mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-23 01:50:07 +03:00
Convert the work_struct used by the vidmem background clearing to
a thread to make it more cross platform. The thread waits on a
condition variable to determine when work needs to be done. The
signal comes from the DMA API when it enqueues a new nvgpu_mem that
needs clearing.
Add logic for handling suspend: the CE cannot be accessed while
the GPU is suspended. As such the background thread must be paused
while the GPU is suspended and the CE is not available.
Several other changes were also made:
o Move the code that enqueues a nvgpu_mem from the DMA API
code to a function in the VIDMEM code.
o Move nvgpu_vidmem_get_pending_alloc() to the Linux specific
code as this function is only used there. It's a trivial
function that QNX can easily implement as well.
o Remove the was_empty logic from the enqueue. Now just always
signal the condition variable when anew nvgpu_mem comes in.
o Move CE suspend to after MM suspend.
JIRA NVGPU-30
JIRA NVGPU-138
Change-Id: Ie9286ae5a127c3fced86dfb9794e7d81eab0491c
Signed-off-by: Alex Waterman <alexw@nvidia.com>
Reviewed-on: https://git-master.nvidia.com/r/1574498
Reviewed-by: Automatic_Commit_Validation_User
GVS: Gerrit_Virtual_Submit
Reviewed-by: Terje Bergstrom <tbergstrom@nvidia.com>
645 lines
16 KiB
C
645 lines
16 KiB
C
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/dma-attrs.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/version.h>
|
|
|
|
#include <nvgpu/log.h>
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/lock.h>
|
|
#include <nvgpu/bug.h>
|
|
#include <nvgpu/gmmu.h>
|
|
#include <nvgpu/kmem.h>
|
|
#include <nvgpu/enabled.h>
|
|
#include <nvgpu/vidmem.h>
|
|
|
|
#include <nvgpu/linux/dma.h>
|
|
#include <nvgpu/linux/vidmem.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/platform_gk20a.h"
|
|
|
|
#include "os_linux.h"
|
|
|
|
/*
|
|
* Enough to hold all the possible flags in string form. When a new flag is
|
|
* added it must be added here as well!!
|
|
*/
|
|
#define NVGPU_DMA_STR_SIZE \
|
|
sizeof("NO_KERNEL_MAPPING FORCE_CONTIGUOUS READ_ONLY")
|
|
|
|
/*
|
|
* The returned string is kmalloc()ed here but must be freed by the caller.
|
|
*/
|
|
static char *nvgpu_dma_flags_to_str(struct gk20a *g, unsigned long flags)
|
|
{
|
|
char *buf = nvgpu_kzalloc(g, NVGPU_DMA_STR_SIZE);
|
|
int bytes_available = NVGPU_DMA_STR_SIZE;
|
|
|
|
/*
|
|
* Return the empty buffer if there's no flags. Makes it easier on the
|
|
* calling code to just print it instead of any if (NULL) type logic.
|
|
*/
|
|
if (!flags)
|
|
return buf;
|
|
|
|
#define APPEND_FLAG(flag, str_flag) \
|
|
do { \
|
|
if (flags & flag) { \
|
|
strncat(buf, str_flag, bytes_available); \
|
|
bytes_available -= strlen(str_flag); \
|
|
} \
|
|
} while (0)
|
|
|
|
APPEND_FLAG(NVGPU_DMA_NO_KERNEL_MAPPING, "NO_KERNEL_MAPPING ");
|
|
APPEND_FLAG(NVGPU_DMA_FORCE_CONTIGUOUS, "FORCE_CONTIGUOUS ");
|
|
APPEND_FLAG(NVGPU_DMA_READ_ONLY, "READ_ONLY");
|
|
#undef APPEND_FLAG
|
|
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* __dma_dbg - Debug print for DMA allocs and frees.
|
|
*
|
|
* @g - The GPU.
|
|
* @size - The requested size of the alloc (size_t).
|
|
* @flags - The flags (unsigned long).
|
|
* @type - A string describing the type (i.e: sysmem or vidmem).
|
|
* @what - A string with 'alloc' or 'free'.
|
|
*
|
|
* @flags is the DMA flags. If there are none or it doesn't make sense to print
|
|
* flags just pass 0.
|
|
*
|
|
* Please use dma_dbg_alloc() and dma_dbg_free() instead of this function.
|
|
*/
|
|
static void __dma_dbg(struct gk20a *g, size_t size, unsigned long flags,
|
|
const char *type, const char *what)
|
|
{
|
|
char *flags_str = NULL;
|
|
|
|
/*
|
|
* Don't bother making the flags_str if debugging is
|
|
* not enabled. This saves a malloc and a free.
|
|
*/
|
|
if (!nvgpu_log_mask_enabled(g, gpu_dbg_dma))
|
|
return;
|
|
|
|
flags_str = nvgpu_dma_flags_to_str(g, flags);
|
|
|
|
__nvgpu_log_dbg(g, gpu_dbg_dma,
|
|
__func__, __LINE__,
|
|
"DMA %s: [%s] size=%-7zu "
|
|
"aligned=%-7zu total=%-10llukB %s",
|
|
what, type,
|
|
size, PAGE_ALIGN(size),
|
|
g->dma_memory_used >> 10,
|
|
flags_str);
|
|
|
|
if (flags_str)
|
|
nvgpu_kfree(g, flags_str);
|
|
}
|
|
|
|
#define dma_dbg_alloc(g, size, flags, type) \
|
|
__dma_dbg(g, size, flags, type, "alloc")
|
|
#define dma_dbg_free(g, size, flags, type) \
|
|
__dma_dbg(g, size, flags, type, "free")
|
|
|
|
/*
|
|
* For after the DMA alloc is done.
|
|
*/
|
|
#define __dma_dbg_done(g, size, type, what) \
|
|
nvgpu_log(g, gpu_dbg_dma, \
|
|
"DMA %s: [%s] size=%-7zu Done!", \
|
|
what, type, size); \
|
|
|
|
#define dma_dbg_alloc_done(g, size, type) \
|
|
__dma_dbg_done(g, size, type, "alloc")
|
|
#define dma_dbg_free_done(g, size, type) \
|
|
__dma_dbg_done(g, size, type, "free")
|
|
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
static u64 __nvgpu_dma_alloc(struct nvgpu_allocator *allocator, u64 at,
|
|
size_t size)
|
|
{
|
|
u64 addr = 0;
|
|
|
|
if (at)
|
|
addr = nvgpu_alloc_fixed(allocator, at, size, 0);
|
|
else
|
|
addr = nvgpu_alloc(allocator, size);
|
|
|
|
return addr;
|
|
}
|
|
#endif
|
|
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
|
|
static void nvgpu_dma_flags_to_attrs(unsigned long *attrs,
|
|
unsigned long flags)
|
|
#define ATTR_ARG(x) *x
|
|
#else
|
|
static void nvgpu_dma_flags_to_attrs(struct dma_attrs *attrs,
|
|
unsigned long flags)
|
|
#define ATTR_ARG(x) x
|
|
#endif
|
|
{
|
|
if (flags & NVGPU_DMA_NO_KERNEL_MAPPING)
|
|
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, ATTR_ARG(attrs));
|
|
if (flags & NVGPU_DMA_FORCE_CONTIGUOUS)
|
|
dma_set_attr(DMA_ATTR_FORCE_CONTIGUOUS, ATTR_ARG(attrs));
|
|
if (flags & NVGPU_DMA_READ_ONLY)
|
|
dma_set_attr(DMA_ATTR_READ_ONLY, ATTR_ARG(attrs));
|
|
#undef ATTR_ARG
|
|
}
|
|
|
|
int nvgpu_dma_alloc(struct gk20a *g, size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_flags(g, 0, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_flags(struct gk20a *g, unsigned long flags, size_t size,
|
|
struct nvgpu_mem *mem)
|
|
{
|
|
if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFIED_MEMORY)) {
|
|
/*
|
|
* Force the no-kernel-mapping flag on because we don't support
|
|
* the lack of it for vidmem - the user should not care when
|
|
* using nvgpu_gmmu_alloc_map and it's vidmem, or if there's a
|
|
* difference, the user should use the flag explicitly anyway.
|
|
*
|
|
* Incoming flags are ignored here, since bits other than the
|
|
* no-kernel-mapping flag are ignored by the vidmem mapping
|
|
* functions anyway.
|
|
*/
|
|
int err = nvgpu_dma_alloc_flags_vid(g,
|
|
NVGPU_DMA_NO_KERNEL_MAPPING,
|
|
size, mem);
|
|
|
|
if (!err)
|
|
return 0;
|
|
/*
|
|
* Fall back to sysmem (which may then also fail) in case
|
|
* vidmem is exhausted.
|
|
*/
|
|
}
|
|
|
|
return nvgpu_dma_alloc_flags_sys(g, flags, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_sys(struct gk20a *g, size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_flags_sys(g, 0, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_flags_sys(struct gk20a *g, unsigned long flags,
|
|
size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
struct device *d = dev_from_gk20a(g);
|
|
int err;
|
|
dma_addr_t iova;
|
|
|
|
/*
|
|
* Before the debug print so we see this in the total. But during
|
|
* cleanup in the fail path this has to be subtracted.
|
|
*/
|
|
g->dma_memory_used += mem->aligned_size;
|
|
|
|
dma_dbg_alloc(g, size, flags, "sysmem");
|
|
|
|
/*
|
|
* Save the old size but for actual allocation purposes the size is
|
|
* going to be page aligned.
|
|
*/
|
|
mem->size = size;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (flags) {
|
|
DEFINE_DMA_ATTRS(dma_attrs);
|
|
|
|
nvgpu_dma_flags_to_attrs(&dma_attrs, flags);
|
|
|
|
if (flags & NVGPU_DMA_NO_KERNEL_MAPPING) {
|
|
mem->priv.pages = dma_alloc_attrs(d,
|
|
size, &iova, GFP_KERNEL,
|
|
__DMA_ATTR(dma_attrs));
|
|
if (!mem->priv.pages)
|
|
return -ENOMEM;
|
|
} else {
|
|
mem->cpu_va = dma_alloc_attrs(d,
|
|
size, &iova, GFP_KERNEL,
|
|
__DMA_ATTR(dma_attrs));
|
|
if (!mem->cpu_va)
|
|
return -ENOMEM;
|
|
}
|
|
} else {
|
|
mem->cpu_va = dma_alloc_coherent(d, size, &iova, GFP_KERNEL);
|
|
if (!mem->cpu_va)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (flags & NVGPU_DMA_NO_KERNEL_MAPPING)
|
|
err = nvgpu_get_sgtable_from_pages(g, &mem->priv.sgt,
|
|
mem->priv.pages,
|
|
iova, size);
|
|
else {
|
|
err = nvgpu_get_sgtable(g, &mem->priv.sgt, mem->cpu_va,
|
|
iova, size);
|
|
memset(mem->cpu_va, 0, size);
|
|
}
|
|
if (err)
|
|
goto fail_free;
|
|
|
|
mem->aligned_size = size;
|
|
mem->aperture = APERTURE_SYSMEM;
|
|
mem->priv.flags = flags;
|
|
|
|
dma_dbg_alloc_done(g, mem->size, "sysmem");
|
|
|
|
return 0;
|
|
|
|
fail_free:
|
|
g->dma_memory_used -= mem->aligned_size;
|
|
dma_free_coherent(d, size, mem->cpu_va, iova);
|
|
mem->cpu_va = NULL;
|
|
mem->priv.sgt = NULL;
|
|
mem->size = 0;
|
|
return err;
|
|
}
|
|
|
|
int nvgpu_dma_alloc_vid(struct gk20a *g, size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_flags_vid(g,
|
|
NVGPU_DMA_NO_KERNEL_MAPPING, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_flags_vid(struct gk20a *g, unsigned long flags,
|
|
size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_flags_vid_at(g, flags, size, mem, 0);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_flags_vid_at(struct gk20a *g, unsigned long flags,
|
|
size_t size, struct nvgpu_mem *mem, u64 at)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
u64 addr;
|
|
int err;
|
|
struct nvgpu_allocator *vidmem_alloc = g->mm.vidmem.cleared ?
|
|
&g->mm.vidmem.allocator :
|
|
&g->mm.vidmem.bootstrap_allocator;
|
|
int before_pending;
|
|
|
|
dma_dbg_alloc(g, size, flags, "vidmem");
|
|
|
|
mem->size = size;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!nvgpu_alloc_initialized(&g->mm.vidmem.allocator))
|
|
return -ENOSYS;
|
|
|
|
/*
|
|
* Our own allocator doesn't have any flags yet, and we can't
|
|
* kernel-map these, so require explicit flags.
|
|
*/
|
|
WARN_ON(flags != NVGPU_DMA_NO_KERNEL_MAPPING);
|
|
|
|
nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex);
|
|
before_pending = atomic64_read(&g->mm.vidmem.bytes_pending.atomic_var);
|
|
addr = __nvgpu_dma_alloc(vidmem_alloc, at, size);
|
|
nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex);
|
|
if (!addr) {
|
|
/*
|
|
* If memory is known to be freed soon, let the user know that
|
|
* it may be available after a while.
|
|
*/
|
|
if (before_pending)
|
|
return -EAGAIN;
|
|
else
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (at)
|
|
mem->mem_flags |= NVGPU_MEM_FLAG_FIXED;
|
|
|
|
mem->priv.sgt = nvgpu_kzalloc(g, sizeof(struct sg_table));
|
|
if (!mem->priv.sgt) {
|
|
err = -ENOMEM;
|
|
goto fail_physfree;
|
|
}
|
|
|
|
err = sg_alloc_table(mem->priv.sgt, 1, GFP_KERNEL);
|
|
if (err)
|
|
goto fail_kfree;
|
|
|
|
nvgpu_vidmem_set_page_alloc(mem->priv.sgt->sgl, addr);
|
|
sg_set_page(mem->priv.sgt->sgl, NULL, size, 0);
|
|
|
|
mem->aligned_size = size;
|
|
mem->aperture = APERTURE_VIDMEM;
|
|
mem->vidmem_alloc = (struct nvgpu_page_alloc *)(uintptr_t)addr;
|
|
mem->allocator = vidmem_alloc;
|
|
mem->priv.flags = flags;
|
|
|
|
nvgpu_init_list_node(&mem->clear_list_entry);
|
|
|
|
dma_dbg_alloc_done(g, mem->size, "vidmem");
|
|
|
|
return 0;
|
|
|
|
fail_kfree:
|
|
nvgpu_kfree(g, mem->priv.sgt);
|
|
fail_physfree:
|
|
nvgpu_free(&g->mm.vidmem.allocator, addr);
|
|
mem->size = 0;
|
|
return err;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
int nvgpu_dma_alloc_map(struct vm_gk20a *vm, size_t size,
|
|
struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_map_flags(vm, 0, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_map_flags(struct vm_gk20a *vm, unsigned long flags,
|
|
size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
if (!nvgpu_is_enabled(gk20a_from_vm(vm), NVGPU_MM_UNIFIED_MEMORY)) {
|
|
/*
|
|
* Force the no-kernel-mapping flag on because we don't support
|
|
* the lack of it for vidmem - the user should not care when
|
|
* using nvgpu_dma_alloc_map and it's vidmem, or if there's a
|
|
* difference, the user should use the flag explicitly anyway.
|
|
*/
|
|
int err = nvgpu_dma_alloc_map_flags_vid(vm,
|
|
flags | NVGPU_DMA_NO_KERNEL_MAPPING,
|
|
size, mem);
|
|
|
|
if (!err)
|
|
return 0;
|
|
/*
|
|
* Fall back to sysmem (which may then also fail) in case
|
|
* vidmem is exhausted.
|
|
*/
|
|
}
|
|
|
|
return nvgpu_dma_alloc_map_flags_sys(vm, flags, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_map_sys(struct vm_gk20a *vm, size_t size,
|
|
struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_map_flags_sys(vm, 0, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_map_flags_sys(struct vm_gk20a *vm, unsigned long flags,
|
|
size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
int err = nvgpu_dma_alloc_flags_sys(vm->mm->g, flags, size, mem);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
mem->gpu_va = nvgpu_gmmu_map(vm, mem, size, 0,
|
|
gk20a_mem_flag_none, false,
|
|
mem->aperture);
|
|
if (!mem->gpu_va) {
|
|
err = -ENOMEM;
|
|
goto fail_free;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_free:
|
|
nvgpu_dma_free(vm->mm->g, mem);
|
|
return err;
|
|
}
|
|
|
|
int nvgpu_dma_alloc_map_vid(struct vm_gk20a *vm, size_t size,
|
|
struct nvgpu_mem *mem)
|
|
{
|
|
return nvgpu_dma_alloc_map_flags_vid(vm,
|
|
NVGPU_DMA_NO_KERNEL_MAPPING, size, mem);
|
|
}
|
|
|
|
int nvgpu_dma_alloc_map_flags_vid(struct vm_gk20a *vm, unsigned long flags,
|
|
size_t size, struct nvgpu_mem *mem)
|
|
{
|
|
int err = nvgpu_dma_alloc_flags_vid(vm->mm->g, flags, size, mem);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
mem->gpu_va = nvgpu_gmmu_map(vm, mem, size, 0,
|
|
gk20a_mem_flag_none, false,
|
|
mem->aperture);
|
|
if (!mem->gpu_va) {
|
|
err = -ENOMEM;
|
|
goto fail_free;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_free:
|
|
nvgpu_dma_free(vm->mm->g, mem);
|
|
return err;
|
|
}
|
|
|
|
static void nvgpu_dma_free_sys(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
struct device *d = dev_from_gk20a(g);
|
|
|
|
g->dma_memory_used -= mem->aligned_size;
|
|
|
|
dma_dbg_free(g, mem->size, mem->priv.flags, "sysmem");
|
|
|
|
if (!(mem->mem_flags & NVGPU_MEM_FLAG_SHADOW_COPY) &&
|
|
!(mem->mem_flags & __NVGPU_MEM_FLAG_NO_DMA) &&
|
|
(mem->cpu_va || mem->priv.pages)) {
|
|
if (mem->priv.flags) {
|
|
DEFINE_DMA_ATTRS(dma_attrs);
|
|
|
|
nvgpu_dma_flags_to_attrs(&dma_attrs, mem->priv.flags);
|
|
|
|
if (mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING) {
|
|
dma_free_attrs(d, mem->aligned_size, mem->priv.pages,
|
|
sg_dma_address(mem->priv.sgt->sgl),
|
|
__DMA_ATTR(dma_attrs));
|
|
} else {
|
|
dma_free_attrs(d, mem->aligned_size, mem->cpu_va,
|
|
sg_dma_address(mem->priv.sgt->sgl),
|
|
__DMA_ATTR(dma_attrs));
|
|
}
|
|
} else {
|
|
dma_free_coherent(d, mem->aligned_size, mem->cpu_va,
|
|
sg_dma_address(mem->priv.sgt->sgl));
|
|
}
|
|
mem->cpu_va = NULL;
|
|
mem->priv.pages = NULL;
|
|
}
|
|
|
|
/*
|
|
* When this flag is set we expect that pages is still populated but not
|
|
* by the DMA API.
|
|
*/
|
|
if (mem->mem_flags & __NVGPU_MEM_FLAG_NO_DMA)
|
|
nvgpu_kfree(g, mem->priv.pages);
|
|
|
|
if (mem->priv.sgt)
|
|
nvgpu_free_sgtable(g, &mem->priv.sgt);
|
|
|
|
dma_dbg_free_done(g, mem->size, "sysmem");
|
|
|
|
mem->size = 0;
|
|
mem->aligned_size = 0;
|
|
mem->aperture = APERTURE_INVALID;
|
|
}
|
|
|
|
static void nvgpu_dma_free_vid(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
#if defined(CONFIG_GK20A_VIDMEM)
|
|
size_t mem_size = mem->size;
|
|
|
|
dma_dbg_free(g, mem->size, mem->priv.flags, "vidmem");
|
|
|
|
/* Sanity check - only this supported when allocating. */
|
|
WARN_ON(mem->priv.flags != NVGPU_DMA_NO_KERNEL_MAPPING);
|
|
|
|
if (mem->mem_flags & NVGPU_MEM_FLAG_USER_MEM) {
|
|
int err = nvgpu_vidmem_clear_list_enqueue(g, mem);
|
|
|
|
/*
|
|
* If there's an error here then that means we can't clear the
|
|
* vidmem. That's too bad; however, we still own the nvgpu_mem
|
|
* buf so we have to free that.
|
|
*
|
|
* We don't need to worry about the vidmem allocator itself
|
|
* since when that gets cleaned up in the driver shutdown path
|
|
* all the outstanding allocs are force freed.
|
|
*/
|
|
if (err)
|
|
nvgpu_kfree(g, mem);
|
|
} else {
|
|
nvgpu_memset(g, mem, 0, 0, mem->aligned_size);
|
|
nvgpu_free(mem->allocator,
|
|
(u64)nvgpu_vidmem_get_page_alloc(mem->priv.sgt->sgl));
|
|
nvgpu_free_sgtable(g, &mem->priv.sgt);
|
|
|
|
mem->size = 0;
|
|
mem->aligned_size = 0;
|
|
mem->aperture = APERTURE_INVALID;
|
|
}
|
|
|
|
dma_dbg_free_done(g, mem_size, "vidmem");
|
|
#endif
|
|
}
|
|
|
|
void nvgpu_dma_free(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
switch (mem->aperture) {
|
|
case APERTURE_SYSMEM:
|
|
return nvgpu_dma_free_sys(g, mem);
|
|
case APERTURE_VIDMEM:
|
|
return nvgpu_dma_free_vid(g, mem);
|
|
default:
|
|
break; /* like free() on "null" memory */
|
|
}
|
|
}
|
|
|
|
void nvgpu_dma_unmap_free(struct vm_gk20a *vm, struct nvgpu_mem *mem)
|
|
{
|
|
if (mem->gpu_va)
|
|
nvgpu_gmmu_unmap(vm, mem, mem->gpu_va);
|
|
mem->gpu_va = 0;
|
|
|
|
nvgpu_dma_free(vm->mm->g, mem);
|
|
}
|
|
|
|
int nvgpu_get_sgtable(struct gk20a *g, struct sg_table **sgt,
|
|
void *cpuva, u64 iova, size_t size)
|
|
{
|
|
int err = 0;
|
|
struct sg_table *tbl;
|
|
|
|
tbl = nvgpu_kzalloc(g, sizeof(struct sg_table));
|
|
if (!tbl) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
err = dma_get_sgtable(dev_from_gk20a(g), tbl, cpuva, iova, size);
|
|
if (err)
|
|
goto fail;
|
|
|
|
sg_dma_address(tbl->sgl) = iova;
|
|
*sgt = tbl;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (tbl)
|
|
nvgpu_kfree(g, tbl);
|
|
|
|
return err;
|
|
}
|
|
|
|
int nvgpu_get_sgtable_from_pages(struct gk20a *g, struct sg_table **sgt,
|
|
struct page **pages, u64 iova, size_t size)
|
|
{
|
|
int err = 0;
|
|
struct sg_table *tbl;
|
|
|
|
tbl = nvgpu_kzalloc(g, sizeof(struct sg_table));
|
|
if (!tbl) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
err = sg_alloc_table_from_pages(tbl, pages,
|
|
DIV_ROUND_UP(size, PAGE_SIZE),
|
|
0, size, GFP_KERNEL);
|
|
if (err)
|
|
goto fail;
|
|
|
|
sg_dma_address(tbl->sgl) = iova;
|
|
*sgt = tbl;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (tbl)
|
|
nvgpu_kfree(g, tbl);
|
|
|
|
return err;
|
|
}
|
|
|
|
void nvgpu_free_sgtable(struct gk20a *g, struct sg_table **sgt)
|
|
{
|
|
sg_free_table(*sgt);
|
|
nvgpu_kfree(g, *sgt);
|
|
*sgt = NULL;
|
|
}
|
|
|
|
bool nvgpu_iommuable(struct gk20a *g)
|
|
{
|
|
struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g);
|
|
|
|
return device_is_iommuable(l->dev);
|
|
}
|