|
nvgpu_timeout_init(g, &timeout, 2000,
|
|
NVGPU_TIMER_RETRY_TIMER);
|
|
do {
|
|
val = gk20a_readl(g, ctrl1);
|
|
if ((val & hw_op) == 0U) {
|
|
break;
|
|
}
|
|
nvgpu_udelay(5);
|
|
} while (nvgpu_timeout_expired(&timeout) == 0);
|
|
|
|
if (nvgpu_timeout_peek_expired(&timeout) != 0) {
|
|
nvgpu_err(g, "comp tag clear timeout");
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* are we done? */
|
|
if (full_cache_op || iter_max == max) {
|
|
break;
|
|
}
|
|
|
|
/* note: iter_max is inclusive upper bound */
|
|
min = iter_max + 1U;
|
|
|
|
/* give a chance for higher-priority threads to progress */
|
|
nvgpu_mutex_release(&g->mm.l2_op_lock);
|
|
}
|
|
out:
|
|
trace_gk20a_ltc_cbc_ctrl_done(g->name);
|
|
nvgpu_mutex_release(&g->mm.l2_op_lock);
|
|
return err;
|
|
}
|
|
|
|
void gm20b_ltc_init_fs_state(struct gk20a *g)
|
|
{
|
|
struct gr_gk20a *gr = &g->gr;
|
|
u32 reg;
|
|
|
|
nvgpu_log_info(g, "initialize gm20b l2");
|
|
|
|
g->max_ltc_count = gk20a_readl(g, top_num_ltcs_r());
|
|
g->ltc_count = gk20a_readl(g, pri_ringmaster_enum_ltc_r());
|
|
nvgpu_log_info(g, "%d ltcs out of %d", g->ltc_count, g->max_ltc_count);
|
|
|
|
reg = gk20a_readl(g, ltc_ltcs_ltss_cbc_param_r());
|
|
gr->slices_per_ltc = ltc_ltcs_ltss_cbc_param_slices_per_ltc_v(reg);;
|
|
gr->cacheline_size =
|
|
U32(512) << ltc_ltcs_ltss_cbc_param_cache_line_size_v(reg);
|
|
|
|
gk20a_writel(g, ltc_ltcs_ltss_cbc_num_active_ltcs_r(),
|
|
g->ltc_count);
|
|
gk20a_writel(g, ltc_ltcs_misc_ltc_num_active_ltcs_r(),
|
|
g->ltc_count);
|
|
|
|
gk20a_writel(g, ltc_ltcs_ltss_dstg_cfg0_r(),
|
|
gk20a_readl(g, ltc_ltc0_lts0_dstg_cfg0_r()) |
|
|
ltc_ltcs_ltss_dstg_cfg0_vdc_4to2_disable_m());
|
|
|
|
/* Disable LTC interrupts */
|
|
reg = gk20a_readl(g, ltc_ltcs_ltss_intr_r());
|
|
reg &= ~ltc_ltcs_ltss_intr_en_evicted_cb_m();
|
|
reg &= ~ltc_ltcs_ltss_intr_en_illegal_compstat_access_m();
|
|
reg &= ~ltc_ltcs_ltss_intr_en_illegal_compstat_m();
|
|
gk20a_writel(g, ltc_ltcs_ltss_intr_r(), reg);
|
|
}
|
|
|
|
void gm20b_ltc_lts_isr(struct gk20a *g, unsigned int ltc, unsigned int slice)
|
|
{
|
|
u32 ltc_intr;
|
|
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
|
|
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
|
|
|
|
ltc_intr = gk20a_readl(g, ltc_ltc0_lts0_intr_r() +
|
|
ltc_stride * ltc +
|
|
lts_stride * slice);
|
|
nvgpu_err(g, "ltc%d, slice %d: %08x",
|
|
ltc, slice, ltc_intr);
|
|
gk20a_writel(g, ltc_ltc0_lts0_intr_r() +
|
|
ltc_stride * ltc +
|
|
lts_stride * slice,
|
|
ltc_intr);
|
|
}
|
|
|
|
void gm20b_ltc_isr(struct gk20a *g, unsigned int ltc)
|
|
{
|
|
unsigned int slice;
|
|
|
|
for (slice = 0U; slice < g->gr.slices_per_ltc; slice++) {
|
|
gm20b_ltc_lts_isr(g, ltc, slice);
|
|
}
|
|
}
|
|
|
|
u32 gm20b_ltc_cbc_fix_config(struct gk20a *g, int base)
|
|
{
|
|
u32 val = gk20a_readl(g, ltc_ltcs_ltss_cbc_num_active_ltcs_r());
|
|
if (val == 2U) {
|
|
return base * 2;
|
|
} else if (val != 1U) {
|
|
nvgpu_err(g, "Invalid number of active ltcs: %08x", val);
|
|
}
|
|
|
|
return base;
|
|
}
|
|
|
|
/*
|
|
* Performs a full flush of the L2 cache.
|
|
*/
|
|
void gm20b_flush_ltc(struct gk20a *g)
|
|
{
|
|
struct nvgpu_timeout timeout;
|
|
unsigned int ltc;
|
|
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
|
|
bool is_clean_pending_set = false;
|
|
bool is_invalidate_pending_set = false;
|
|
|
|
/* Clean... */
|
|
nvgpu_writel_check(g, ltc_ltcs_ltss_tstg_cmgmt1_r(),
|
|
ltc_ltcs_ltss_tstg_cmgmt1_clean_pending_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt1_max_cycles_between_cleans_3_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt1_clean_wait_for_fb_to_pull_true_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt1_clean_evict_last_class_true_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt1_clean_evict_normal_class_true_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt1_clean_evict_first_class_true_f());
|
|
|
|
/* Wait on each LTC individually. */
|
|
for (ltc = 0; ltc < g->ltc_count; ltc++) {
|
|
u32 op_pending;
|
|
|
|
/*
|
|
* Use 5ms - this should be sufficient time to flush the cache.
|
|
* On tegra, rough EMC BW available for old tegra chips (newer
|
|
* chips are strictly faster) can be estimated as follows:
|
|
*
|
|
* Lowest reasonable EMC clock speed will be around 102MHz on
|
|
* t124 for display enabled boards and generally fixed to max
|
|
* for non-display boards (since they are generally plugged in).
|
|
*
|
|
* Thus, the available BW is 64b * 2 * 102MHz = 1.3GB/s. Of that
|
|
* BW the GPU will likely get about half (display and overhead/
|
|
* utilization inefficiency eating the rest) so 650MB/s at
|
|
* worst. Assuming at most 1MB of GPU L2 cache (less for most
|
|
* chips) worst case is we take 1MB/650MB/s = 1.5ms.
|
|
*
|
|
* So 5ms timeout here should be more than sufficient.
|
|
*/
|
|
nvgpu_timeout_init(g, &timeout, 5, NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
int cmgmt1 = ltc_ltc0_ltss_tstg_cmgmt1_r() +
|
|
ltc * ltc_stride;
|
|
op_pending = gk20a_readl(g, cmgmt1);
|
|
is_clean_pending_set = (op_pending &
|
|
ltc_ltc0_ltss_tstg_cmgmt1_clean_pending_f()) != 0U;
|
|
} while (is_clean_pending_set &&
|
|
(nvgpu_timeout_expired_msg(&timeout,
|
|
"L2 flush timeout!") == 0));
|
|
}
|
|
|
|
/* And invalidate. */
|
|
nvgpu_writel_check(g, ltc_ltcs_ltss_tstg_cmgmt0_r(),
|
|
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_pending_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt0_max_cycles_between_invalidates_3_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_evict_last_class_true_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_evict_normal_class_true_f() |
|
|
ltc_ltcs_ltss_tstg_cmgmt0_invalidate_evict_first_class_true_f());
|
|
|
|
/* Wait on each LTC individually. */
|
|
for (ltc = 0; ltc < g->ltc_count; ltc++) {
|
|
u32 op_pending;
|
|
|
|
/* Again, 5ms. */
|
|
nvgpu_timeout_init(g, &timeout, 5, NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
int cmgmt0 = ltc_ltc0_ltss_tstg_cmgmt0_r() +
|
|
ltc * ltc_stride;
|
|
op_pending = gk20a_readl(g, cmgmt0);
|
|
is_invalidate_pending_set = (op_pending &
|
|
ltc_ltc0_ltss_tstg_cmgmt0_invalidate_pending_f()) != 0U;
|
|
} while (is_invalidate_pending_set &&
|
|
(nvgpu_timeout_expired_msg(&timeout,
|
|
"L2 flush timeout!") == 0));
|
|
}
|
|
}
|
|
|
|
int gm20b_determine_L2_size_bytes(struct gk20a *g)
|
|
{
|
|
u32 lts_per_ltc;
|
|
u32 ways;
|
|
u32 sets;
|
|
u32 bytes_per_line;
|
|
u32 active_ltcs;
|
|
u32 cache_size;
|
|
|
|
u32 tmp;
|
|
u32 active_sets_value;
|
|
|
|
tmp = gk20a_readl(g, ltc_ltc0_lts0_tstg_cfg1_r());
|
|
ways = hweight32(ltc_ltc0_lts0_tstg_cfg1_active_ways_v(tmp));
|
|
|
|
active_sets_value = ltc_ltc0_lts0_tstg_cfg1_active_sets_v(tmp);
|
|
if (active_sets_value == ltc_ltc0_lts0_tstg_cfg1_active_sets_all_v()) {
|
|
sets = 64U;
|
|
} else if (active_sets_value ==
|
|
ltc_ltc0_lts0_tstg_cfg1_active_sets_half_v()) {
|
|
sets = 32U;
|
|
} else if (active_sets_value ==
|
|
ltc_ltc0_lts0_tstg_cfg1_active_sets_quarter_v()) {
|
|
sets = 16U;
|
|
} else {
|
|
nvgpu_err(g, "Unknown constant %u for active sets",
|
|
(unsigned)active_sets_value);
|
|
sets = 0U;
|
|
}
|
|
|
|
active_ltcs = g->gr.num_fbps;
|
|
|
|
/* chip-specific values */
|
|
lts_per_ltc = 2U;
|
|
bytes_per_line = 128U;
|
|
cache_size = active_ltcs * lts_per_ltc * ways * sets * bytes_per_line;
|
|
|
|
return cache_size;
|
|
}
|
|
|
|
/*
|
|
* Sets the ZBC color for the passed index.
|
|
*/
|
|
void gm20b_ltc_set_zbc_color_entry(struct gk20a *g,
|
|
struct zbc_entry *color_val,
|
|
u32 index)
|
|
{
|
|
u32 i;
|
|
u32 real_index = index + GK20A_STARTOF_ZBC_TABLE;
|
|
|
|
nvgpu_writel_check(g, ltc_ltcs_ltss_dstg_zbc_index_r(),
|
|
ltc_ltcs_ltss_dstg_zbc_index_address_f(real_index));
|
|
|
|
for (i = 0;
|
|
i < ltc_ltcs_ltss_dstg_zbc_color_clear_value__size_1_v(); i++) {
|
|
nvgpu_writel_check(g,
|
|
ltc_ltcs_ltss_dstg_zbc_color_clear_value_r(i),
|
|
color_val->color_l2[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sets the ZBC depth for the passed index.
|
|
*/
|
|
void gm20b_ltc_set_zbc_depth_entry(struct gk20a *g,
|
|
struct zbc_entry *depth_val,
|
|
u32 index)
|
|
{
|
|
u32 real_index = index + GK20A_STARTOF_ZBC_TABLE;
|
|
|
|
nvgpu_writel_check(g, ltc_ltcs_ltss_dstg_zbc_index_r(),
|
|
ltc_ltcs_ltss_dstg_zbc_index_address_f(real_index));
|
|
|
|
nvgpu_writel_check(g,
|
|
ltc_ltcs_ltss_dstg_zbc_depth_clear_value_r(),
|
|
depth_val->depth);
|
|
}
|
|
|
|
void gm20b_ltc_init_cbc(struct gk20a *g, struct gr_gk20a *gr)
|
|
{
|
|
u32 max_size = gr->max_comptag_mem;
|
|
u32 max_comptag_lines = max_size << 3U;
|
|
|
|
u32 compbit_base_post_divide;
|
|
u64 compbit_base_post_multiply64;
|
|
u64 compbit_store_iova;
|
|
u64 compbit_base_post_divide64;
|
|
|
|
if (nvgpu_is_enabled(g, NVGPU_IS_FMODEL)) {
|
|
compbit_store_iova = nvgpu_mem_get_phys_addr(g,
|
|
&gr->compbit_store.mem);
|
|
} else {
|
|
compbit_store_iova = nvgpu_mem_get_addr(g,
|
|
&gr->compbit_store.mem);
|
|
}
|
|
|
|
compbit_base_post_divide64 = compbit_store_iova >>
|
|
ltc_ltcs_ltss_cbc_base_alignment_shift_v();
|
|
|
|
do_div(compbit_base_post_divide64, g->ltc_count);
|
|
compbit_base_post_divide = u64_lo32(compbit_base_post_divide64);
|
|
|
|
compbit_base_post_multiply64 = ((u64)compbit_base_post_divide *
|
|
g->ltc_count) << ltc_ltcs_ltss_cbc_base_alignment_shift_v();
|
|
|
|
if (compbit_base_post_multiply64 < compbit_store_iova) {
|
|
compbit_base_post_divide++;
|
|
}
|
|
|
|
/* Bug 1477079 indicates sw adjustment on the posted divided base. */
|
|
if (g->ops.ltc.cbc_fix_config != NULL) {
|
|
compbit_base_post_divide =
|
|
g->ops.ltc.cbc_fix_config(g, compbit_base_post_divide);
|
|
}
|
|
|
|
gk20a_writel(g, ltc_ltcs_ltss_cbc_base_r(),
|
|
compbit_base_post_divide);
|
|
|
|
nvgpu_log(g, gpu_dbg_info | gpu_dbg_map_v | gpu_dbg_pte,
|
|
"compbit base.pa: 0x%x,%08x cbc_base:0x%08x\n",
|
|
(u32)(compbit_store_iova >> 32),
|
|
(u32)(compbit_store_iova & 0xffffffff),
|
|
compbit_base_post_divide);
|
|
|
|
gr->compbit_store.base_hw = compbit_base_post_divide;
|
|
|
|
g->ops.ltc.cbc_ctrl(g, gk20a_cbc_op_invalidate,
|
|
0, max_comptag_lines - 1U);
|
|
|
|
}
|
|
|
|
void gm20b_ltc_set_enabled(struct gk20a *g, bool enabled)
|
|
{
|
|
u32 reg_f = ltc_ltcs_ltss_tstg_set_mgmt_2_l2_bypass_mode_enabled_f();
|
|
u32 reg = gk20a_readl(g, ltc_ltcs_ltss_tstg_set_mgmt_2_r());
|
|
|
|
if (enabled) {
|
|
/* bypass disabled (normal caching ops) */
|
|
reg &= ~reg_f;
|
|
} else {
|
|
/* bypass enabled (no caching) */
|
|
reg |= reg_f;
|
|
}
|
|
|
|
gk20a_writel(g, ltc_ltcs_ltss_tstg_set_mgmt_2_r(), reg);
|
|
}
|
|
|
|
/*
|
|
* LTC pri addressing
|
|
*/
|
|
bool gm20b_ltc_pri_is_ltc_addr(struct gk20a *g, u32 addr)
|
|
{
|
|
return ((addr >= ltc_pltcg_base_v()) && (addr < ltc_pltcg_extent_v()));
|
|
}
|
|
|
|
bool gm20b_ltc_is_ltcs_ltss_addr(struct gk20a *g, u32 addr)
|
|
{
|
|
u32 ltc_shared_base = ltc_ltcs_ltss_v();
|
|
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
|
|
|
|
return (addr >= ltc_shared_base) &&
|
|
(addr < (ltc_shared_base + lts_stride));
|
|
}
|
|
|
|
bool gm20b_ltc_is_ltcn_ltss_addr(struct gk20a *g, u32 addr)
|
|
{
|
|
u32 lts_shared_base = ltc_ltc0_ltss_v();
|
|
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
|
|
u32 addr_mask = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE) - 1U;
|
|
u32 base_offset = lts_shared_base & addr_mask;
|
|
u32 end_offset = base_offset + lts_stride;
|
|
|
|
return (!gm20b_ltc_is_ltcs_ltss_addr(g, addr)) &&
|
|
((addr & addr_mask) >= base_offset) &&
|
|
((addr & addr_mask) < end_offset);
|
|
}
|
|
|
|
static void gm20b_ltc_update_ltc_lts_addr(struct gk20a *g, u32 addr, u32 ltc_num,
|
|
u32 *priv_addr_table,
|
|
u32 *priv_addr_table_index)
|
|
{
|
|
u32 num_ltc_slices = g->ops.gr.get_max_lts_per_ltc(g);
|
|
u32 index = *priv_addr_table_index;
|
|
u32 lts_num;
|
|
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
|
|
u32 lts_stride = nvgpu_get_litter_value(g, GPU_LIT_LTS_STRIDE);
|
|
|
|
for (lts_num = 0; lts_num < num_ltc_slices; lts_num++) {
|
|
priv_addr_table[index++] = ltc_ltc0_lts0_v() +
|
|
ltc_num * ltc_stride +
|
|
lts_num * lts_stride +
|
|
(addr & (lts_stride - 1U));
|
|
}
|
|
|
|
*priv_addr_table_index = index;
|
|
}
|
|
|
|
void gm20b_ltc_split_lts_broadcast_addr(struct gk20a *g, u32 addr,
|
|
u32 *priv_addr_table,
|
|
u32 *priv_addr_table_index)
|
|
{
|
|
u32 num_ltc = g->ltc_count;
|
|
u32 i, start, ltc_num = 0;
|
|
u32 pltcg_base = ltc_pltcg_base_v();
|
|
u32 ltc_stride = nvgpu_get_litter_value(g, GPU_LIT_LTC_STRIDE);
|
|
|
|
for (i = 0; i < num_ltc; i++) {
|
|
start = pltcg_base + i * ltc_stride;
|
|
if ((addr >= start) && (addr < (start + ltc_stride))) {
|
|
ltc_num = i;
|
|
break;
|
|
}
|
|
}
|
|
gm20b_ltc_update_ltc_lts_addr(g, addr, ltc_num, priv_addr_table,
|
|
priv_addr_table_index);
|
|
}
|
|
|
|
void gm20b_ltc_split_ltc_broadcast_addr(struct gk20a *g, u32 addr,
|
|
u32 *priv_addr_table,
|
|
u32 *priv_addr_table_index)
|
|
{
|
|
u32 num_ltc = g->ltc_count;
|
|
u32 ltc_num;
|
|
|
|
for (ltc_num = 0; ltc_num < num_ltc; ltc_num++) {
|
|
gm20b_ltc_update_ltc_lts_addr(g, addr, ltc_num,
|
|
priv_addr_table, priv_addr_table_index);
|
|
}
|
|
}
|