Files
linux-nvgpu/drivers/gpu/nvgpu/os/posix/posix-nvgpu_mem.c
Martin Radev 81d95456b9 gpu: nvgpu: Rename PLATFORM_ATOMIC to SYSTEM_COHERENT
To support current and future usecases, it would be
beneficial to select the SYSTEM_COHERENT aperture explicitly.

The benefits are:
- platform atomic code is cleaned-up.
- userspace can select the SYSTEM_COHERENT aperture for any
  specific usecases.

Bug 3959027

Change-Id: I6489ebe87fa75cc760930277bad5e0cacca80eb6
Signed-off-by: Martin Radev <mradev@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2864177
Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com>
Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com>
Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com>
Reviewed-by: Seema Khowala <seemaj@nvidia.com>
GVS: Gerrit_Virtual_Submit <buildbot_gerritrpt@nvidia.com>
2023-04-21 11:31:53 -07:00

341 lines
8.9 KiB
C

/*
* Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <nvgpu/bug.h>
#include <nvgpu/dma.h>
#include <nvgpu/gmmu.h>
#include <nvgpu/kmem.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/nvgpu_sgt.h>
#include <nvgpu/nvgpu_sgt_os.h>
#include <nvgpu/gk20a.h>
#include <os/posix/os_posix.h>
#define DMA_ERROR_CODE (~(u64)0x0)
/*
* This function (and the get_addr() and get_phys_addr() functions are somewhat
* meaningless in userspace.
*
* There is no GPU in the loop here, so defining a "GPU physical" address is
* difficult. What we do here is simple but limited. We'll treat the GPU physical
* address as just the bottom 32 bits of the CPU virtual address. Since the driver
* shouldn't be dereferencing these pointers in the first place that's sufficient
* to make most tests work. The reason we truncate the CPU VA is because the
* address returned from this is programmed into the GMMU PTEs/PDEs. That code
* asserts that the address is a valid GPU physical address (i.e less than some
* number of bits, depending on chip).
*
* However, this does lead to some potential quirks: GPU addresses of different
* CPU virtual addresses could alias (e.g B and B + 1024GB will both result in
* the same value when ANDing with 0xFFFFFFFFFF.
*
* If there is a buffer with an address range that crosses a 1024GB boundary it'll
* be detected here. A more sophisticated buffer to GPU virtual address approach
* could be taken, but for now this is probably sufficient.
*
* For invalid nvgpu_mems and nvgpu_mems with no cpu_va, just return NULL.
* There's little else we can do. In many cases in the unit test FW we wind up
* getting essentially uninitialized nvgpu_mems.
*/
static u64 nvgpu_mem_userspace_get_addr(struct gk20a *g, struct nvgpu_mem *mem)
{
u64 hi_front = ((u64)(uintptr_t)mem->cpu_va) & ~0xffffffffffUL;
u64 hi_back = ((u64)(uintptr_t)mem->cpu_va + mem->size - 1U) & ~0xffffffffffUL;
if (!nvgpu_mem_is_valid(mem) || mem->cpu_va == NULL) {
return 0x0UL;
}
if (hi_front != hi_back) {
nvgpu_err(g, "Mismatching cpu_va calc.");
nvgpu_err(g, " valid = %s", nvgpu_mem_is_valid(mem) ? "yes" : "no");
nvgpu_err(g, " cpu_va = %p", mem->cpu_va);
nvgpu_err(g, " size = %lx", mem->size);
nvgpu_err(g, " hi_front = 0x%llx", hi_front);
nvgpu_err(g, " hi_back = 0x%llx", hi_back);
}
nvgpu_assert(hi_front == hi_back);
return ((u64)(uintptr_t)mem->cpu_va) & 0xffffffffffUL;
}
u64 nvgpu_mem_get_addr(struct gk20a *g, struct nvgpu_mem *mem)
{
return nvgpu_mem_userspace_get_addr(g, mem);
}
u64 nvgpu_mem_get_phys_addr(struct gk20a *g, struct nvgpu_mem *mem)
{
return nvgpu_mem_userspace_get_addr(g, mem);
}
void *nvgpu_mem_sgl_next(void *sgl)
{
struct nvgpu_mem_sgl *mem = (struct nvgpu_mem_sgl *)sgl;
return (void *) mem->next;
}
u64 nvgpu_mem_sgl_phys(struct gk20a *g, void *sgl)
{
struct nvgpu_mem_sgl *mem = (struct nvgpu_mem_sgl *)sgl;
(void)g;
return (u64)(uintptr_t)mem->phys;
}
u64 nvgpu_mem_sgl_ipa_to_pa(struct gk20a *g, void *sgl, u64 ipa, u64 *pa_len)
{
(void)ipa;
(void)pa_len;
return nvgpu_mem_sgl_phys(g, sgl);
}
u64 nvgpu_mem_sgl_dma(void *sgl)
{
struct nvgpu_mem_sgl *mem = (struct nvgpu_mem_sgl *)sgl;
return (u64)(uintptr_t)mem->dma;
}
u64 nvgpu_mem_sgl_length(void *sgl)
{
struct nvgpu_mem_sgl *mem = (struct nvgpu_mem_sgl *)sgl;
return (u64)mem->length;
}
u64 nvgpu_mem_sgl_gpu_addr(struct gk20a *g, void *sgl,
struct nvgpu_gmmu_attrs *attrs)
{
struct nvgpu_mem_sgl *mem = (struct nvgpu_mem_sgl *)sgl;
if (mem->dma == 0U) {
return g->ops.mm.gmmu.gpu_phys_addr(g, attrs, mem->phys);
}
if (mem->dma == DMA_ERROR_CODE) {
return 0x0;
}
return nvgpu_mem_iommu_translate(g, mem->dma);
}
bool nvgpu_mem_sgt_iommuable(struct gk20a *g, struct nvgpu_sgt *sgt)
{
struct nvgpu_os_posix *p = nvgpu_os_posix_from_gk20a(g);
(void)sgt;
return p->mm_sgt_is_iommuable;
}
void nvgpu_mem_sgl_free(struct gk20a *g, struct nvgpu_mem_sgl *sgl)
{
struct nvgpu_mem_sgl *tptr;
while (sgl != NULL) {
tptr = sgl->next;
nvgpu_kfree(g, sgl);
sgl = tptr;
}
}
void nvgpu_mem_sgt_free(struct gk20a *g, struct nvgpu_sgt *sgt)
{
nvgpu_mem_sgl_free(g, (struct nvgpu_mem_sgl *)sgt->sgl);
nvgpu_kfree(g, sgt);
}
static struct nvgpu_sgt_ops nvgpu_sgt_posix_ops = {
.sgl_next = nvgpu_mem_sgl_next,
.sgl_phys = nvgpu_mem_sgl_phys,
.sgl_ipa = nvgpu_mem_sgl_phys,
.sgl_ipa_to_pa = nvgpu_mem_sgl_ipa_to_pa,
.sgl_dma = nvgpu_mem_sgl_dma,
.sgl_length = nvgpu_mem_sgl_length,
.sgl_gpu_addr = nvgpu_mem_sgl_gpu_addr,
.sgt_iommuable = nvgpu_mem_sgt_iommuable,
.sgt_free = nvgpu_mem_sgt_free,
};
struct nvgpu_mem_sgl *nvgpu_mem_sgl_posix_create_from_list(struct gk20a *g,
struct nvgpu_mem_sgl *sgl_list, u32 nr_sgls,
u64 *total_size)
{
struct nvgpu_mem_sgl *sgl_ptr, *tptr, *head = NULL;
u32 i;
*total_size = 0;
for (i = 0; i < nr_sgls; i++) {
tptr = (struct nvgpu_mem_sgl *)nvgpu_kzalloc(g,
sizeof(struct nvgpu_mem_sgl));
if (tptr == NULL) {
goto err;
}
if (i == 0U) {
sgl_ptr = tptr;
head = sgl_ptr;
} else {
sgl_ptr->next = tptr;
sgl_ptr = sgl_ptr->next;
}
sgl_ptr->next = NULL;
sgl_ptr->phys = sgl_list[i].phys;
sgl_ptr->dma = sgl_list[i].dma;
sgl_ptr->length = sgl_list[i].length;
*total_size += sgl_list[i].length;
}
return head;
err:
while (head != NULL) {
struct nvgpu_mem_sgl *tmp = head;
head = tmp->next;
nvgpu_kfree(g, tmp);
}
return NULL;
}
struct nvgpu_sgt *nvgpu_mem_sgt_posix_create_from_list(struct gk20a *g,
struct nvgpu_mem_sgl *sgl_list, u32 nr_sgls,
u64 *total_size)
{
struct nvgpu_sgt *sgt = nvgpu_kzalloc(g, sizeof(struct nvgpu_sgt));
struct nvgpu_mem_sgl *sgl;
if (sgt == NULL) {
return NULL;
}
sgl = nvgpu_mem_sgl_posix_create_from_list(g, sgl_list, nr_sgls,
total_size);
if (sgl == NULL) {
nvgpu_kfree(g, sgt);
return NULL;
}
sgt->sgl = (void *)sgl;
sgt->ops = &nvgpu_sgt_posix_ops;
return sgt;
}
int nvgpu_mem_posix_create_from_list(struct gk20a *g, struct nvgpu_mem *mem,
struct nvgpu_mem_sgl *sgl_list, u32 nr_sgls)
{
u64 sgl_size;
mem->priv.sgt = nvgpu_mem_sgt_posix_create_from_list(g, sgl_list,
nr_sgls, &sgl_size);
if (mem->priv.sgt == NULL) {
return -ENOMEM;
}
mem->aperture = APERTURE_SYSMEM;
mem->aligned_size = PAGE_ALIGN(sgl_size);
mem->size = sgl_size;
return 0;
}
struct nvgpu_sgt *nvgpu_sgt_os_create_from_mem(struct gk20a *g,
struct nvgpu_mem *mem)
{
struct nvgpu_mem_sgl *sgl;
struct nvgpu_sgt *sgt;
if (mem->priv.sgt != NULL) {
return mem->priv.sgt;
}
sgt = nvgpu_kzalloc(g, sizeof(*sgt));
if (sgt == NULL) {
return NULL;
}
sgt->ops = &nvgpu_sgt_posix_ops;
/*
* The userspace implementation is simple: a single 'entry' (which we
* only need the nvgpu_mem_sgl struct to describe). A unit test can
* easily replace it if needed.
*/
sgl = (struct nvgpu_mem_sgl *) nvgpu_kzalloc(g, sizeof(
struct nvgpu_mem_sgl));
if (sgl == NULL) {
nvgpu_kfree(g, sgt);
return NULL;
}
sgl->length = mem->size;
sgl->phys = (u64) mem->cpu_va;
sgt->sgl = (void *) sgl;
return sgt;
}
int nvgpu_mem_create_from_mem(struct gk20a *g,
struct nvgpu_mem *dest, struct nvgpu_mem *src,
u64 start_page, size_t nr_pages)
{
u64 start = start_page * U64(NVGPU_CPU_PAGE_SIZE);
u64 size = U64(nr_pages) * U64(NVGPU_CPU_PAGE_SIZE);
(void)g;
if (!nvgpu_aperture_is_sysmem(src->aperture)) {
return -EINVAL;
}
/* Some silly things a caller might do... */
if (size > src->size) {
return -EINVAL;
}
if ((start + size) > src->size) {
return -EINVAL;
}
(void) memset(dest, 0, sizeof(*dest));
dest->cpu_va = ((char *)src->cpu_va) + start;
dest->mem_flags = src->mem_flags | NVGPU_MEM_FLAG_SHADOW_COPY;
dest->aperture = src->aperture;
dest->skip_wmb = src->skip_wmb;
dest->size = size;
return 0;
}
int __nvgpu_mem_create_from_phys(struct gk20a *g, struct nvgpu_mem *dest,
u64 src_phys, int nr_pages)
{
(void)g;
(void)dest;
(void)src_phys;
(void)nr_pages;
BUG();
return 0;
}