Files
linux-nvgpu/drivers/gpu/nvgpu/gk20a/mm_gk20a.c
Alex Waterman 1170687c33 gpu: nvgpu: Use coherent aperture flag
When using a coherent DMA API wee must make sure to program
any aperture fields with the coherent aperture setting. To
do this the nvgpu_aperture_mask() function was modified to
take a third aperture mask argument, a coherent setting, so
that code can use this function to generate coherent aperture
settings.

The aperture choice is some what tricky: the default version
of this function uses the state of the DMA API to determine
what aperture to use for SYSMEM: either coherent or
non-coherent internally. Thus a kernel user need only specify
the normal nvgpu_mem struct and the correct mask should be
chosen. Due to many uses of nvgpu_mem structs not created
directly from the DMA API wrapper it's easier to translate
SYSMEM to SYSMEM_COH after creation.

However, the GMMU mapping code, will encounter buffers from
userspace with difference coerency attributes than the DMA
API. Thus the __nvgpu_aperture_mask() really respects the
aperture setting passed in regardless of the DMA API state.
This aperture setting is pulled from NVGPU_VM_MAP_IO_COHERENT
since this is either passed in from userspace or set by the
kernel when using coherent DMA. The aperture field in attrs
is upgraded to coh if this flag is set.

This change also adds a coherent sysmem mask everywhere that
it can. There's a couple places that do not have a coherent
register field defined yet. These need to eventually be
defined and added.

Lastly the aperture mask code has been mvoed from the Linux
vm.c code to the general vm.c code since this function has
no Linux dependencies.

Note: depends on https://git-master.nvidia.com/r/1664536 for
new register fields.

JIRA EVLR-2333

Change-Id: I4b347911ecb7c511738563fe6c34d0e6aa380d71
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1655220
Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com>
Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
2018-02-27 16:03:43 -08:00

635 lines
17 KiB
C

/*
* Copyright (c) 2011-2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <trace/events/gk20a.h>
#include <nvgpu/mm.h>
#include <nvgpu/vm.h>
#include <nvgpu/vm_area.h>
#include <nvgpu/dma.h>
#include <nvgpu/kmem.h>
#include <nvgpu/timers.h>
#include <nvgpu/pramin.h>
#include <nvgpu/list.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/allocator.h>
#include <nvgpu/semaphore.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/log.h>
#include <nvgpu/bug.h>
#include <nvgpu/log2.h>
#include <nvgpu/enabled.h>
#include <nvgpu/vidmem.h>
#include <nvgpu/sizes.h>
#include "gk20a.h"
#include "mm_gk20a.h"
#include "fence_gk20a.h"
#include "bus_gk20a.h"
#include <nvgpu/hw/gk20a/hw_gmmu_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ram_gk20a.h>
#include <nvgpu/hw/gk20a/hw_pram_gk20a.h>
#include <nvgpu/hw/gk20a/hw_mc_gk20a.h>
#include <nvgpu/hw/gk20a/hw_bus_gk20a.h>
#include <nvgpu/hw/gk20a/hw_flush_gk20a.h>
#include <nvgpu/hw/gk20a/hw_ltc_gk20a.h>
/*
* GPU mapping life cycle
* ======================
*
* Kernel mappings
* ---------------
*
* Kernel mappings are created through vm.map(..., false):
*
* - Mappings to the same allocations are reused and refcounted.
* - This path does not support deferred unmapping (i.e. kernel must wait for
* all hw operations on the buffer to complete before unmapping).
* - References to dmabuf are owned and managed by the (kernel) clients of
* the gk20a_vm layer.
*
*
* User space mappings
* -------------------
*
* User space mappings are created through as.map_buffer -> vm.map(..., true):
*
* - Mappings to the same allocations are reused and refcounted.
* - This path supports deferred unmapping (i.e. we delay the actual unmapping
* until all hw operations have completed).
* - References to dmabuf are owned and managed by the vm_gk20a
* layer itself. vm.map acquires these refs, and sets
* mapped_buffer->own_mem_ref to record that we must release the refs when we
* actually unmap.
*
*/
/* make sure gk20a_init_mm_support is called before */
int gk20a_init_mm_setup_hw(struct gk20a *g)
{
struct mm_gk20a *mm = &g->mm;
int err;
gk20a_dbg_fn("");
g->ops.fb.set_mmu_page_size(g);
if (g->ops.fb.set_use_full_comp_tag_line)
mm->use_full_comp_tag_line =
g->ops.fb.set_use_full_comp_tag_line(g);
g->ops.fb.init_hw(g);
if (g->ops.bus.bar1_bind)
g->ops.bus.bar1_bind(g, &mm->bar1.inst_block);
if (g->ops.mm.init_bar2_mm_hw_setup) {
err = g->ops.mm.init_bar2_mm_hw_setup(g);
if (err)
return err;
}
if (gk20a_mm_fb_flush(g) || gk20a_mm_fb_flush(g))
return -EBUSY;
gk20a_dbg_fn("done");
return 0;
}
/* for gk20a the "video memory" apertures here are misnomers. */
static inline u32 big_valid_pde0_bits(struct gk20a *g,
struct nvgpu_gmmu_pd *pd, u64 addr)
{
u32 pde0_bits =
nvgpu_aperture_mask(g, pd->mem,
gmmu_pde_aperture_big_sys_mem_ncoh_f(),
gmmu_pde_aperture_big_sys_mem_coh_f(),
gmmu_pde_aperture_big_video_memory_f()) |
gmmu_pde_address_big_sys_f(
(u32)(addr >> gmmu_pde_address_shift_v()));
return pde0_bits;
}
static inline u32 small_valid_pde1_bits(struct gk20a *g,
struct nvgpu_gmmu_pd *pd, u64 addr)
{
u32 pde1_bits =
nvgpu_aperture_mask(g, pd->mem,
gmmu_pde_aperture_small_sys_mem_ncoh_f(),
gmmu_pde_aperture_small_sys_mem_coh_f(),
gmmu_pde_aperture_small_video_memory_f()) |
gmmu_pde_vol_small_true_f() | /* tbd: why? */
gmmu_pde_address_small_sys_f(
(u32)(addr >> gmmu_pde_address_shift_v()));
return pde1_bits;
}
static void update_gmmu_pde_locked(struct vm_gk20a *vm,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_pd *pd,
u32 pd_idx,
u64 virt_addr,
u64 phys_addr,
struct nvgpu_gmmu_attrs *attrs)
{
struct gk20a *g = gk20a_from_vm(vm);
bool small_valid, big_valid;
u32 pd_offset = pd_offset_from_index(l, pd_idx);
u32 pde_v[2] = {0, 0};
small_valid = attrs->pgsz == gmmu_page_size_small;
big_valid = attrs->pgsz == gmmu_page_size_big;
pde_v[0] = gmmu_pde_size_full_f();
pde_v[0] |= big_valid ?
big_valid_pde0_bits(g, pd, phys_addr) :
gmmu_pde_aperture_big_invalid_f();
pde_v[1] |= (small_valid ? small_valid_pde1_bits(g, pd, phys_addr) :
(gmmu_pde_aperture_small_invalid_f() |
gmmu_pde_vol_small_false_f()))
|
(big_valid ? (gmmu_pde_vol_big_true_f()) :
gmmu_pde_vol_big_false_f());
pte_dbg(g, attrs,
"PDE: i=%-4u size=%-2u offs=%-4u pgsz: %c%c | "
"GPU %#-12llx phys %#-12llx "
"[0x%08x, 0x%08x]",
pd_idx, l->entry_size, pd_offset,
small_valid ? 'S' : '-',
big_valid ? 'B' : '-',
virt_addr, phys_addr,
pde_v[1], pde_v[0]);
pd_write(g, &vm->pdb, pd_offset + 0, pde_v[0]);
pd_write(g, &vm->pdb, pd_offset + 1, pde_v[1]);
}
static void __update_pte_sparse(u32 *pte_w)
{
pte_w[0] = gmmu_pte_valid_false_f();
pte_w[1] |= gmmu_pte_vol_true_f();
}
static void __update_pte(struct vm_gk20a *vm,
u32 *pte_w,
u64 phys_addr,
struct nvgpu_gmmu_attrs *attrs)
{
struct gk20a *g = gk20a_from_vm(vm);
u32 page_size = vm->gmmu_page_sizes[attrs->pgsz];
u32 pte_valid = attrs->valid ?
gmmu_pte_valid_true_f() :
gmmu_pte_valid_false_f();
u32 phys_shifted = phys_addr >> gmmu_pte_address_shift_v();
u32 addr = attrs->aperture == APERTURE_SYSMEM ?
gmmu_pte_address_sys_f(phys_shifted) :
gmmu_pte_address_vid_f(phys_shifted);
int ctag_shift = ilog2(g->ops.fb.compression_page_size(g));
pte_w[0] = pte_valid | addr;
if (attrs->priv)
pte_w[0] |= gmmu_pte_privilege_true_f();
pte_w[1] = __nvgpu_aperture_mask(g, attrs->aperture,
gmmu_pte_aperture_sys_mem_ncoh_f(),
gmmu_pte_aperture_sys_mem_coh_f(),
gmmu_pte_aperture_video_memory_f()) |
gmmu_pte_kind_f(attrs->kind_v) |
gmmu_pte_comptagline_f((u32)(attrs->ctag >> ctag_shift));
if (attrs->ctag && vm->mm->use_full_comp_tag_line &&
phys_addr & 0x10000)
pte_w[1] |= gmmu_pte_comptagline_f(
1 << (gmmu_pte_comptagline_s() - 1));
if (attrs->rw_flag == gk20a_mem_flag_read_only) {
pte_w[0] |= gmmu_pte_read_only_true_f();
pte_w[1] |= gmmu_pte_write_disable_true_f();
} else if (attrs->rw_flag == gk20a_mem_flag_write_only) {
pte_w[1] |= gmmu_pte_read_disable_true_f();
}
if (!attrs->cacheable)
pte_w[1] |= gmmu_pte_vol_true_f();
if (attrs->ctag)
attrs->ctag += page_size;
}
static void update_gmmu_pte_locked(struct vm_gk20a *vm,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_pd *pd,
u32 pd_idx,
u64 virt_addr,
u64 phys_addr,
struct nvgpu_gmmu_attrs *attrs)
{
struct gk20a *g = gk20a_from_vm(vm);
u32 page_size = vm->gmmu_page_sizes[attrs->pgsz];
u32 pd_offset = pd_offset_from_index(l, pd_idx);
u32 pte_w[2] = {0, 0};
int ctag_shift = ilog2(g->ops.fb.compression_page_size(g));
if (phys_addr)
__update_pte(vm, pte_w, phys_addr, attrs);
else if (attrs->sparse)
__update_pte_sparse(pte_w);
pte_dbg(g, attrs,
"PTE: i=%-4u size=%-2u offs=%-4u | "
"GPU %#-12llx phys %#-12llx "
"pgsz: %3dkb perm=%-2s kind=%#02x APT=%-6s %c%c%c%c%c "
"ctag=0x%08x "
"[0x%08x, 0x%08x]",
pd_idx, l->entry_size, pd_offset,
virt_addr, phys_addr,
page_size >> 10,
nvgpu_gmmu_perm_str(attrs->rw_flag),
attrs->kind_v,
nvgpu_aperture_str(g, attrs->aperture),
attrs->cacheable ? 'C' : '-',
attrs->sparse ? 'S' : '-',
attrs->priv ? 'P' : '-',
attrs->coherent ? 'I' : '-',
attrs->valid ? 'V' : '-',
(u32)attrs->ctag >> ctag_shift,
pte_w[1], pte_w[0]);
pd_write(g, pd, pd_offset + 0, pte_w[0]);
pd_write(g, pd, pd_offset + 1, pte_w[1]);
}
enum gmmu_pgsz_gk20a gk20a_get_pde_pgsz(struct gk20a *g,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_pd *pd, u32 pd_idx)
{
/*
* big and small page sizes are the same
*/
return gmmu_page_size_small;
}
enum gmmu_pgsz_gk20a gk20a_get_pte_pgsz(struct gk20a *g,
const struct gk20a_mmu_level *l,
struct nvgpu_gmmu_pd *pd, u32 pd_idx)
{
/*
* return invalid
*/
return gmmu_nr_page_sizes;
}
const struct gk20a_mmu_level gk20a_mm_levels_64k[] = {
{.hi_bit = {NV_GMMU_VA_RANGE-1, NV_GMMU_VA_RANGE-1},
.lo_bit = {26, 26},
.update_entry = update_gmmu_pde_locked,
.entry_size = 8,
.get_pgsz = gk20a_get_pde_pgsz},
{.hi_bit = {25, 25},
.lo_bit = {12, 16},
.update_entry = update_gmmu_pte_locked,
.entry_size = 8,
.get_pgsz = gk20a_get_pte_pgsz},
{.update_entry = NULL}
};
const struct gk20a_mmu_level gk20a_mm_levels_128k[] = {
{.hi_bit = {NV_GMMU_VA_RANGE-1, NV_GMMU_VA_RANGE-1},
.lo_bit = {27, 27},
.update_entry = update_gmmu_pde_locked,
.entry_size = 8,
.get_pgsz = gk20a_get_pde_pgsz},
{.hi_bit = {26, 26},
.lo_bit = {12, 17},
.update_entry = update_gmmu_pte_locked,
.entry_size = 8,
.get_pgsz = gk20a_get_pte_pgsz},
{.update_entry = NULL}
};
int __gk20a_vm_bind_channel(struct vm_gk20a *vm, struct channel_gk20a *ch)
{
int err = 0;
gk20a_dbg_fn("");
nvgpu_vm_get(vm);
ch->vm = vm;
err = channel_gk20a_commit_va(ch);
if (err)
ch->vm = NULL;
nvgpu_log(gk20a_from_vm(vm), gpu_dbg_map, "Binding ch=%d -> VM:%s",
ch->chid, vm->name);
return err;
}
int gk20a_vm_bind_channel(struct gk20a_as_share *as_share,
struct channel_gk20a *ch)
{
return __gk20a_vm_bind_channel(as_share->vm, ch);
}
void gk20a_mm_init_pdb(struct gk20a *g, struct nvgpu_mem *inst_block,
struct vm_gk20a *vm)
{
u64 pdb_addr = nvgpu_mem_get_addr(g, vm->pdb.mem);
u32 pdb_addr_lo = u64_lo32(pdb_addr >> ram_in_base_shift_v());
u32 pdb_addr_hi = u64_hi32(pdb_addr);
gk20a_dbg_info("pde pa=0x%llx", pdb_addr);
nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_lo_w(),
nvgpu_aperture_mask(g, vm->pdb.mem,
ram_in_page_dir_base_target_sys_mem_ncoh_f(),
ram_in_page_dir_base_target_sys_mem_coh_f(),
ram_in_page_dir_base_target_vid_mem_f()) |
ram_in_page_dir_base_vol_true_f() |
ram_in_page_dir_base_lo_f(pdb_addr_lo));
nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_hi_w(),
ram_in_page_dir_base_hi_f(pdb_addr_hi));
}
void gk20a_init_inst_block(struct nvgpu_mem *inst_block, struct vm_gk20a *vm,
u32 big_page_size)
{
struct gk20a *g = gk20a_from_vm(vm);
gk20a_dbg_info("inst block phys = 0x%llx, kv = 0x%p",
nvgpu_inst_block_addr(g, inst_block), inst_block->cpu_va);
g->ops.mm.init_pdb(g, inst_block, vm);
nvgpu_mem_wr32(g, inst_block, ram_in_adr_limit_lo_w(),
u64_lo32(vm->va_limit - 1) & ~0xfff);
nvgpu_mem_wr32(g, inst_block, ram_in_adr_limit_hi_w(),
ram_in_adr_limit_hi_f(u64_hi32(vm->va_limit - 1)));
if (big_page_size && g->ops.mm.set_big_page_size)
g->ops.mm.set_big_page_size(g, inst_block, big_page_size);
}
int gk20a_alloc_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block)
{
int err;
gk20a_dbg_fn("");
err = nvgpu_dma_alloc(g, ram_in_alloc_size_v(), inst_block);
if (err) {
nvgpu_err(g, "%s: memory allocation failed", __func__);
return err;
}
gk20a_dbg_fn("done");
return 0;
}
int gk20a_mm_fb_flush(struct gk20a *g)
{
struct mm_gk20a *mm = &g->mm;
u32 data;
int ret = 0;
struct nvgpu_timeout timeout;
u32 retries;
gk20a_dbg_fn("");
gk20a_busy_noresume(g);
if (!g->power_on) {
gk20a_idle_nosuspend(g);
return 0;
}
retries = 100;
if (g->ops.mm.get_flush_retries)
retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_FB);
nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);
nvgpu_mutex_acquire(&mm->l2_op_lock);
/* Make sure all previous writes are committed to the L2. There's no
guarantee that writes are to DRAM. This will be a sysmembar internal
to the L2. */
trace_gk20a_mm_fb_flush(g->name);
gk20a_writel(g, flush_fb_flush_r(),
flush_fb_flush_pending_busy_f());
do {
data = gk20a_readl(g, flush_fb_flush_r());
if (flush_fb_flush_outstanding_v(data) ==
flush_fb_flush_outstanding_true_v() ||
flush_fb_flush_pending_v(data) ==
flush_fb_flush_pending_busy_v()) {
gk20a_dbg_info("fb_flush 0x%x", data);
nvgpu_udelay(5);
} else
break;
} while (!nvgpu_timeout_expired(&timeout));
if (nvgpu_timeout_peek_expired(&timeout)) {
if (g->ops.fb.dump_vpr_wpr_info)
g->ops.fb.dump_vpr_wpr_info(g);
ret = -EBUSY;
}
trace_gk20a_mm_fb_flush_done(g->name);
nvgpu_mutex_release(&mm->l2_op_lock);
gk20a_idle_nosuspend(g);
return ret;
}
static void gk20a_mm_l2_invalidate_locked(struct gk20a *g)
{
u32 data;
struct nvgpu_timeout timeout;
u32 retries = 200;
trace_gk20a_mm_l2_invalidate(g->name);
if (g->ops.mm.get_flush_retries)
retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_L2_INV);
nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);
/* Invalidate any clean lines from the L2 so subsequent reads go to
DRAM. Dirty lines are not affected by this operation. */
gk20a_writel(g, flush_l2_system_invalidate_r(),
flush_l2_system_invalidate_pending_busy_f());
do {
data = gk20a_readl(g, flush_l2_system_invalidate_r());
if (flush_l2_system_invalidate_outstanding_v(data) ==
flush_l2_system_invalidate_outstanding_true_v() ||
flush_l2_system_invalidate_pending_v(data) ==
flush_l2_system_invalidate_pending_busy_v()) {
gk20a_dbg_info("l2_system_invalidate 0x%x",
data);
nvgpu_udelay(5);
} else
break;
} while (!nvgpu_timeout_expired(&timeout));
if (nvgpu_timeout_peek_expired(&timeout))
nvgpu_warn(g, "l2_system_invalidate too many retries");
trace_gk20a_mm_l2_invalidate_done(g->name);
}
void gk20a_mm_l2_invalidate(struct gk20a *g)
{
struct mm_gk20a *mm = &g->mm;
gk20a_busy_noresume(g);
if (g->power_on) {
nvgpu_mutex_acquire(&mm->l2_op_lock);
gk20a_mm_l2_invalidate_locked(g);
nvgpu_mutex_release(&mm->l2_op_lock);
}
gk20a_idle_nosuspend(g);
}
void gk20a_mm_l2_flush(struct gk20a *g, bool invalidate)
{
struct mm_gk20a *mm = &g->mm;
u32 data;
struct nvgpu_timeout timeout;
u32 retries = 2000;
gk20a_dbg_fn("");
gk20a_busy_noresume(g);
if (!g->power_on)
goto hw_was_off;
if (g->ops.mm.get_flush_retries)
retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_L2_FLUSH);
nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);
nvgpu_mutex_acquire(&mm->l2_op_lock);
trace_gk20a_mm_l2_flush(g->name);
/* Flush all dirty lines from the L2 to DRAM. Lines are left in the L2
as clean, so subsequent reads might hit in the L2. */
gk20a_writel(g, flush_l2_flush_dirty_r(),
flush_l2_flush_dirty_pending_busy_f());
do {
data = gk20a_readl(g, flush_l2_flush_dirty_r());
if (flush_l2_flush_dirty_outstanding_v(data) ==
flush_l2_flush_dirty_outstanding_true_v() ||
flush_l2_flush_dirty_pending_v(data) ==
flush_l2_flush_dirty_pending_busy_v()) {
gk20a_dbg_info("l2_flush_dirty 0x%x", data);
nvgpu_udelay(5);
} else
break;
} while (!nvgpu_timeout_expired_msg(&timeout,
"l2_flush_dirty too many retries"));
trace_gk20a_mm_l2_flush_done(g->name);
if (invalidate)
gk20a_mm_l2_invalidate_locked(g);
nvgpu_mutex_release(&mm->l2_op_lock);
hw_was_off:
gk20a_idle_nosuspend(g);
}
void gk20a_mm_cbc_clean(struct gk20a *g)
{
struct mm_gk20a *mm = &g->mm;
u32 data;
struct nvgpu_timeout timeout;
u32 retries = 200;
gk20a_dbg_fn("");
gk20a_busy_noresume(g);
if (!g->power_on)
goto hw_was_off;
if (g->ops.mm.get_flush_retries)
retries = g->ops.mm.get_flush_retries(g, NVGPU_FLUSH_CBC_CLEAN);
nvgpu_timeout_init(g, &timeout, retries, NVGPU_TIMER_RETRY_TIMER);
nvgpu_mutex_acquire(&mm->l2_op_lock);
/* Flush all dirty lines from the CBC to L2 */
gk20a_writel(g, flush_l2_clean_comptags_r(),
flush_l2_clean_comptags_pending_busy_f());
do {
data = gk20a_readl(g, flush_l2_clean_comptags_r());
if (flush_l2_clean_comptags_outstanding_v(data) ==
flush_l2_clean_comptags_outstanding_true_v() ||
flush_l2_clean_comptags_pending_v(data) ==
flush_l2_clean_comptags_pending_busy_v()) {
gk20a_dbg_info("l2_clean_comptags 0x%x", data);
nvgpu_udelay(5);
} else
break;
} while (!nvgpu_timeout_expired_msg(&timeout,
"l2_clean_comptags too many retries"));
nvgpu_mutex_release(&mm->l2_op_lock);
hw_was_off:
gk20a_idle_nosuspend(g);
}
u32 gk20a_mm_get_iommu_bit(struct gk20a *g)
{
return 34;
}
const struct gk20a_mmu_level *gk20a_mm_get_mmu_levels(struct gk20a *g,
u32 big_page_size)
{
return (big_page_size == SZ_64K) ?
gk20a_mm_levels_64k : gk20a_mm_levels_128k;
}