mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-22 17:36:20 +03:00
IOMMU fault is observed with 64KB PAGE_SIZE. This is due to IOMMU prefetching stale/invalid pd entries. IOMMU can prefetch more than 4K worth of entries. Clear pd when NVGPU_PD_CACHE_SIZE is more than 4K. Bug 200719161 Change-Id: Iac2a9bcfbcfaa36840da1fa85594520a6fd4eaaf Signed-off-by: Sagar Kamble <skamble@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/c/linux-nvgpu/+/2521912 Tested-by: mobile promotions <svcmobile_promotions@nvidia.com> Reviewed-by: Peter Daifuku <pdaifuku@nvidia.com> Reviewed-by: Alex Waterman <alexw@nvidia.com> Reviewed-by: Deepak Nibade <dnibade@nvidia.com> Reviewed-by: svc-mobile-coverity <svc-mobile-coverity@nvidia.com> Reviewed-by: svc-mobile-misra <svc-mobile-misra@nvidia.com> Reviewed-by: svc-mobile-cert <svc-mobile-cert@nvidia.com> Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> GVS: Gerrit_Virtual_Submit
515 lines
13 KiB
C
515 lines
13 KiB
C
/*
|
|
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/nvgpu_mem.h>
|
|
#include <nvgpu/list.h>
|
|
#include <nvgpu/log2.h>
|
|
#include <nvgpu/gk20a.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/static_analysis.h>
|
|
|
|
#include "pd_cache_priv.h"
|
|
|
|
static inline struct nvgpu_pd_mem_entry *
|
|
nvgpu_pd_mem_entry_from_list_entry(struct nvgpu_list_node *node)
|
|
{
|
|
return (struct nvgpu_pd_mem_entry *)
|
|
((uintptr_t)node -
|
|
offsetof(struct nvgpu_pd_mem_entry, list_entry));
|
|
};
|
|
|
|
static inline struct nvgpu_pd_mem_entry *
|
|
nvgpu_pd_mem_entry_from_tree_entry(struct nvgpu_rbtree_node *node)
|
|
{
|
|
return (struct nvgpu_pd_mem_entry *)
|
|
((uintptr_t)node -
|
|
offsetof(struct nvgpu_pd_mem_entry, tree_entry));
|
|
};
|
|
|
|
static u32 nvgpu_pd_cache_nr(u32 bytes)
|
|
{
|
|
unsigned long tmp = ilog2((unsigned long)bytes >>
|
|
((unsigned long)NVGPU_PD_CACHE_MIN_SHIFT - 1UL));
|
|
|
|
nvgpu_assert(tmp <= U32_MAX);
|
|
return (u32)tmp;
|
|
}
|
|
|
|
static u32 nvgpu_pd_cache_get_nr_entries(struct nvgpu_pd_mem_entry *pentry)
|
|
{
|
|
BUG_ON(pentry->pd_size == 0);
|
|
|
|
return (nvgpu_safe_cast_u64_to_u32(NVGPU_PD_CACHE_SIZE)) /
|
|
pentry->pd_size;
|
|
}
|
|
|
|
/*
|
|
* Return the _physical_ address of a page directory.
|
|
*/
|
|
u64 nvgpu_pd_gpu_addr(struct gk20a *g, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
u64 page_addr;
|
|
|
|
if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) {
|
|
page_addr = nvgpu_mem_get_phys_addr(g, pd->mem);
|
|
} else {
|
|
page_addr = nvgpu_mem_get_addr(g, pd->mem);
|
|
}
|
|
|
|
return nvgpu_safe_add_u64(page_addr, U64(pd->mem_offs));
|
|
}
|
|
|
|
u32 nvgpu_pd_offset_from_index(const struct gk20a_mmu_level *l, u32 pd_idx)
|
|
{
|
|
return nvgpu_safe_mult_u32(pd_idx, l->entry_size) / U32(sizeof(u32));
|
|
}
|
|
|
|
void nvgpu_pd_write(struct gk20a *g, struct nvgpu_gmmu_pd *pd,
|
|
size_t w, u32 data)
|
|
{
|
|
u64 tmp_offset = nvgpu_safe_add_u64((pd->mem_offs / sizeof(u32)), w);
|
|
|
|
nvgpu_mem_wr32(g, pd->mem,
|
|
nvgpu_safe_cast_u64_to_u32(tmp_offset),
|
|
data);
|
|
}
|
|
|
|
int nvgpu_pd_cache_init(struct gk20a *g)
|
|
{
|
|
struct nvgpu_pd_cache *cache;
|
|
u32 i;
|
|
|
|
/*
|
|
* This gets called from finalize_poweron() so we need to make sure we
|
|
* don't reinit the pd_cache over and over.
|
|
*/
|
|
if (g->mm.pd_cache != NULL) {
|
|
return 0;
|
|
}
|
|
|
|
cache = nvgpu_kzalloc(g, sizeof(*cache));
|
|
if (cache == NULL) {
|
|
nvgpu_err(g, "Failed to alloc pd_cache!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
|
|
nvgpu_init_list_node(&cache->full[i]);
|
|
nvgpu_init_list_node(&cache->partial[i]);
|
|
}
|
|
|
|
cache->mem_tree = NULL;
|
|
|
|
nvgpu_mutex_init(&cache->lock);
|
|
|
|
g->mm.pd_cache = cache;
|
|
|
|
pd_dbg(g, "PD cache initialized!");
|
|
|
|
return 0;
|
|
}
|
|
|
|
void nvgpu_pd_cache_fini(struct gk20a *g)
|
|
{
|
|
u32 i;
|
|
struct nvgpu_pd_cache *cache = g->mm.pd_cache;
|
|
|
|
if (cache == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (i = 0U; i < NVGPU_PD_CACHE_COUNT; i++) {
|
|
nvgpu_assert(nvgpu_list_empty(&cache->full[i]));
|
|
nvgpu_assert(nvgpu_list_empty(&cache->partial[i]));
|
|
}
|
|
|
|
nvgpu_kfree(g, g->mm.pd_cache);
|
|
g->mm.pd_cache = NULL;
|
|
}
|
|
|
|
/*
|
|
* This is the simple pass-through for greater than page or page sized PDs.
|
|
*
|
|
* Note: this does not need the cache lock since it does not modify any of the
|
|
* PD cache data structures.
|
|
*/
|
|
int nvgpu_pd_cache_alloc_direct(struct gk20a *g,
|
|
struct nvgpu_gmmu_pd *pd, u32 bytes)
|
|
{
|
|
int err;
|
|
unsigned long flags = 0;
|
|
|
|
pd_dbg(g, "PD-Alloc [D] %u bytes", bytes);
|
|
|
|
pd->mem = nvgpu_kzalloc(g, sizeof(*pd->mem));
|
|
if (pd->mem == NULL) {
|
|
nvgpu_err(g, "OOM allocating nvgpu_mem struct!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* If bytes == NVGPU_CPU_PAGE_SIZE then it's impossible to get a discontiguous DMA
|
|
* allocation. Some DMA implementations may, despite this fact, still
|
|
* use the contiguous pool for page sized allocations. As such only
|
|
* request explicitly contiguous allocs if the page directory is larger
|
|
* than the page size. Also, of course, this is all only revelant for
|
|
* GPUs not using an IOMMU. If there is an IOMMU DMA allocs are always
|
|
* going to be virtually contiguous and we don't have to force the
|
|
* underlying allocations to be physically contiguous as well.
|
|
*/
|
|
if (!nvgpu_iommuable(g) && (bytes > NVGPU_CPU_PAGE_SIZE)) {
|
|
flags = NVGPU_DMA_PHYSICALLY_ADDRESSED;
|
|
}
|
|
|
|
err = nvgpu_dma_alloc_flags(g, flags, bytes, pd->mem);
|
|
if (err != 0) {
|
|
nvgpu_err(g, "OOM allocating page directory!");
|
|
nvgpu_kfree(g, pd->mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pd->cached = false;
|
|
pd->mem_offs = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Make a new nvgpu_pd_cache_entry and allocate a PD from it. Update the passed
|
|
* pd to reflect this allocation.
|
|
*/
|
|
static int nvgpu_pd_cache_alloc_new(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd,
|
|
u32 bytes)
|
|
{
|
|
struct nvgpu_pd_mem_entry *pentry;
|
|
u64 flags = 0UL;
|
|
int32_t err;
|
|
|
|
pd_dbg(g, "PD-Alloc [C] New: offs=0");
|
|
|
|
pentry = nvgpu_kzalloc(g, sizeof(*pentry));
|
|
if (pentry == NULL) {
|
|
nvgpu_err(g, "OOM allocating pentry!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!nvgpu_iommuable(g) && (NVGPU_PD_CACHE_SIZE > NVGPU_CPU_PAGE_SIZE)) {
|
|
flags = NVGPU_DMA_PHYSICALLY_ADDRESSED;
|
|
}
|
|
|
|
err = nvgpu_dma_alloc_flags(g, flags,
|
|
NVGPU_PD_CACHE_SIZE, &pentry->mem);
|
|
if (err != 0) {
|
|
nvgpu_kfree(g, pentry);
|
|
|
|
/* Not enough contiguous space, but a direct
|
|
* allocation may work
|
|
*/
|
|
if (err == -ENOMEM) {
|
|
return nvgpu_pd_cache_alloc_direct(g, pd, bytes);
|
|
}
|
|
nvgpu_err(g, "Unable to DMA alloc!");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pentry->pd_size = bytes;
|
|
nvgpu_list_add(&pentry->list_entry,
|
|
&cache->partial[nvgpu_pd_cache_nr(bytes)]);
|
|
|
|
/*
|
|
* This allocates the very first PD table in the set of tables in this
|
|
* nvgpu_pd_mem_entry.
|
|
*/
|
|
nvgpu_set_bit(0U, pentry->alloc_map);
|
|
pentry->allocs = 1;
|
|
|
|
/*
|
|
* Now update the nvgpu_gmmu_pd to reflect this allocation.
|
|
*/
|
|
pd->mem = &pentry->mem;
|
|
pd->mem_offs = 0;
|
|
pd->cached = true;
|
|
|
|
pentry->tree_entry.key_start = (u64)(uintptr_t)&pentry->mem;
|
|
nvgpu_rbtree_insert(&pentry->tree_entry, &cache->mem_tree);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nvgpu_pd_cache_alloc_from_partial(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_pd_mem_entry *pentry,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
u32 bit_offs;
|
|
u32 mem_offs;
|
|
u32 nr_bits = nvgpu_pd_cache_get_nr_entries(pentry);
|
|
|
|
/*
|
|
* Find and allocate an open PD.
|
|
*/
|
|
bit_offs = nvgpu_safe_cast_u64_to_u32(
|
|
find_first_zero_bit(pentry->alloc_map, nr_bits));
|
|
mem_offs = nvgpu_safe_mult_u32(bit_offs, pentry->pd_size);
|
|
|
|
pd_dbg(g, "PD-Alloc [C] Partial: offs=%u nr_bits=%d src=0x%p",
|
|
bit_offs, nr_bits, pentry);
|
|
|
|
/* Bit map full. Somethings wrong. */
|
|
nvgpu_assert(bit_offs < nr_bits);
|
|
|
|
nvgpu_set_bit(bit_offs, pentry->alloc_map);
|
|
pentry->allocs = nvgpu_safe_add_u32(pentry->allocs, 1U);
|
|
|
|
/*
|
|
* First update the pd.
|
|
*/
|
|
pd->mem = &pentry->mem;
|
|
pd->mem_offs = mem_offs;
|
|
pd->cached = true;
|
|
|
|
/*
|
|
* Now make sure the pentry is in the correct list (full vs partial).
|
|
*/
|
|
if (pentry->allocs >= nr_bits) {
|
|
pd_dbg(g, "Adding pentry to full list!");
|
|
nvgpu_list_del(&pentry->list_entry);
|
|
nvgpu_list_add(&pentry->list_entry,
|
|
&cache->full[nvgpu_pd_cache_nr(pentry->pd_size)]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get a partially full nvgpu_pd_mem_entry. Returns NULL if there is no partial
|
|
* nvgpu_pd_mem_entry's.
|
|
*/
|
|
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_get_partial(
|
|
struct nvgpu_pd_cache *cache, u32 bytes)
|
|
{
|
|
struct nvgpu_list_node *list =
|
|
&cache->partial[nvgpu_pd_cache_nr(bytes)];
|
|
|
|
if (nvgpu_list_empty(list)) {
|
|
return NULL;
|
|
}
|
|
|
|
return nvgpu_list_first_entry(list,
|
|
nvgpu_pd_mem_entry,
|
|
list_entry);
|
|
}
|
|
|
|
/*
|
|
* Allocate memory from an nvgpu_mem for the page directory.
|
|
*/
|
|
static int nvgpu_pd_cache_alloc(struct gk20a *g, struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd, u32 bytes)
|
|
{
|
|
struct nvgpu_pd_mem_entry *pentry;
|
|
int err;
|
|
bool bytes_valid;
|
|
|
|
pd_dbg(g, "PD-Alloc [C] %u bytes", bytes);
|
|
|
|
bytes_valid = bytes >= NVGPU_PD_CACHE_MIN;
|
|
if (bytes_valid) {
|
|
bytes_valid = (bytes & nvgpu_safe_sub_u32(bytes, 1U)) == 0U;
|
|
}
|
|
if (!bytes_valid) {
|
|
pd_dbg(g, "PD-Alloc [C] Invalid (bytes=%u)!", bytes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nvgpu_assert(bytes < NVGPU_PD_CACHE_SIZE);
|
|
|
|
pentry = nvgpu_pd_cache_get_partial(cache, bytes);
|
|
if (pentry == NULL) {
|
|
err = nvgpu_pd_cache_alloc_new(g, cache, pd, bytes);
|
|
} else {
|
|
err = nvgpu_pd_cache_alloc_from_partial(g, cache, pentry, pd);
|
|
}
|
|
|
|
if (err != 0) {
|
|
nvgpu_err(g, "PD-Alloc [C] Failed!");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Allocate the DMA memory for a page directory. This handles the necessary PD
|
|
* cache logistics. Since on Parker and later GPUs some of the page directories
|
|
* are smaller than a page packing these PDs together saves a lot of memory.
|
|
*/
|
|
int nvgpu_pd_alloc(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd, u32 bytes)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
int err;
|
|
|
|
/*
|
|
* Simple case: PD is bigger than a page so just do a regular DMA
|
|
* alloc.
|
|
*/
|
|
if (bytes >= NVGPU_PD_CACHE_SIZE) {
|
|
err = nvgpu_pd_cache_alloc_direct(g, pd, bytes);
|
|
if (err != 0) {
|
|
return err;
|
|
}
|
|
pd->pd_size = bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (g->mm.pd_cache == NULL) {
|
|
nvgpu_do_assert();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
|
|
err = nvgpu_pd_cache_alloc(g, g->mm.pd_cache, pd, bytes);
|
|
if (err == 0) {
|
|
pd->pd_size = bytes;
|
|
}
|
|
nvgpu_mutex_release(&g->mm.pd_cache->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void nvgpu_pd_cache_free_direct(struct gk20a *g,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
pd_dbg(g, "PD-Free [D] 0x%p", pd->mem);
|
|
|
|
if (pd->mem == NULL) {
|
|
return;
|
|
}
|
|
|
|
nvgpu_dma_free(g, pd->mem);
|
|
nvgpu_kfree(g, pd->mem);
|
|
pd->mem = NULL;
|
|
}
|
|
|
|
static void nvgpu_pd_cache_free_mem_entry(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_pd_mem_entry *pentry)
|
|
{
|
|
nvgpu_dma_free(g, &pentry->mem);
|
|
nvgpu_list_del(&pentry->list_entry);
|
|
nvgpu_rbtree_unlink(&pentry->tree_entry, &cache->mem_tree);
|
|
nvgpu_kfree(g, pentry);
|
|
}
|
|
|
|
static void nvgpu_pd_cache_do_free(struct gk20a *g,
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_pd_mem_entry *pentry,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
u32 bit = pd->mem_offs / pentry->pd_size;
|
|
|
|
/* Mark entry as free. */
|
|
nvgpu_clear_bit(bit, pentry->alloc_map);
|
|
pentry->allocs = nvgpu_safe_sub_u32(pentry->allocs, 1U);
|
|
|
|
if (pentry->allocs > 0U) {
|
|
/*
|
|
* Partially full still. If it was already on the partial list
|
|
* this just re-adds it.
|
|
*
|
|
* Since the memory used for the entries is still mapped, if
|
|
* igpu make sure the entries are invalidated so that the hw
|
|
* doesn't acccidentally try to prefetch non-existent fb memory.
|
|
*
|
|
* As IOMMU prefetching of invalid pd entries cause the IOMMU fault,
|
|
* fill them with zero.
|
|
*/
|
|
if ((nvgpu_iommuable(g)) &&
|
|
(NVGPU_PD_CACHE_SIZE > NVGPU_CPU_SMALL_PAGE_SIZE) &&
|
|
(pd->mem->cpu_va != NULL)) {
|
|
(void)memset(((u8 *)pd->mem->cpu_va + pd->mem_offs), 0,
|
|
pd->pd_size);
|
|
}
|
|
|
|
nvgpu_list_del(&pentry->list_entry);
|
|
nvgpu_list_add(&pentry->list_entry,
|
|
&cache->partial[nvgpu_pd_cache_nr(pentry->pd_size)]);
|
|
} else {
|
|
/* Empty now so free it. */
|
|
nvgpu_pd_cache_free_mem_entry(g, cache, pentry);
|
|
}
|
|
|
|
pd->mem = NULL;
|
|
}
|
|
|
|
static struct nvgpu_pd_mem_entry *nvgpu_pd_cache_look_up(
|
|
struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
struct nvgpu_rbtree_node *node = NULL;
|
|
|
|
nvgpu_rbtree_search((u64)(uintptr_t)pd->mem, &node,
|
|
cache->mem_tree);
|
|
if (node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return nvgpu_pd_mem_entry_from_tree_entry(node);
|
|
}
|
|
|
|
static void nvgpu_pd_cache_free(struct gk20a *g, struct nvgpu_pd_cache *cache,
|
|
struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
struct nvgpu_pd_mem_entry *pentry;
|
|
|
|
pd_dbg(g, "PD-Free [C] 0x%p", pd->mem);
|
|
|
|
pentry = nvgpu_pd_cache_look_up(cache, pd);
|
|
if (pentry == NULL) {
|
|
nvgpu_do_assert_print(g, "Attempting to free non-existent pd");
|
|
return;
|
|
}
|
|
|
|
nvgpu_pd_cache_do_free(g, cache, pentry, pd);
|
|
}
|
|
|
|
void nvgpu_pd_free(struct vm_gk20a *vm, struct nvgpu_gmmu_pd *pd)
|
|
{
|
|
struct gk20a *g = gk20a_from_vm(vm);
|
|
|
|
/*
|
|
* Simple case: just DMA free.
|
|
*/
|
|
if (!pd->cached) {
|
|
return nvgpu_pd_cache_free_direct(g, pd);
|
|
}
|
|
|
|
nvgpu_mutex_acquire(&g->mm.pd_cache->lock);
|
|
nvgpu_pd_cache_free(g, g->mm.pd_cache, pd);
|
|
nvgpu_mutex_release(&g->mm.pd_cache->lock);
|
|
}
|