mirror of
git://nv-tegra.nvidia.com/linux-nvgpu.git
synced 2025-12-24 10:34:43 +03:00
Split the core vidmem allocation from the Linux component of vidmem allocation. The core vidmem allocation allocates the nvgpu_mem struct that defines the vidmem buffer in the core MM code. The Linux code now allocates some Linux specific stuff (dma_buf, etc) and also allocates the core vidmem buf. JIRA NVGPU-30 JIRA NVGPU-138 Change-Id: I88e87e0abd5ec714610eacc6eac17e148bcee3ce Signed-off-by: Alex Waterman <alexw@nvidia.com> Reviewed-on: https://git-master.nvidia.com/r/1540708 Reviewed-by: mobile promotions <svcmobile_promotions@nvidia.com> Tested-by: mobile promotions <svcmobile_promotions@nvidia.com>
338 lines
8.2 KiB
C
338 lines
8.2 KiB
C
/*
|
|
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <nvgpu/dma.h>
|
|
#include <nvgpu/vidmem.h>
|
|
#include <nvgpu/page_allocator.h>
|
|
|
|
#include "gk20a/gk20a.h"
|
|
#include "gk20a/mm_gk20a.h"
|
|
|
|
void nvgpu_vidmem_destroy(struct gk20a *g)
|
|
{
|
|
if (nvgpu_alloc_initialized(&g->mm.vidmem.allocator))
|
|
nvgpu_alloc_destroy(&g->mm.vidmem.allocator);
|
|
}
|
|
|
|
static int __nvgpu_vidmem_do_clear_all(struct gk20a *g)
|
|
{
|
|
struct mm_gk20a *mm = &g->mm;
|
|
struct gk20a_fence *gk20a_fence_out = NULL;
|
|
u64 region2_base = 0;
|
|
int err = 0;
|
|
|
|
if (mm->vidmem.ce_ctx_id == (u32)~0)
|
|
return -EINVAL;
|
|
|
|
err = gk20a_ce_execute_ops(g,
|
|
mm->vidmem.ce_ctx_id,
|
|
0,
|
|
mm->vidmem.base,
|
|
mm->vidmem.bootstrap_base - mm->vidmem.base,
|
|
0x00000000,
|
|
NVGPU_CE_DST_LOCATION_LOCAL_FB,
|
|
NVGPU_CE_MEMSET,
|
|
NULL,
|
|
0,
|
|
NULL);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Failed to clear vidmem region 1 : %d", err);
|
|
return err;
|
|
}
|
|
|
|
region2_base = mm->vidmem.bootstrap_base + mm->vidmem.bootstrap_size;
|
|
|
|
err = gk20a_ce_execute_ops(g,
|
|
mm->vidmem.ce_ctx_id,
|
|
0,
|
|
region2_base,
|
|
mm->vidmem.size - region2_base,
|
|
0x00000000,
|
|
NVGPU_CE_DST_LOCATION_LOCAL_FB,
|
|
NVGPU_CE_MEMSET,
|
|
NULL,
|
|
0,
|
|
&gk20a_fence_out);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Failed to clear vidmem region 2 : %d", err);
|
|
return err;
|
|
}
|
|
|
|
if (gk20a_fence_out) {
|
|
struct nvgpu_timeout timeout;
|
|
|
|
nvgpu_timeout_init(g, &timeout,
|
|
gk20a_get_gr_idle_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
err = gk20a_fence_wait(g, gk20a_fence_out,
|
|
gk20a_get_gr_idle_timeout(g));
|
|
} while (err == -ERESTARTSYS &&
|
|
!nvgpu_timeout_expired(&timeout));
|
|
|
|
gk20a_fence_put(gk20a_fence_out);
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"fence wait failed for CE execute ops");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
mm->vidmem.cleared = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvgpu_vidmem_init(struct mm_gk20a *mm)
|
|
{
|
|
struct gk20a *g = mm->g;
|
|
size_t size = g->ops.mm.get_vidmem_size ?
|
|
g->ops.mm.get_vidmem_size(g) : 0;
|
|
u64 bootstrap_base, bootstrap_size, base;
|
|
u64 default_page_size = SZ_64K;
|
|
int err;
|
|
|
|
static struct nvgpu_alloc_carveout wpr_co =
|
|
NVGPU_CARVEOUT("wpr-region", 0, SZ_16M);
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
wpr_co.base = size - SZ_256M;
|
|
bootstrap_base = wpr_co.base;
|
|
bootstrap_size = SZ_16M;
|
|
base = default_page_size;
|
|
|
|
/*
|
|
* Bootstrap allocator for use before the CE is initialized (CE
|
|
* initialization requires vidmem but we want to use the CE to zero
|
|
* out vidmem before allocating it...
|
|
*/
|
|
err = nvgpu_page_allocator_init(g, &g->mm.vidmem.bootstrap_allocator,
|
|
"vidmem-bootstrap",
|
|
bootstrap_base, bootstrap_size,
|
|
SZ_4K, 0);
|
|
|
|
err = nvgpu_page_allocator_init(g, &g->mm.vidmem.allocator,
|
|
"vidmem",
|
|
base, size - base,
|
|
default_page_size,
|
|
GPU_ALLOC_4K_VIDMEM_PAGES);
|
|
if (err) {
|
|
nvgpu_err(g, "Failed to register vidmem for size %zu: %d",
|
|
size, err);
|
|
return err;
|
|
}
|
|
|
|
/* Reserve bootstrap region in vidmem allocator */
|
|
nvgpu_alloc_reserve_carveout(&g->mm.vidmem.allocator, &wpr_co);
|
|
|
|
mm->vidmem.base = base;
|
|
mm->vidmem.size = size - base;
|
|
mm->vidmem.bootstrap_base = bootstrap_base;
|
|
mm->vidmem.bootstrap_size = bootstrap_size;
|
|
|
|
nvgpu_mutex_init(&mm->vidmem.first_clear_mutex);
|
|
|
|
INIT_WORK(&mm->vidmem.clear_mem_worker, nvgpu_vidmem_clear_mem_worker);
|
|
nvgpu_atomic64_set(&mm->vidmem.bytes_pending, 0);
|
|
nvgpu_init_list_node(&mm->vidmem.clear_list_head);
|
|
nvgpu_mutex_init(&mm->vidmem.clear_list_mutex);
|
|
|
|
gk20a_dbg_info("registered vidmem: %zu MB", size / SZ_1M);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvgpu_vidmem_get_space(struct gk20a *g, u64 *space)
|
|
{
|
|
struct nvgpu_allocator *allocator = &g->mm.vidmem.allocator;
|
|
|
|
gk20a_dbg_fn("");
|
|
|
|
if (!nvgpu_alloc_initialized(allocator))
|
|
return -ENOSYS;
|
|
|
|
nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex);
|
|
*space = nvgpu_alloc_space(allocator) +
|
|
nvgpu_atomic64_read(&g->mm.vidmem.bytes_pending);
|
|
nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int nvgpu_vidmem_clear(struct gk20a *g, struct nvgpu_mem *mem)
|
|
{
|
|
struct gk20a_fence *gk20a_fence_out = NULL;
|
|
struct gk20a_fence *gk20a_last_fence = NULL;
|
|
struct nvgpu_page_alloc *alloc = NULL;
|
|
void *sgl = NULL;
|
|
int err = 0;
|
|
|
|
if (g->mm.vidmem.ce_ctx_id == (u32)~0)
|
|
return -EINVAL;
|
|
|
|
alloc = nvgpu_vidmem_get_page_alloc(mem->priv.sgt->sgl);
|
|
|
|
nvgpu_sgt_for_each_sgl(sgl, &alloc->sgt) {
|
|
if (gk20a_last_fence)
|
|
gk20a_fence_put(gk20a_last_fence);
|
|
|
|
err = gk20a_ce_execute_ops(g,
|
|
g->mm.vidmem.ce_ctx_id,
|
|
0,
|
|
nvgpu_sgt_get_phys(&alloc->sgt, sgl),
|
|
nvgpu_sgt_get_length(&alloc->sgt, sgl),
|
|
0x00000000,
|
|
NVGPU_CE_DST_LOCATION_LOCAL_FB,
|
|
NVGPU_CE_MEMSET,
|
|
NULL,
|
|
0,
|
|
&gk20a_fence_out);
|
|
|
|
if (err) {
|
|
nvgpu_err(g,
|
|
"Failed gk20a_ce_execute_ops[%d]", err);
|
|
return err;
|
|
}
|
|
|
|
gk20a_last_fence = gk20a_fence_out;
|
|
}
|
|
|
|
if (gk20a_last_fence) {
|
|
struct nvgpu_timeout timeout;
|
|
|
|
nvgpu_timeout_init(g, &timeout,
|
|
gk20a_get_gr_idle_timeout(g),
|
|
NVGPU_TIMER_CPU_TIMER);
|
|
|
|
do {
|
|
err = gk20a_fence_wait(g, gk20a_last_fence,
|
|
gk20a_get_gr_idle_timeout(g));
|
|
} while (err == -ERESTARTSYS &&
|
|
!nvgpu_timeout_expired(&timeout));
|
|
|
|
gk20a_fence_put(gk20a_last_fence);
|
|
if (err)
|
|
nvgpu_err(g,
|
|
"fence wait failed for CE execute ops");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
struct nvgpu_mem *nvgpu_vidmem_get_pending_alloc(struct mm_gk20a *mm)
|
|
{
|
|
struct nvgpu_mem *mem = NULL;
|
|
|
|
nvgpu_mutex_acquire(&mm->vidmem.clear_list_mutex);
|
|
if (!nvgpu_list_empty(&mm->vidmem.clear_list_head)) {
|
|
mem = nvgpu_list_first_entry(&mm->vidmem.clear_list_head,
|
|
nvgpu_mem, clear_list_entry);
|
|
nvgpu_list_del(&mem->clear_list_entry);
|
|
}
|
|
nvgpu_mutex_release(&mm->vidmem.clear_list_mutex);
|
|
|
|
return mem;
|
|
}
|
|
|
|
static int nvgpu_vidmem_clear_all(struct gk20a *g)
|
|
{
|
|
int err;
|
|
|
|
if (g->mm.vidmem.cleared)
|
|
return 0;
|
|
|
|
nvgpu_mutex_acquire(&g->mm.vidmem.first_clear_mutex);
|
|
if (!g->mm.vidmem.cleared) {
|
|
err = __nvgpu_vidmem_do_clear_all(g);
|
|
if (err) {
|
|
nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex);
|
|
nvgpu_err(g, "failed to clear whole vidmem");
|
|
return err;
|
|
}
|
|
}
|
|
nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct nvgpu_vidmem_buf *nvgpu_vidmem_user_alloc(struct gk20a *g, size_t bytes)
|
|
{
|
|
struct nvgpu_vidmem_buf *buf;
|
|
int err;
|
|
|
|
err = nvgpu_vidmem_clear_all(g);
|
|
if (err)
|
|
return NULL;
|
|
|
|
buf = nvgpu_kzalloc(g, sizeof(*buf));
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
buf->g = g;
|
|
buf->mem = nvgpu_kzalloc(g, sizeof(*buf->mem));
|
|
if (!buf->mem)
|
|
goto fail;
|
|
|
|
err = nvgpu_dma_alloc_vid(g, bytes, buf->mem);
|
|
if (err)
|
|
goto fail;
|
|
|
|
/*
|
|
* Alerts the DMA API that when we free this vidmem buf we have to
|
|
* clear it to avoid leaking data to userspace.
|
|
*/
|
|
buf->mem->mem_flags |= NVGPU_MEM_FLAG_USER_MEM;
|
|
|
|
return buf;
|
|
|
|
fail:
|
|
/* buf will never be NULL here. */
|
|
nvgpu_kfree(g, buf->mem);
|
|
nvgpu_kfree(g, buf);
|
|
return NULL;
|
|
}
|
|
|
|
void nvgpu_vidmem_buf_free(struct gk20a *g, struct nvgpu_vidmem_buf *buf)
|
|
{
|
|
/*
|
|
* In some error paths it's convenient to be able to "free" a NULL buf.
|
|
*/
|
|
if (!buf)
|
|
return;
|
|
|
|
nvgpu_dma_free(g, buf->mem);
|
|
|
|
/*
|
|
* We don't free buf->mem here. This is handled by nvgpu_dma_free()!
|
|
* Since these buffers are cleared in the background the nvgpu_mem
|
|
* struct must live on through that. We transfer ownership here to the
|
|
* DMA API and let the DMA API free the buffer.
|
|
*/
|
|
nvgpu_kfree(g, buf);
|
|
}
|