Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/fecs_trace_gk20a.c
Alex Waterman 1170687c33 gpu: nvgpu: Use coherent aperture flag
When using a coherent DMA API wee must make sure to program
any aperture fields with the coherent aperture setting. To
do this the nvgpu_aperture_mask() function was modified to
take a third aperture mask argument, a coherent setting, so
that code can use this function to generate coherent aperture
settings.

The aperture choice is some what tricky: the default version
of this function uses the state of the DMA API to determine
what aperture to use for SYSMEM: either coherent or
non-coherent internally. Thus a kernel user need only specify
the normal nvgpu_mem struct and the correct mask should be
chosen. Due to many uses of nvgpu_mem structs not created
directly from the DMA API wrapper it's easier to translate
SYSMEM to SYSMEM_COH after creation.

However, the GMMU mapping code, will encounter buffers from
userspace with difference coerency attributes than the DMA
API. Thus the __nvgpu_aperture_mask() really respects the
aperture setting passed in regardless of the DMA API state.
This aperture setting is pulled from NVGPU_VM_MAP_IO_COHERENT
since this is either passed in from userspace or set by the
kernel when using coherent DMA. The aperture field in attrs
is upgraded to coh if this flag is set.

This change also adds a coherent sysmem mask everywhere that
it can. There's a couple places that do not have a coherent
register field defined yet. These need to eventually be
defined and added.

Lastly the aperture mask code has been mvoed from the Linux
vm.c code to the general vm.c code since this function has
no Linux dependencies.

Note: depends on https://git-master.nvidia.com/r/1664536 for
new register fields.

JIRA EVLR-2333

Change-Id: I4b347911ecb7c511738563fe6c34d0e6aa380d71
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1655220
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-02-27 16:03:43 -08:00

802 lines
21 KiB
C

/*
* Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <asm/barrier.h>
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#endif
#include <uapi/linux/nvgpu.h>
#include <nvgpu/kmem.h>
#include <nvgpu/dma.h>
#include <nvgpu/bug.h>
#include <nvgpu/hashtable.h>
#include <nvgpu/circ_buf.h>
#include <nvgpu/thread.h>
#include <nvgpu/barrier.h>
#include <nvgpu/mm.h>
#include <nvgpu/enabled.h>
#include <nvgpu/ctxsw_trace.h>
#include "fecs_trace_gk20a.h"
#include "gk20a.h"
#include "gr_gk20a.h"
#include "common/linux/os_linux.h"
#include <nvgpu/log.h>
#include <nvgpu/hw/gk20a/hw_ctxsw_prog_gk20a.h>
#include <nvgpu/hw/gk20a/hw_gr_gk20a.h>
/*
* If HW circular buffer is getting too many "buffer full" conditions,
* increasing this constant should help (it drives Linux' internal buffer size).
*/
#define GK20A_FECS_TRACE_NUM_RECORDS (1 << 6)
#define GK20A_FECS_TRACE_HASH_BITS 8 /* 2^8 */
#define GK20A_FECS_TRACE_FRAME_PERIOD_US (1000000ULL/60ULL)
#define GK20A_FECS_TRACE_PTIMER_SHIFT 5
struct gk20a_fecs_trace_record {
u32 magic_lo;
u32 magic_hi;
u32 context_id;
u32 context_ptr;
u32 new_context_id;
u32 new_context_ptr;
u64 ts[];
};
struct gk20a_fecs_trace_hash_ent {
u32 context_ptr;
pid_t pid;
struct hlist_node node;
};
struct gk20a_fecs_trace {
struct nvgpu_mem trace_buf;
DECLARE_HASHTABLE(pid_hash_table, GK20A_FECS_TRACE_HASH_BITS);
struct nvgpu_mutex hash_lock;
struct nvgpu_mutex poll_lock;
struct nvgpu_thread poll_task;
bool init;
};
#ifdef CONFIG_GK20A_CTXSW_TRACE
static inline u32 gk20a_fecs_trace_record_ts_tag_v(u64 ts)
{
return ctxsw_prog_record_timestamp_timestamp_hi_tag_v((u32) (ts >> 32));
}
static inline u64 gk20a_fecs_trace_record_ts_timestamp_v(u64 ts)
{
return ts & ~(((u64)ctxsw_prog_record_timestamp_timestamp_hi_tag_m()) << 32);
}
static u32 gk20a_fecs_trace_fecs_context_ptr(struct gk20a *g, struct channel_gk20a *ch)
{
return (u32) (nvgpu_inst_block_addr(g, &ch->inst_block) >> 12LL);
}
static inline int gk20a_fecs_trace_num_ts(void)
{
return (ctxsw_prog_record_timestamp_record_size_in_bytes_v()
- sizeof(struct gk20a_fecs_trace_record)) / sizeof(u64);
}
static struct gk20a_fecs_trace_record *gk20a_fecs_trace_get_record(
struct gk20a_fecs_trace *trace, int idx)
{
return (struct gk20a_fecs_trace_record *)
((u8 *) trace->trace_buf.cpu_va
+ (idx * ctxsw_prog_record_timestamp_record_size_in_bytes_v()));
}
static bool gk20a_fecs_trace_is_valid_record(struct gk20a_fecs_trace_record *r)
{
/*
* testing magic_hi should suffice. magic_lo is sometimes used
* as a sequence number in experimental ucode.
*/
return (r->magic_hi
== ctxsw_prog_record_timestamp_magic_value_hi_v_value_v());
}
static int gk20a_fecs_trace_get_read_index(struct gk20a *g)
{
return gr_gk20a_elpg_protected_call(g,
gk20a_readl(g, gr_fecs_mailbox1_r()));
}
static int gk20a_fecs_trace_get_write_index(struct gk20a *g)
{
return gr_gk20a_elpg_protected_call(g,
gk20a_readl(g, gr_fecs_mailbox0_r()));
}
static int gk20a_fecs_trace_set_read_index(struct gk20a *g, int index)
{
gk20a_dbg(gpu_dbg_ctxsw, "set read=%d", index);
return gr_gk20a_elpg_protected_call(g,
(gk20a_writel(g, gr_fecs_mailbox1_r(), index), 0));
}
void gk20a_fecs_trace_hash_dump(struct gk20a *g)
{
u32 bkt;
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
gk20a_dbg(gpu_dbg_ctxsw, "dumping hash table");
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each(trace->pid_hash_table, bkt, ent, node)
{
gk20a_dbg(gpu_dbg_ctxsw, " ent=%p bkt=%x context_ptr=%x pid=%d",
ent, bkt, ent->context_ptr, ent->pid);
}
nvgpu_mutex_release(&trace->hash_lock);
}
static int gk20a_fecs_trace_hash_add(struct gk20a *g, u32 context_ptr, pid_t pid)
{
struct gk20a_fecs_trace_hash_ent *he;
struct gk20a_fecs_trace *trace = g->fecs_trace;
gk20a_dbg(gpu_dbg_fn | gpu_dbg_ctxsw,
"adding hash entry context_ptr=%x -> pid=%d", context_ptr, pid);
he = nvgpu_kzalloc(g, sizeof(*he));
if (unlikely(!he)) {
nvgpu_warn(g,
"can't alloc new hash entry for context_ptr=%x pid=%d",
context_ptr, pid);
return -ENOMEM;
}
he->context_ptr = context_ptr;
he->pid = pid;
nvgpu_mutex_acquire(&trace->hash_lock);
hash_add(trace->pid_hash_table, &he->node, context_ptr);
nvgpu_mutex_release(&trace->hash_lock);
return 0;
}
static void gk20a_fecs_trace_hash_del(struct gk20a *g, u32 context_ptr)
{
struct hlist_node *tmp;
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
gk20a_dbg(gpu_dbg_fn | gpu_dbg_ctxsw,
"freeing hash entry context_ptr=%x", context_ptr);
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each_possible_safe(trace->pid_hash_table, ent, tmp, node,
context_ptr) {
if (ent->context_ptr == context_ptr) {
hash_del(&ent->node);
gk20a_dbg(gpu_dbg_ctxsw,
"freed hash entry=%p context_ptr=%x", ent,
ent->context_ptr);
nvgpu_kfree(g, ent);
break;
}
}
nvgpu_mutex_release(&trace->hash_lock);
}
static void gk20a_fecs_trace_free_hash_table(struct gk20a *g)
{
u32 bkt;
struct hlist_node *tmp;
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
gk20a_dbg(gpu_dbg_fn | gpu_dbg_ctxsw, "trace=%p", trace);
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each_safe(trace->pid_hash_table, bkt, tmp, ent, node) {
hash_del(&ent->node);
nvgpu_kfree(g, ent);
}
nvgpu_mutex_release(&trace->hash_lock);
}
static pid_t gk20a_fecs_trace_find_pid(struct gk20a *g, u32 context_ptr)
{
struct gk20a_fecs_trace_hash_ent *ent;
struct gk20a_fecs_trace *trace = g->fecs_trace;
pid_t pid = 0;
nvgpu_mutex_acquire(&trace->hash_lock);
hash_for_each_possible(trace->pid_hash_table, ent, node, context_ptr) {
if (ent->context_ptr == context_ptr) {
gk20a_dbg(gpu_dbg_ctxsw,
"found context_ptr=%x -> pid=%d",
ent->context_ptr, ent->pid);
pid = ent->pid;
break;
}
}
nvgpu_mutex_release(&trace->hash_lock);
return pid;
}
/*
* Converts HW entry format to userspace-facing format and pushes it to the
* queue.
*/
static int gk20a_fecs_trace_ring_read(struct gk20a *g, int index)
{
int i;
struct nvgpu_ctxsw_trace_entry entry = { };
struct gk20a_fecs_trace *trace = g->fecs_trace;
pid_t cur_pid;
pid_t new_pid;
/* for now, only one VM */
const int vmid = 0;
struct gk20a_fecs_trace_record *r = gk20a_fecs_trace_get_record(
trace, index);
gk20a_dbg(gpu_dbg_fn | gpu_dbg_ctxsw,
"consuming record trace=%p read=%d record=%p", trace, index, r);
if (unlikely(!gk20a_fecs_trace_is_valid_record(r))) {
nvgpu_warn(g,
"trace=%p read=%d record=%p magic_lo=%08x magic_hi=%08x (invalid)",
trace, index, r, r->magic_lo, r->magic_hi);
return -EINVAL;
}
/* Clear magic_hi to detect cases where CPU could read write index
* before FECS record is actually written to DRAM. This should not
* as we force FECS writes to SYSMEM by reading through PRAMIN.
*/
r->magic_hi = 0;
cur_pid = gk20a_fecs_trace_find_pid(g, r->context_ptr);
new_pid = gk20a_fecs_trace_find_pid(g, r->new_context_ptr);
gk20a_dbg(gpu_dbg_fn | gpu_dbg_ctxsw,
"context_ptr=%x (pid=%d) new_context_ptr=%x (pid=%d)",
r->context_ptr, cur_pid, r->new_context_ptr, new_pid);
entry.context_id = r->context_id;
entry.vmid = vmid;
/* break out FECS record into trace events */
for (i = 0; i < gk20a_fecs_trace_num_ts(); i++) {
entry.tag = gk20a_fecs_trace_record_ts_tag_v(r->ts[i]);
entry.timestamp = gk20a_fecs_trace_record_ts_timestamp_v(r->ts[i]);
entry.timestamp <<= GK20A_FECS_TRACE_PTIMER_SHIFT;
gk20a_dbg(gpu_dbg_ctxsw,
"tag=%x timestamp=%llx context_id=%08x new_context_id=%08x",
entry.tag, entry.timestamp, r->context_id,
r->new_context_id);
switch (entry.tag) {
case NVGPU_CTXSW_TAG_RESTORE_START:
case NVGPU_CTXSW_TAG_CONTEXT_START:
entry.context_id = r->new_context_id;
entry.pid = new_pid;
break;
case NVGPU_CTXSW_TAG_CTXSW_REQ_BY_HOST:
case NVGPU_CTXSW_TAG_FE_ACK:
case NVGPU_CTXSW_TAG_FE_ACK_WFI:
case NVGPU_CTXSW_TAG_FE_ACK_GFXP:
case NVGPU_CTXSW_TAG_FE_ACK_CTAP:
case NVGPU_CTXSW_TAG_FE_ACK_CILP:
case NVGPU_CTXSW_TAG_SAVE_END:
entry.context_id = r->context_id;
entry.pid = cur_pid;
break;
default:
/* tags are not guaranteed to start at the beginning */
WARN_ON(entry.tag && (entry.tag != NVGPU_CTXSW_TAG_INVALID_TIMESTAMP));
continue;
}
gk20a_dbg(gpu_dbg_ctxsw, "tag=%x context_id=%x pid=%lld",
entry.tag, entry.context_id, entry.pid);
if (!entry.context_id)
continue;
gk20a_ctxsw_trace_write(g, &entry);
}
gk20a_ctxsw_trace_wake_up(g, vmid);
return 0;
}
int gk20a_fecs_trace_poll(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
int read = 0;
int write = 0;
int cnt;
int err;
err = gk20a_busy(g);
if (unlikely(err))
return err;
nvgpu_mutex_acquire(&trace->poll_lock);
write = gk20a_fecs_trace_get_write_index(g);
if (unlikely((write < 0) || (write >= GK20A_FECS_TRACE_NUM_RECORDS))) {
nvgpu_err(g,
"failed to acquire write index, write=%d", write);
err = write;
goto done;
}
read = gk20a_fecs_trace_get_read_index(g);
cnt = CIRC_CNT(write, read, GK20A_FECS_TRACE_NUM_RECORDS);
if (!cnt)
goto done;
gk20a_dbg(gpu_dbg_ctxsw,
"circular buffer: read=%d (mailbox=%d) write=%d cnt=%d",
read, gk20a_fecs_trace_get_read_index(g), write, cnt);
/* Ensure all FECS writes have made it to SYSMEM */
g->ops.mm.fb_flush(g);
while (read != write) {
/* Ignore error code, as we want to consume all records */
(void)gk20a_fecs_trace_ring_read(g, read);
/* Get to next record. */
read = (read + 1) & (GK20A_FECS_TRACE_NUM_RECORDS - 1);
}
/* ensure FECS records has been updated before incrementing read index */
nvgpu_smp_wmb();
gk20a_fecs_trace_set_read_index(g, read);
done:
nvgpu_mutex_release(&trace->poll_lock);
gk20a_idle(g);
return err;
}
static int gk20a_fecs_trace_periodic_polling(void *arg)
{
struct gk20a *g = (struct gk20a *)arg;
struct gk20a_fecs_trace *trace = g->fecs_trace;
pr_info("%s: running\n", __func__);
while (!nvgpu_thread_should_stop(&trace->poll_task)) {
nvgpu_usleep_range(GK20A_FECS_TRACE_FRAME_PERIOD_US,
GK20A_FECS_TRACE_FRAME_PERIOD_US * 2);
gk20a_fecs_trace_poll(g);
}
return 0;
}
static int gk20a_fecs_trace_alloc_ring(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
return nvgpu_dma_alloc_sys(g, GK20A_FECS_TRACE_NUM_RECORDS
* ctxsw_prog_record_timestamp_record_size_in_bytes_v(),
&trace->trace_buf);
}
static void gk20a_fecs_trace_free_ring(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
nvgpu_dma_free(g, &trace->trace_buf);
}
#ifdef CONFIG_DEBUG_FS
/*
* The sequence iterator functions. We simply use the count of the
* next line as our internal position.
*/
static void *gk20a_fecs_trace_debugfs_ring_seq_start(
struct seq_file *s, loff_t *pos)
{
if (*pos >= GK20A_FECS_TRACE_NUM_RECORDS)
return NULL;
return pos;
}
static void *gk20a_fecs_trace_debugfs_ring_seq_next(
struct seq_file *s, void *v, loff_t *pos)
{
++(*pos);
if (*pos >= GK20A_FECS_TRACE_NUM_RECORDS)
return NULL;
return pos;
}
static void gk20a_fecs_trace_debugfs_ring_seq_stop(
struct seq_file *s, void *v)
{
}
static int gk20a_fecs_trace_debugfs_ring_seq_show(
struct seq_file *s, void *v)
{
loff_t *pos = (loff_t *) v;
struct gk20a *g = *(struct gk20a **)s->private;
struct gk20a_fecs_trace *trace = g->fecs_trace;
struct gk20a_fecs_trace_record *r = gk20a_fecs_trace_get_record(trace, *pos);
int i;
const u32 invalid_tag =
ctxsw_prog_record_timestamp_timestamp_hi_tag_invalid_timestamp_v();
u32 tag;
u64 timestamp;
seq_printf(s, "record #%lld (%p)\n", *pos, r);
seq_printf(s, "\tmagic_lo=%08x\n", r->magic_lo);
seq_printf(s, "\tmagic_hi=%08x\n", r->magic_hi);
if (gk20a_fecs_trace_is_valid_record(r)) {
seq_printf(s, "\tcontext_ptr=%08x\n", r->context_ptr);
seq_printf(s, "\tcontext_id=%08x\n", r->context_id);
seq_printf(s, "\tnew_context_ptr=%08x\n", r->new_context_ptr);
seq_printf(s, "\tnew_context_id=%08x\n", r->new_context_id);
for (i = 0; i < gk20a_fecs_trace_num_ts(); i++) {
tag = gk20a_fecs_trace_record_ts_tag_v(r->ts[i]);
if (tag == invalid_tag)
continue;
timestamp = gk20a_fecs_trace_record_ts_timestamp_v(r->ts[i]);
timestamp <<= GK20A_FECS_TRACE_PTIMER_SHIFT;
seq_printf(s, "\ttag=%02x timestamp=%012llx\n", tag, timestamp);
}
}
return 0;
}
/*
* Tie them all together into a set of seq_operations.
*/
static const struct seq_operations gk20a_fecs_trace_debugfs_ring_seq_ops = {
.start = gk20a_fecs_trace_debugfs_ring_seq_start,
.next = gk20a_fecs_trace_debugfs_ring_seq_next,
.stop = gk20a_fecs_trace_debugfs_ring_seq_stop,
.show = gk20a_fecs_trace_debugfs_ring_seq_show
};
/*
* Time to set up the file operations for our /proc file. In this case,
* all we need is an open function which sets up the sequence ops.
*/
static int gk20a_ctxsw_debugfs_ring_open(struct inode *inode,
struct file *file)
{
struct gk20a **p;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
p = __seq_open_private(file, &gk20a_fecs_trace_debugfs_ring_seq_ops,
sizeof(struct gk20a *));
if (!p)
return -ENOMEM;
*p = (struct gk20a *)inode->i_private;
return 0;
};
/*
* The file operations structure contains our open function along with
* set of the canned seq_ ops.
*/
static const struct file_operations gk20a_fecs_trace_debugfs_ring_fops = {
.owner = THIS_MODULE,
.open = gk20a_ctxsw_debugfs_ring_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private
};
static int gk20a_fecs_trace_debugfs_read(void *arg, u64 *val)
{
*val = gk20a_fecs_trace_get_read_index((struct gk20a *)arg);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(gk20a_fecs_trace_debugfs_read_fops,
gk20a_fecs_trace_debugfs_read, NULL, "%llu\n");
static int gk20a_fecs_trace_debugfs_write(void *arg, u64 *val)
{
*val = gk20a_fecs_trace_get_write_index((struct gk20a *)arg);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(gk20a_fecs_trace_debugfs_write_fops,
gk20a_fecs_trace_debugfs_write, NULL, "%llu\n");
static void gk20a_fecs_trace_debugfs_init(struct gk20a *g)
{
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
debugfs_create_file("ctxsw_trace_read", 0600, l->debugfs, g,
&gk20a_fecs_trace_debugfs_read_fops);
debugfs_create_file("ctxsw_trace_write", 0600, l->debugfs, g,
&gk20a_fecs_trace_debugfs_write_fops);
debugfs_create_file("ctxsw_trace_ring", 0600, l->debugfs, g,
&gk20a_fecs_trace_debugfs_ring_fops);
}
#else
static void gk20a_fecs_trace_debugfs_init(struct gk20a *g)
{
}
#endif /* CONFIG_DEBUG_FS */
int gk20a_fecs_trace_init(struct gk20a *g)
{
struct gk20a_fecs_trace *trace;
int err;
trace = nvgpu_kzalloc(g, sizeof(struct gk20a_fecs_trace));
if (!trace) {
nvgpu_warn(g, "failed to allocate fecs_trace");
return -ENOMEM;
}
g->fecs_trace = trace;
err = nvgpu_mutex_init(&trace->poll_lock);
if (err)
goto clean;
err = nvgpu_mutex_init(&trace->hash_lock);
if (err)
goto clean_poll_lock;
BUG_ON(!is_power_of_2(GK20A_FECS_TRACE_NUM_RECORDS));
err = gk20a_fecs_trace_alloc_ring(g);
if (err) {
nvgpu_warn(g, "failed to allocate FECS ring");
goto clean_hash_lock;
}
hash_init(trace->pid_hash_table);
__nvgpu_set_enabled(g, NVGPU_SUPPORT_FECS_CTXSW_TRACE, true);
gk20a_fecs_trace_debugfs_init(g);
trace->init = true;
return 0;
clean_hash_lock:
nvgpu_mutex_destroy(&trace->hash_lock);
clean_poll_lock:
nvgpu_mutex_destroy(&trace->poll_lock);
clean:
nvgpu_kfree(g, trace);
g->fecs_trace = NULL;
return err;
}
int gk20a_fecs_trace_bind_channel(struct gk20a *g,
struct channel_gk20a *ch)
{
/*
* map our circ_buf to the context space and store the GPU VA
* in the context header.
*/
u32 lo;
u32 hi;
u64 pa;
struct tsg_gk20a *tsg;
struct nvgpu_gr_ctx *ch_ctx;
struct gk20a_fecs_trace *trace = g->fecs_trace;
struct nvgpu_mem *mem;
u32 context_ptr = gk20a_fecs_trace_fecs_context_ptr(g, ch);
pid_t pid;
u32 aperture;
gk20a_dbg(gpu_dbg_fn|gpu_dbg_ctxsw,
"chid=%d context_ptr=%x inst_block=%llx",
ch->chid, context_ptr,
nvgpu_inst_block_addr(g, &ch->inst_block));
tsg = tsg_gk20a_from_ch(ch);
if (!tsg)
return -EINVAL;
ch_ctx = &tsg->gr_ctx;
mem = &ch_ctx->mem;
if (!trace)
return -ENOMEM;
pa = nvgpu_inst_block_addr(g, &trace->trace_buf);
if (!pa)
return -ENOMEM;
aperture = nvgpu_aperture_mask(g, &trace->trace_buf,
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_target_sys_mem_noncoherent_f(),
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_target_sys_mem_coherent_f(),
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_target_vid_mem_f());
if (nvgpu_mem_begin(g, mem))
return -ENOMEM;
lo = u64_lo32(pa);
hi = u64_hi32(pa);
gk20a_dbg(gpu_dbg_ctxsw, "addr_hi=%x addr_lo=%x count=%d", hi,
lo, GK20A_FECS_TRACE_NUM_RECORDS);
nvgpu_mem_wr(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_ptr_o(),
lo);
nvgpu_mem_wr(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_ptr_hi_o(),
ctxsw_prog_main_image_context_timestamp_buffer_ptr_v_f(hi) |
aperture);
nvgpu_mem_wr(g, mem,
ctxsw_prog_main_image_context_timestamp_buffer_control_o(),
ctxsw_prog_main_image_context_timestamp_buffer_control_num_records_f(
GK20A_FECS_TRACE_NUM_RECORDS));
nvgpu_mem_end(g, mem);
/* pid (process identifier) in user space, corresponds to tgid (thread
* group id) in kernel space.
*/
if (gk20a_is_channel_marked_as_tsg(ch))
pid = tsg_gk20a_from_ch(ch)->tgid;
else
pid = ch->tgid;
gk20a_fecs_trace_hash_add(g, context_ptr, pid);
return 0;
}
int gk20a_fecs_trace_unbind_channel(struct gk20a *g, struct channel_gk20a *ch)
{
u32 context_ptr = gk20a_fecs_trace_fecs_context_ptr(g, ch);
if (g->fecs_trace) {
gk20a_dbg(gpu_dbg_fn|gpu_dbg_ctxsw,
"ch=%p context_ptr=%x", ch, context_ptr);
if (g->ops.fecs_trace.is_enabled(g)) {
if (g->ops.fecs_trace.flush)
g->ops.fecs_trace.flush(g);
gk20a_fecs_trace_poll(g);
}
gk20a_fecs_trace_hash_del(g, context_ptr);
}
return 0;
}
int gk20a_fecs_trace_reset(struct gk20a *g)
{
gk20a_dbg(gpu_dbg_fn|gpu_dbg_ctxsw, "");
if (!g->ops.fecs_trace.is_enabled(g))
return 0;
gk20a_fecs_trace_poll(g);
return gk20a_fecs_trace_set_read_index(g, 0);
}
int gk20a_fecs_trace_deinit(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
if (!trace->init)
return 0;
nvgpu_thread_stop(&trace->poll_task);
gk20a_fecs_trace_free_ring(g);
gk20a_fecs_trace_free_hash_table(g);
nvgpu_mutex_destroy(&g->fecs_trace->hash_lock);
nvgpu_mutex_destroy(&g->fecs_trace->poll_lock);
nvgpu_kfree(g, g->fecs_trace);
g->fecs_trace = NULL;
return 0;
}
int gk20a_gr_max_entries(struct gk20a *g,
struct nvgpu_ctxsw_trace_filter *filter)
{
int n;
int tag;
/* Compute number of entries per record, with given filter */
for (n = 0, tag = 0; tag < gk20a_fecs_trace_num_ts(); tag++)
n += (NVGPU_CTXSW_FILTER_ISSET(tag, filter) != 0);
/* Return max number of entries generated for the whole ring */
return n * GK20A_FECS_TRACE_NUM_RECORDS;
}
int gk20a_fecs_trace_enable(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
int write;
int err = 0;
if (!trace)
return -EINVAL;
if (nvgpu_thread_is_running(&trace->poll_task))
return 0;
/* drop data in hw buffer */
if (g->ops.fecs_trace.flush)
g->ops.fecs_trace.flush(g);
write = gk20a_fecs_trace_get_write_index(g);
gk20a_fecs_trace_set_read_index(g, write);
err = nvgpu_thread_create(&trace->poll_task, g,
gk20a_fecs_trace_periodic_polling, __func__);
if (err) {
nvgpu_warn(g,
"failed to create FECS polling task");
return err;
}
return 0;
}
int gk20a_fecs_trace_disable(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
if (nvgpu_thread_is_running(&trace->poll_task))
nvgpu_thread_stop(&trace->poll_task);
return -EPERM;
}
bool gk20a_fecs_trace_is_enabled(struct gk20a *g)
{
struct gk20a_fecs_trace *trace = g->fecs_trace;
return (trace && nvgpu_thread_is_running(&trace->poll_task));
}
#endif /* CONFIG_GK20A_CTXSW_TRACE */